Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 2

COMPUTER
ARCHITECTURE

Memory Hierarchy Design




Introduction

uonoNpoU|

s Programmers want unlimited amounts of memory with
low latency

» Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory

= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

= [emporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor




Memory Hierarchy

uonoNpoU|

| = ]
L1 L2 L3
C C C § Memory
CPU a a a bus k
Memory I/O bus [ Disk storage
: : ¢
" - - € - Disk
memo
reference Cache Cache Cache reference
reference  reference  reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16 TB
Speed: 300 ps ins 3-10ns 10-20 ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

CPU

ro = o 90:‘

-y FLASH
Register Level 1 Level 2 Memory mfemory
reference Cache Cache reference ISIRIonce
reference  reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

MK

MORGAN KAUFMANN




Performance

Memory Performance Gap

100,000

10,000 -

I I
1980 1985 1990

I I
1995 2000

Year

I
2005 2010

uonoNpoU|



Memory Hierarchy Design

uonoNpoU|

= Memory hierarchy design becomes more crucial
with recent multi-core processors:

= Aggregate peak bandwidth grows with # cores:
= Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
s 25.6 billion 64-bit data references/second +
s 12.8 billion 128-bit instruction references

= =409.6 GB/s!
= DRAM bandwidth is only 6% of this (25 GB/s)

=« Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip




Performance and Power

uonoNpoU|

= High-end microprocessors have >10 MB on-chip
cache
= Consumes large amount of area and power budget




Memory Hierarchy Basics

uonoNpoU|

s When a word is not found in the cache, a miss
OCCuUrs:

= Fetch word from lower level in hierarchy, requiring a
higher latency reference

= Lower level may be another cache or the main
memory

s Also fetch the other words contained within the block

= [akes advantage of spatial locality

= Place block into cache in any location within its set,
determined by address
= block address MOD number of sets




Memory Hierarchy Basics

uonoNpoU|

m N sets => n-way set associative
= Direct-mapped cache => one block per set
s Fully associative => one set

= Writing to cache: two strategies
= Whrite-through

= Immediately update lower levels of hierarchy

n Wirite-back

= Only update lower levels of hierarchy when an updated block
IS replaced

= Both strategies use write buffer to make writes
asynchronous




Memory Hierarchy Basics

uonoNpoU|

s Miss rate
s Fraction of cache access that result in a miss

s Causes of misses

= Compulsory
= First reference to a block
= Capacity

= Blocks discarded and later retrieved

s Conflict

= Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache




Memory Hierarchy Basics

uonoNpoU|

Misses  Miss rate X Memory accesses _ Miss rate X Memory accesses
Instruction Instruction count - Instruction

Average memory access time = Hit time + Miss rate X Miss penalty

s Note that speculative and multithreaded
processors may execute other instructions during
a miss

= Reduces performance impact of misses




Memory Hierarchy Basics

uonoNpoU|

s SiX basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty

= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

Higher number of cache levels
= Reduces overall memory access time

Giving priority to read misses over writes
= Reduces miss penalty

Avoiding address translation in cache indexing
= Reduces hit time

These are covered in Appendix B!




Ten Advanced Optimizations

= Reducing the Hit Time (and less power consumption)
= 1: Small and simple L1
= 2. Way prediction

= Increasing cache bandwidth
= 3: Pipelined caches
= 4: Multibanked caches
= 5. Nonblocking caches
= Reducing the Miss Penalty
= 6: Critical word fist
= 7: Merging write buffers
= Reducing the Miss Rate
= 8: Compiler optimization
= Reducing the Miss Rate/Penalty via parallelism

= 9: Hardware prefetching
= 10: Compiler prefetching

suoneziwndo paoueApy




Small and simple L1 caches

= Critical timing path:
» addressing tag memory, then
= comparing tags, then
= Selecting correct set (if associative)
= Direct-mapped caches can overlap tag compare and
transmission of data

suoneziwndo paoueApy

= Lower associativity reduces power because fewer
cache lines are accessed




Access time in picrosecornds

L1 Size and Associativity

900 ~
800 ~
700 +
600
500
400 -
300 A
200

100 -

m 1-way o 2-way
m 4-way m 8-way

suoneziwndo paosueapy

16 KB 32KB 64 KB 128 KB 256 KB
Cache size

Access time vs. size and associativity




L1 Size and Associativity

0.54

W 1-way [ 2-way
M 4-way @ 8-way

0.45

(=)
.Ih
suoneziwndo paoueApy

o
w
a

it
w
1

0.25 +

O
o

0.15 +

Energy per read in nano joules

o
-

0.05 -

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity




Way Prediction

= [0 improve hit time, predict the way to pre-set
MuX
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way

= > 80% for four-way
» |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
» Used on ARM Cortex-A8

suoneziwndo paoueApy

s Extend to predict block as well
= "Way selection”
= Increases mis-prediction penalty




Pipelining Cache

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
» Pentium Pro — Pentium Ill: 2 cycles
= Pentium 4 — Core i7: 4 cycles

suoneziwndo paoueApy

= Increases branch mis-prediction penalty
= Makes it easier to increase associativity




Nonblocking Caches

s Allow hits before
previous misses
complete

= “Hit under miss” 70%
= “Hit under multiple 0% M
miSS” 50%”.‘/‘(7%
s L2 must support this «0\/
= In general,
processors can hide
L1 miss penalty but
not L2 miss penalty T e B e s e AR E

* S@ S N )
PGSR S SIRES NS

—jl— Hit-under-1-miss
—— Hit-under-2-misses |__
—@— Hit-under-64-misses

suoneziwndo paoueApy

Ratio of cache miss penalty

& > o Q> NFRL N
AT NEES d 27 O & RO
& ¢ & 9 v o 006‘




Nonblocking caches - Latency

- Hit-under-1-miss -4 Hit-under-2-misses - Hit-under-64-misses

100%
90% -
80% -
70% -
60% -
50% -
40%

Cache acess latency

calculix
GemsFDTD

libquantum
cactusADM

SPECINT SPECFP
Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a
cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory
system modeled after the Intel 17 consists of a 32KB L1 cache with a four cycle access latency. The L2
cache (shared with instructions) is 256 KB with a 10 clock cycle access latency. The L3 is 2 MB and a 36-
cycle access latency. All the caches are eight-way set associative and have a 64-byte block size. Allowing
one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating
point. Allowing a second hit improves these results to 10% and 16%, and allowing 64 results in little

additional imirovement.



Exmpl p83: non blocking caches

Example Which is more important for floating-point programs: two-way set associativity or

Answer

hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KB data caches: 5.2% for floating-
point programs with a direct-mapped cache, 4.9% for these programs with a two-
way set associative cache, 3.5% for integer programs with a direct-mapped cache,
and 3.2% for integer programs with a two-way set associative cache. Assume the
miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

For floating-point programs, the average memory stall times are

Miss ratep)y X Miss penalty = 5.2% x 10 = 0.52

Miss rate;.,, X Miss penalty = 4.9% x 10 = 0.49




Exmpl p83: non blocking caches

(cont)

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. The caption of Figure 2.5 says hit under one
miss reduces the average data cache access latency for floating point programs to
87.5% of a blocking cache. Hence, for floating-point programs, the direct
mapped data cache supporting one hit under one miss gives better performance
than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation is

Miss ratep,s X Miss penalty = 3.5% x 10 =0.35
Miss rate,_,,,, X Miss penalty = 3.2% x 10 =0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when
allowing a hit under one miss is 9%, making the two choices about equal.




Multibanked Caches

= Organize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

= Interleave banks according to block address

Block Block Block Block

address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte

addressing.

suoneziwndo paoueApy



Critical Word First, Early Restart

s Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

= Early restart
= Request words in normal order

= Send missed word to the processor as soon as it
arrives

suoneziwndo paoueApy

n Effectiveness of these strategies depends on
block size and likelihood of another access to

the portion of the block that has not yet been
fetched




Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/O addresses

suoneziwndo paoueApy

Write address  V \' V V
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | O 0 0 N .
o write
116 1 | Mem[116] | O 0 0 b ff .
124 1 | Mem[124] | o 0 0 u e rl n g

Write address  V \' \Y \Y

100 1 | Mem[100] | 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Write buffering




Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order (spacial locality)

suoneziwndo paoueApy

/* Before */
for (j = 05 j <1005 j = j+1)
for (i = 0; i <5000; i = i+1)
x[1]1[3] = 2 * x[i]1[i]s

/* After */
for (i = 0; i <5000; i = i+1)
for (3 = 0; j <100; j = j+1)
x[1]1[3] = 2 * x[i][i];




Compiler Optimizations

= Blocking

» Instead of accessing entire rows or columns,
subdivide matrices into blocks

= Requires more memory accesses but improves
temporal locality of accesses

suoneziwndo paoueApy




Hardware Prefetching

= Fetch two blocks on miss (include next
sequential block)

Performance improvement

2.20

2.00 -

1.80

1.60

1.40

1.20

1.00

1.97
1.49
1.40
1.32
126 129
148 120 i I I

1.45
1.16
gap mcf  fam3d wupwise galgel facerec swim  applu lucas mgrid equake
SPECint2000 SPEC{p2000

Pentium 4 Pre-fetching

suoneziwndo paoueApy




Compiler Prefetching

» Insert prefetch instructions before data is
needed

= Non-faulting: prefetch doesn’t cause
exceptions

suoneziwndo paoueApy

= Register prefetch
= Loads data into register

s Cache prefetch
s Loads data into cache

= Combine with loop unrolling and software
pipelining




Summary

suoneziwndo paoueApy

Hit Band- Miss Miss Power Hardware cost/
Technique time width penalty rate consumption complexity Comment
Small and simple + - + 0 Trivial; widely used
caches
Way-predicting caches + + 1 Used in Pentium 4
Pipelined cache access - 1 Widely used
Nonblocking caches + + 3 Widely used
Banked caches + + 1 Used in L2 of both i7 and

Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer

Widely used with write
through

Compiler techniques to 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache:

prefetching possible instruction overhead:
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

MK

MORGAN KAUFMANN




Virtual Memory

= Protection via virtual memory
s Keeps processes in their own memory space

s Role of architecture:

= Provide user mode and supervisor mode
= Protect certain aspects of CPU state

= Provide mechanisms for switching between user
mode and supervisor mode

= Provide mechanisms to limit memory accesses
= Provide TLB to translate addresses

SauIYoe\ [enMIA pue Alowsiy [enuIA




Virtual Machines

s Supports isolation and security
= Sharing a computer among many unrelated users

= Enabled by raw speed of processors, making the
overhead more acceptable

= Allows different ISAs and operating systems to be
presented to user programs
= “System Virtual Machines”

» SVM software is called “virtual machine monitor” or
“hypervisor”

» Individual virtual machines run under the monitor are called
“‘guest VMs”

SauIYoe\ [enMIA pue Alowsiy [enuIA




Impact of VMs on Virtual Memory

s Each guest OS maintains its own set of page
tables

= VMM adds a level of memory between physical
and virtual memory called “real memory”

= VMM maintains shadow page table that maps

guest virtual addresses to physical addresses

= Requires VMM to detect guest’'s changes to its own page
table

SauIYoe\ [enMIA pue Alowsiy [enuIA

= Occurs naturally if accessing the page table pointer is a
privileged operation




