
1 Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

2 Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction
!  Programmers want unlimited amounts of memory with

low latency
!  Fast memory technology is more expensive per bit than

slower memory
!  Solution: organize memory system into a hierarchy

!  Entire addressable memory space available in largest, slowest
memory

!  Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

!  Temporal and spatial locality insures that nearly all
references can be found in smaller memories
!  Gives the allusion of a large, fast memory being presented to the

processor

Introduction

3 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy
Introduction

4 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap
Introduction

5 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design
!  Memory hierarchy design becomes more crucial

with recent multi-core processors:
!  Aggregate peak bandwidth grows with # cores:

!  Intel Core i7 can generate two references per core per clock
!  Four cores and 3.2 GHz clock

!  25.6 billion 64-bit data references/second +
!  12.8 billion 128-bit instruction references
!  = 409.6 GB/s!

!  DRAM bandwidth is only 6% of this (25 GB/s)
!  Requires:

!  Multi-port, pipelined caches
!  Two levels of cache per core
!  Shared third-level cache on chip

Introduction

6 Copyright © 2012, Elsevier Inc. All rights reserved.

Performance and Power
!  High-end microprocessors have >10 MB on-chip

cache
!  Consumes large amount of area and power budget

Introduction

7 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  When a word is not found in the cache, a miss

occurs:
!  Fetch word from lower level in hierarchy, requiring a

higher latency reference
!  Lower level may be another cache or the main

memory
!  Also fetch the other words contained within the block

!  Takes advantage of spatial locality
!  Place block into cache in any location within its set,

determined by address
!  block address MOD number of sets

Introduction

8 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  n sets => n-way set associative

!  Direct-mapped cache => one block per set
!  Fully associative => one set

!  Writing to cache: two strategies
!  Write-through

!  Immediately update lower levels of hierarchy
!  Write-back

!  Only update lower levels of hierarchy when an updated block
is replaced

!  Both strategies use write buffer to make writes
asynchronous

Introduction

9 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  Miss rate

!  Fraction of cache access that result in a miss

!  Causes of misses
!  Compulsory

!  First reference to a block
!  Capacity

!  Blocks discarded and later retrieved
!  Conflict

!  Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

Introduction

10

!  Note that speculative and multithreaded
processors may execute other instructions during
a miss
!  Reduces performance impact of misses

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
Introduction

11 Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
!  Six basic cache optimizations:

!  Larger block size
!  Reduces compulsory misses
!  Increases capacity and conflict misses, increases miss penalty

!  Larger total cache capacity to reduce miss rate
!  Increases hit time, increases power consumption

!  Higher associativity
!  Reduces conflict misses
!  Increases hit time, increases power consumption

!  Higher number of cache levels
!  Reduces overall memory access time

!  Giving priority to read misses over writes
!  Reduces miss penalty

!  Avoiding address translation in cache indexing
!  Reduces hit time

Introduction

These are covered in Appendix B!

12

Ten Advanced Optimizations
!  Reducing the Hit Time (and less power consumption)

!  1: Small and simple L1
!  2: Way prediction

!  Increasing cache bandwidth
!  3: Pipelined caches
!  4: Multibanked caches
!  5: Nonblocking caches

!  Reducing the Miss Penalty
!  6: Critical word fist
!  7: Merging write buffers

!  Reducing the Miss Rate
!  8: Compiler optimization

!  Reducing the Miss Rate/Penalty via parallelism
!  9: Hardware prefetching
!  10: Compiler prefetching

A
dvanced O

ptim
izations

13 Copyright © 2012, Elsevier Inc. All rights reserved.

Small and simple L1 caches
!  Critical timing path:

!  addressing tag memory, then
!  comparing tags, then
!  selecting correct set (if associative)

!  Direct-mapped caches can overlap tag compare and
transmission of data

!  Lower associativity reduces power because fewer
cache lines are accessed

A
dvanced O

ptim
izations

14 Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
izations

15 Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
izations

16 Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction
!  To improve hit time, predict the way to pre-set

mux
!  Mis-prediction gives longer hit time
!  Prediction accuracy

!  > 90% for two-way
!  > 80% for four-way
!  I-cache has better accuracy than D-cache

!  First used on MIPS R10000 in mid-90s
!  Used on ARM Cortex-A8

!  Extend to predict block as well
!  “Way selection”
!  Increases mis-prediction penalty

A
dvanced O

ptim
izations

17 Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache
!  Pipeline cache access to improve bandwidth

!  Examples:
!  Pentium: 1 cycle
!  Pentium Pro – Pentium III: 2 cycles
!  Pentium 4 – Core i7: 4 cycles

!  Increases branch mis-prediction penalty
!  Makes it easier to increase associativity

A
dvanced O

ptim
izations

18 Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches
!  Allow hits before

previous misses
complete
!  “Hit under miss”
!  “Hit under multiple

miss”
!  L2 must support this
!  In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanced O

ptim
izations

19

Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a
cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory
system modeled after the Intel i7 consists of a 32KB L1 cache with a four cycle access latency. The L2
cache (shared with instructions) is 256 KB with a 10 clock cycle access latency. The L3 is 2 MB and a 36-
cycle access latency. All the caches are eight-way set associative and have a 64-byte block size. Allowing
one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating
point. Allowing a second hit improves these results to 10% and 16%, and allowing 64 results in little
additional improvement.

Nonblocking caches - Latency

20

Exmpl p83: non blocking caches

21

Exmpl p83: non blocking caches
(cont)

22 Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches
!  Organize cache as independent banks to

support simultaneous access
!  ARM Cortex-A8 supports 1-4 banks for L2
!  Intel i7 supports 4 banks for L1 and 8 banks for L2

!  Interleave banks according to block address

A
dvanced O

ptim
izations

23 Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart
!  Critical word first

!  Request missed word from memory first
!  Send it to the processor as soon as it arrives

!  Early restart
!  Request words in normal order
!  Send missed word to the processor as soon as it

arrives

!  Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanced O

ptim
izations

24 Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer
!  When storing to a block that is already pending in the

write buffer, update write buffer
!  Reduces stalls due to full write buffer
!  Do not apply to I/O addresses

A
dvanced O

ptim
izations

No write
buffering

Write buffering

25 Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations
!  Loop Interchange

!  Swap nested loops to access memory in
sequential order (spacial locality)

A
dvanced O

ptim
izations

26 Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations
!  Blocking

!  Instead of accessing entire rows or columns,
subdivide matrices into blocks

!  Requires more memory accesses but improves
temporal locality of accesses

A
dvanced O

ptim
izations

27 Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching
!  Fetch two blocks on miss (include next

sequential block)

A
dvanced O

ptim
izations

Pentium 4 Pre-fetching

28 Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching
!  Insert prefetch instructions before data is

needed
!  Non-faulting: prefetch doesn’t cause

exceptions

!  Register prefetch
!  Loads data into register

!  Cache prefetch
!  Loads data into cache

!  Combine with loop unrolling and software
pipelining

A
dvanced O

ptim
izations

29 Copyright © 2012, Elsevier Inc. All rights reserved.

Summary
A

dvanced O
ptim

izations

30 Copyright © 2012, Elsevier Inc. All rights reserved.

Virtual Memory
!  Protection via virtual memory

!  Keeps processes in their own memory space

!  Role of architecture:
!  Provide user mode and supervisor mode
!  Protect certain aspects of CPU state
!  Provide mechanisms for switching between user

mode and supervisor mode
!  Provide mechanisms to limit memory accesses
!  Provide TLB to translate addresses

Virtual M
em

ory and Virtual M
achines

31 Copyright © 2012, Elsevier Inc. All rights reserved.

Virtual Machines
!  Supports isolation and security
!  Sharing a computer among many unrelated users
!  Enabled by raw speed of processors, making the

overhead more acceptable

!  Allows different ISAs and operating systems to be
presented to user programs
!  “System Virtual Machines”
!  SVM software is called “virtual machine monitor” or

“hypervisor”
!  Individual virtual machines run under the monitor are called

“guest VMs”

Virtual M
em

ory and Virtual M
achines

32 Copyright © 2012, Elsevier Inc. All rights reserved.

Impact of VMs on Virtual Memory
!  Each guest OS maintains its own set of page

tables
!  VMM adds a level of memory between physical

and virtual memory called “real memory”
!  VMM maintains shadow page table that maps

guest virtual addresses to physical addresses
!  Requires VMM to detect guest’s changes to its own page

table
!  Occurs naturally if accessing the page table pointer is a

privileged operation

Virtual M
em

ory and Virtual M
achines

