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Introduction
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s Programmers want unlimited amounts of memory with
low latency

» Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory

= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

= [emporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor




Memory Hierarchy
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Memory Hierarchy Design
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= Memory hierarchy design becomes more crucial
with recent multi-core processors:

= Aggregate peak bandwidth grows with # cores:
= Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
s 25.6 billion 64-bit data references/second +
s 12.8 billion 128-bit instruction references

= =409.6 GB/s!
= DRAM bandwidth is only 6% of this (25 GB/s)

=« Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip




Performance and Power
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= High-end microprocessors have >10 MB on-chip
cache
= Consumes large amount of area and power budget




Memory Hierarchy Basics
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s When a word is not found in the cache, a miss
OCCuUrs:

= Fetch word from lower level in hierarchy, requiring a
higher latency reference

= Lower level may be another cache or the main
memory

s Also fetch the other words contained within the block

= [akes advantage of spatial locality

= Place block into cache in any location within its set,
determined by address
= block address MOD number of sets




Memory Hierarchy Basics
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m N sets => n-way set associative
= Direct-mapped cache => one block per set
s Fully associative => one set

= Writing to cache: two strategies
= Whrite-through

= Immediately update lower levels of hierarchy

n Wirite-back

= Only update lower levels of hierarchy when an updated block
IS replaced

= Both strategies use write buffer to make writes
asynchronous




Memory Hierarchy Basics
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s Miss rate
s Fraction of cache access that result in a miss

s Causes of misses

= Compulsory
= First reference to a block
= Capacity

= Blocks discarded and later retrieved

s Conflict

= Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache




Memory Hierarchy Basics
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Misses  Miss rate X Memory accesses _ Miss rate X Memory accesses
Instruction Instruction count - Instruction

Average memory access time = Hit time + Miss rate X Miss penalty

s Note that speculative and multithreaded
processors may execute other instructions during
a miss

= Reduces performance impact of misses




Memory Hierarchy Basics
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s SiX basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty

= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

Higher number of cache levels
= Reduces overall memory access time

Giving priority to read misses over writes
= Reduces miss penalty

Avoiding address translation in cache indexing
= Reduces hit time

These are covered in Appendix B!




Ten Advanced Optimizations

= Reducing the Hit Time (and less power consumption)
= 1: Small and simple L1
= 2. Way prediction

= Increasing cache bandwidth
= 3: Pipelined caches
= 4: Multibanked caches
= 5. Nonblocking caches
= Reducing the Miss Penalty
= 6: Critical word fist
= 7: Merging write buffers
= Reducing the Miss Rate
= 8: Compiler optimization
= Reducing the Miss Rate/Penalty via parallelism

= 9: Hardware prefetching
= 10: Compiler prefetching
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Small and simple L1 caches

= Critical timing path:
» addressing tag memory, then
= comparing tags, then
= Selecting correct set (if associative)
= Direct-mapped caches can overlap tag compare and
transmission of data
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= Lower associativity reduces power because fewer
cache lines are accessed
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Access time vs. size and associativity




L1 Size and Associativity
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Way Prediction

= [0 improve hit time, predict the way to pre-set
MuX
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way

= > 80% for four-way
» |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
» Used on ARM Cortex-A8
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s Extend to predict block as well
= "Way selection”
= Increases mis-prediction penalty




Pipelining Cache

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
» Pentium Pro — Pentium Ill: 2 cycles
= Pentium 4 — Core i7: 4 cycles
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= Increases branch mis-prediction penalty
= Makes it easier to increase associativity




Nonblocking Caches

s Allow hits before
previous misses
complete

= “Hit under miss” 70%
= “Hit under multiple 0% M
miSS” 50%”.‘/‘(7%
s L2 must support this «0\/
= In general,
processors can hide
L1 miss penalty but
not L2 miss penalty T e B e s e AR E

* S@ S N )
PGSR S SIRES NS

—jl— Hit-under-1-miss
—— Hit-under-2-misses |__
—@— Hit-under-64-misses

suoneziwndo paoueApy

Ratio of cache miss penalty

& > o Q> NFRL N
AT NEES d 27 O & RO
& ¢ & 9 v o 006‘




Nonblocking caches - Latency
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Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a
cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory
system modeled after the Intel 17 consists of a 32KB L1 cache with a four cycle access latency. The L2
cache (shared with instructions) is 256 KB with a 10 clock cycle access latency. The L3 is 2 MB and a 36-
cycle access latency. All the caches are eight-way set associative and have a 64-byte block size. Allowing
one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating
point. Allowing a second hit improves these results to 10% and 16%, and allowing 64 results in little

additional imirovement.



Exmpl p83: non blocking caches

Example Which is more important for floating-point programs: two-way set associativity or

Answer

hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KB data caches: 5.2% for floating-
point programs with a direct-mapped cache, 4.9% for these programs with a two-
way set associative cache, 3.5% for integer programs with a direct-mapped cache,
and 3.2% for integer programs with a two-way set associative cache. Assume the
miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

For floating-point programs, the average memory stall times are

Miss ratep)y X Miss penalty = 5.2% x 10 = 0.52

Miss rate;.,, X Miss penalty = 4.9% x 10 = 0.49




Exmpl p83: non blocking caches

(cont)

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. The caption of Figure 2.5 says hit under one
miss reduces the average data cache access latency for floating point programs to
87.5% of a blocking cache. Hence, for floating-point programs, the direct
mapped data cache supporting one hit under one miss gives better performance
than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation is

Miss ratep,s X Miss penalty = 3.5% x 10 =0.35
Miss rate,_,,,, X Miss penalty = 3.2% x 10 =0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when
allowing a hit under one miss is 9%, making the two choices about equal.




Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

= Interleave banks according to block address

Block Block Block Block

address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte

addressing.
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Critical Word First, Early Restart

s Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

= Early restart
= Request words in normal order

= Send missed word to the processor as soon as it
arrives
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n Effectiveness of these strategies depends on
block size and likelihood of another access to

the portion of the block that has not yet been
fetched




Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/O addresses
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Write address  V \' V V
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | O 0 0 N .
o write
116 1 | Mem[116] | O 0 0 b ff .
124 1 | Mem[124] | o 0 0 u e rl n g

Write address  V \' \Y \Y

100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Write buffering




Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order (spacial locality)
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/* Before */
for (j = 05 j <1005 j = j+1)
for (i = 0; i <5000; i = i+1)
x[1]1[3] = 2 * x[i]1[i]s

/* After */
for (i = 0; i <5000; i = i+1)
for (3 = 0; j <100; j = j+1)
x[1]1[3] = 2 * x[i][i];




Compiler Optimizations

= Blocking

» Instead of accessing entire rows or columns,
subdivide matrices into blocks

= Requires more memory accesses but improves
temporal locality of accesses
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Hardware Prefetching

= Fetch two blocks on miss (include next
sequential block)

Performance improvement
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Compiler Prefetching

» Insert prefetch instructions before data is
needed

= Non-faulting: prefetch doesn’t cause
exceptions
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= Register prefetch
= Loads data into register

s Cache prefetch
s Loads data into cache

= Combine with loop unrolling and software
pipelining




Summary
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Hit Band- Miss Miss Power Hardware cost/
Technique time width penalty rate consumption complexity Comment
Small and simple + - + 0 Trivial; widely used
caches
Way-predicting caches + + 1 Used in Pentium 4
Pipelined cache access - 1 Widely used
Nonblocking caches + + 3 Widely used
Banked caches + + 1 Used in L2 of both i7 and

Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer

Widely used with write
through

Compiler techniques to 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache:

prefetching possible instruction overhead:
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.
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Virtual Memory

= Protection via virtual memory
s Keeps processes in their own memory space

s Role of architecture:

= Provide user mode and supervisor mode
= Protect certain aspects of CPU state

= Provide mechanisms for switching between user
mode and supervisor mode

= Provide mechanisms to limit memory accesses
= Provide TLB to translate addresses
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Virtual Machines

s Supports isolation and security
= Sharing a computer among many unrelated users

= Enabled by raw speed of processors, making the
overhead more acceptable

= Allows different ISAs and operating systems to be
presented to user programs
= “System Virtual Machines”

» SVM software is called “virtual machine monitor” or
“hypervisor”

» Individual virtual machines run under the monitor are called
“‘guest VMs”
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Impact of VMs on Virtual Memory

s Each guest OS maintains its own set of page
tables

= VMM adds a level of memory between physical
and virtual memory called “real memory”

= VMM maintains shadow page table that maps

guest virtual addresses to physical addresses

= Requires VMM to detect guest’'s changes to its own page
table
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= Occurs naturally if accessing the page table pointer is a
privileged operation




