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Introduction 
!  Programmers want unlimited amounts of memory with 

low latency 
!  Fast memory technology is more expensive per bit than 

slower memory 
!  Solution:  organize memory system into a hierarchy 

!  Entire addressable memory space available in largest, slowest 
memory 

!  Incrementally smaller and faster memories, each containing a 
subset of the memory below it, proceed in steps up toward the 
processor 

!  Temporal and spatial locality insures that nearly all 
references can be found in smaller memories 
!  Gives the allusion of a large, fast memory being presented to the 

processor 
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Memory Hierarchy 
Introduction 
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Memory Performance Gap 
Introduction 
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Memory Hierarchy Design 
!  Memory hierarchy design becomes more crucial 

with recent multi-core processors: 
!  Aggregate peak bandwidth grows with # cores: 

!  Intel Core i7 can generate two references per core per clock 
!  Four cores and 3.2 GHz clock 

!  25.6 billion 64-bit data references/second + 
!  12.8 billion 128-bit instruction references 
!  = 409.6 GB/s! 

!  DRAM bandwidth is only 6% of this (25 GB/s) 
!  Requires: 

!  Multi-port, pipelined caches 
!  Two levels of cache per core 
!  Shared third-level cache on chip 
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Performance and Power 
!  High-end microprocessors have >10 MB on-chip 

cache 
!  Consumes large amount of area and power budget 
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Memory Hierarchy Basics 
!  When a word is not found in the cache, a miss 

occurs: 
!  Fetch word from lower level in hierarchy, requiring a 

higher latency reference 
!  Lower level may be another cache or the main 

memory 
!  Also fetch the other words contained within the block 

!  Takes advantage of spatial locality 
!  Place block into cache in any location within its set, 

determined by address 
!  block address MOD number of sets 
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Memory Hierarchy Basics 
!  n sets => n-way set associative 

!  Direct-mapped cache => one block per set 
!  Fully associative => one set 

!  Writing to cache:  two strategies 
!  Write-through 

!  Immediately update lower levels of hierarchy 
!  Write-back 

!  Only update lower levels of hierarchy when an updated block 
is replaced 

!  Both strategies use write buffer to make writes 
asynchronous 
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Memory Hierarchy Basics 
!  Miss rate 

!  Fraction of cache access that result in a miss 

!  Causes of misses 
!  Compulsory 

!  First reference to a block 
!  Capacity 

!  Blocks discarded and later retrieved 
!  Conflict 

!  Program makes repeated references to multiple addresses 
from different blocks that map to the same location in the 
cache 
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!  Note that speculative and multithreaded 
processors may execute other instructions during 
a miss 
!  Reduces performance impact of misses 

Copyright © 2012, Elsevier Inc. All rights reserved. 

Memory Hierarchy Basics 
Introduction 



11 Copyright © 2012, Elsevier Inc. All rights reserved. 

Memory Hierarchy Basics 
!  Six basic cache optimizations: 

!  Larger block size 
!  Reduces compulsory misses 
!  Increases capacity and conflict misses, increases miss penalty 

!  Larger total cache capacity to reduce miss rate 
!  Increases hit time, increases power consumption 

!  Higher associativity 
!  Reduces conflict misses 
!  Increases hit time, increases power consumption 

!  Higher number of cache levels 
!  Reduces overall memory access time 

!  Giving priority to read misses over writes 
!  Reduces miss penalty 

!  Avoiding address translation in cache indexing 
!  Reduces hit time 

Introduction 
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Ten Advanced Optimizations 
!  Reducing the Hit Time (and less power consumption) 

!  1: Small and simple L1 
!  2: Way prediction 

!  Increasing cache bandwidth  
!  3: Pipelined caches 
!  4: Multibanked caches 
!  5: Nonblocking caches 

!  Reducing the Miss Penalty 
!  6: Critical word fist 
!  7: Merging write buffers 

!  Reducing the Miss Rate 
!  8: Compiler optimization 

!  Reducing the Miss Rate/Penalty via parallelism 
!  9: Hardware prefetching 
!  10: Compiler prefetching 
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Small and simple L1 caches 
!  Critical timing path: 

!  addressing tag memory, then 
!  comparing tags, then 
!  selecting correct set (if associative) 

!  Direct-mapped caches can overlap tag compare and 
transmission of data 

!  Lower associativity reduces power because fewer 
cache lines are accessed 
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L1 Size and Associativity 

Access time vs. size and associativity 
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L1 Size and Associativity 

Energy per read vs. size and associativity 
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Way Prediction 
!  To improve hit time, predict the way to pre-set 

mux 
!  Mis-prediction gives longer hit time 
!  Prediction accuracy 

!  > 90% for two-way 
!  > 80% for four-way 
!  I-cache has better accuracy than D-cache 

!  First used on MIPS R10000 in mid-90s 
!  Used on ARM Cortex-A8 

!  Extend to predict block as well 
!  “Way selection” 
!  Increases mis-prediction penalty 
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Pipelining Cache 
!  Pipeline cache access to improve bandwidth 

!  Examples: 
!  Pentium:  1 cycle 
!  Pentium Pro – Pentium III:  2 cycles 
!  Pentium 4 – Core i7:  4 cycles 

!  Increases branch mis-prediction penalty 
!  Makes it easier to increase associativity 
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Nonblocking Caches 
!  Allow hits before 

previous misses 
complete 
!  “Hit under miss” 
!  “Hit under multiple 

miss” 
!  L2 must support this 
!  In general, 

processors can hide 
L1 miss penalty but 
not L2 miss penalty 
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Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a 
cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory 
system modeled after the Intel i7 consists of a 32KB L1 cache with a four cycle access latency. The L2 
cache (shared with instructions) is 256 KB with a 10 clock cycle access latency. The L3 is 2 MB and a 36-
cycle access latency. All the caches are eight-way set associative and have a 64-byte block size. Allowing 
one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating 
point. Allowing a second hit improves these results to 10% and 16%, and allowing 64 results in little 
additional improvement.  

Nonblocking caches - Latency 



20 

Exmpl p83: non blocking caches 



21 

Exmpl p83: non blocking caches 
(cont) 
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Multibanked Caches 
!  Organize cache as independent banks to 

support simultaneous access 
!  ARM Cortex-A8 supports 1-4 banks for L2 
!  Intel i7 supports 4 banks for L1 and 8 banks for L2 

!  Interleave banks according to block address 
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Critical Word First, Early Restart 
!  Critical word first 

!  Request missed word from memory first 
!  Send it to the processor as soon as it arrives 

!  Early restart 
!  Request words in normal order 
!  Send missed word to the processor as soon as it 

arrives 

!  Effectiveness of these strategies depends on 
block size and likelihood of another access to 
the portion of the block that has not yet been 
fetched 
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Merging Write Buffer 
!  When storing to a block that is already pending in the 

write buffer, update write buffer 
!  Reduces stalls due to full write buffer 
!  Do not apply to I/O addresses 
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Compiler Optimizations 
!  Loop Interchange 

!  Swap nested loops to access memory in 
sequential order (spacial locality) 

A
dvanced O

ptim
izations 



26 Copyright © 2012, Elsevier Inc. All rights reserved. 

Compiler Optimizations 
!  Blocking 

!  Instead of accessing entire rows or columns, 
subdivide matrices into blocks 

!  Requires more memory accesses but improves 
temporal locality of accesses 
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Hardware Prefetching 
!  Fetch two blocks on miss (include next 

sequential block) 
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Compiler Prefetching 
!  Insert prefetch instructions before data is 

needed 
!  Non-faulting:  prefetch doesn’t cause 

exceptions 

!  Register prefetch 
!  Loads data into register 

!  Cache prefetch 
!  Loads data into cache 

!  Combine with loop unrolling and software 
pipelining 
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Summary 
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Virtual Memory 
!  Protection via virtual memory 

!  Keeps processes in their own memory space 

!  Role of architecture: 
!  Provide user mode and supervisor mode 
!  Protect certain aspects of CPU state 
!  Provide mechanisms for switching between user 

mode and supervisor mode 
!  Provide mechanisms to limit memory accesses 
!  Provide TLB to translate addresses 

Virtual M
em
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Virtual Machines 
!  Supports isolation and security 
!  Sharing a computer among many unrelated users 
!  Enabled by raw speed of processors, making the 

overhead more acceptable 

!  Allows different ISAs and operating systems to be 
presented to user programs 
!  “System Virtual Machines” 
!  SVM software is called “virtual machine monitor” or 

“hypervisor” 
!  Individual virtual machines run under the monitor are called 

“guest VMs” 
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Impact of VMs on Virtual Memory 
!  Each guest OS maintains its own set of page 

tables 
!  VMM adds a level of memory between physical 

and virtual memory called “real memory” 
!  VMM maintains shadow page table that maps 

guest virtual addresses to physical addresses 
!  Requires VMM to detect guest’s changes to its own page 

table 
!  Occurs naturally if accessing the page table pointer is a 

privileged operation 
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