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Nicolas THOME Université Pierre et Marie Curie Encadrant
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In the French side, I would also like to thank Christian Thériault, Jonathan Guyomard

and Halin Goh. It was very enjoyable to study and work with you!

I thank the administrative staff of PPGCC/UFMG and UPMC, and in particular,
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Resumo

Informação visual, na forma de imagens e v́ıdeos digitais, tornou-se tão onipresente

em repositórios de dados, que não pode mais ser considerada uma “cidadã de segunda

classe”, eclipsada por informações textuais. Neste cenário, a classificação de imagens

tornou-se uma tarefa cŕıtica. Em particular, a busca pela identificação automática de

conceitos semânticos complexos, representados em imagens, tais como cenas ou objetos,

tem motivado pesquisadores em diversas áreas como, por exemplo, Recuperação de

Informação, Visão Computacional, Processamento de Imagem e Inteligência Artificial.

No entanto, em contraste com os documentos de texto, cujas palavras apresentam

conteúdo semântico, imagens consistem de pixels que não têm nenhuma informação

semântica por si só, tornando a tarefa muito dif́ıcil.

O problema abordado nesta tese refere-se à representação de imagens com base no

seu conteúdo visual. Objetiva-se a detecção de conceitos em imagens e v́ıdeos, por meio

de uma nova representação que enriquece o modelo saco de palavras visuais. Baseando-

se na quantização de descritores locais discriminantes por um dicionário, e na agregação

desses descritores quantizados em um vetor único, o modelo saco de palavras surgiu

como uma das abordagens mais promissora para a classificação de imagens. Nesta tese,

é proposto BossaNova, uma nova representação de imagens que preserva informações

importantes sobre a distribuição dos descritores locais em torno de cada palavra visual.

Os resultados experimentais em diversas bases de classificação de images, tais

como ImageCLEF Photo Annotation, MIRFLICKR, PASCAL VOC e 15-Scenes,

mostraram a vantagem da abordagem BossaNova quando comparada às técnicas tradi-

cionais, mesmo sem fazer uso de combinações complexas de diferentes descritores locais.

Uma extensão da representação BossaNova também foi estudada nesta tese.

Trata-se da combinação da abordagem BossaNova com uma outra representação muito

competitiva baseada nos vetores de Fisher. Os resultados consistemente alcançam

outras representações no estado-da-arte em diversas bases de dados, demonstrando a

complementaridade das duas abordagens. Este estudo resultou no segundo lugar, na

competição ImageCLEF 2012 Flickr Photo Annotation Task, dentre as 28 submissões,
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na categoria de informação visual.

Ademais, a representação BossaNova também foi avaliada na aplicação real de

detecção de pornografia. Os resultados validaram, mais uma vez, a relevância da

abordagem BossaNova em relação às técnicas tradicionais em uma aplicação real.
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Abstract

Visual information, in the form of digital images and videos, has become so omnipresent

in computer databases and repositories, that it can no longer be considered a “second

class citizen”, eclipsed by textual information. In that scenario, image classification

has become a critical task. In particular, the pursuit of automatic identification of

complex semantical concepts represented in images, such as scenes or objects, has

motivated researchers in areas as diverse as Information Retrieval, Computer Vision,

Image Processing and Artificial Intelligence. Nevertheless, in contrast to text docu-

ments, whose words carry semantic, images consist of pixels that have no semantic

information by themselves, making the task very challenging.

In this dissertation, we have addressed the problem of representing images based

on their visual information. Our aim is content-based concept detection in images and

videos, with a novel representation that enriches the Bag-of-Words model. Relying

on the quantization of highly discriminant local descriptors by a codebook, and the

aggregation of those quantized descriptors into a single pooled feature vector, the Bag-

of-Words model has emerged as the most promising approach for image classification.

We propose BossaNova, a novel image representation which offers a more information-

preserving pooling operation based on a distance-to-codeword distribution.

The experimental evaluations on many challenging image classification bench-

marks, such as ImageCLEF Photo Annotation, MIRFLICKR, PASCAL VOC and 15-

Scenes, have shown the advantage of BossaNova when compared to traditional tech-

niques, even without using complex combinations of different local descriptors.

An extension of our approach has also been studied. It concerns the combination

of BossaNova representation with another representation very competitive based on

Fisher Vectors. The results consistently reaches other state-of-the-art representations

in many datasets. It also experimentally demonstrate the complementarity of the two

approaches. This study allowed us to achieve, in the competition ImageCLEF 2012

Flickr Photo Annotation Task, the 2nd among the 28 visual submissions.

Finally, we have explored our BossaNova representation in the challenging real-
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world application of pornography detection. Once again, the results validated the

relevance of our approach compared to standard techniques on a real application.
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Résumé

L’information visuelle, représentée sous la forme d’images ou de vidéos numériques,

est devenue si omniprésente dans le monde numérique d’aujourd’hui, qu’elle ne peut

plus être considérée comme un ”citoyen de seconde zone”, par rapport à l’information

textuelle. Néanmoins, contrairement aux documents textuels, les images sont con-

stituées de pixels ne portant pas d’information sémantique directement accessible,

ajoutant ainsi une difficulté à la tâche d’interprétation. Dans ce contexte, la clas-

sification d’images est devenue une tâche critique. En particulier, l’identification au-

tomatique d’objets complexes et de concepts sémantiques dans les images, a suscité de

nombreux travaux récents, aussi bien en Recherche d’Information, Vision par Ordina-

teur, Traitement d’Image qu’en Intelligence Artificielle.

Dans cette thèse, nous traitons le problème de la représentation des images. Notre

objectif est la détection de concepts à partir d’une analyse du contenu visuel des images

et des vidéos. Pour cela, nous introduisons une nouvelle représentation qui enrichit

le modèle classique par sacs de mots visuels. S’appuyant sur la quantification de

descripteurs locaux, et l’agrégation de ces descripteurs quantifiés en un vecteur de

caractéristique unique, le modèle par sacs de mots visuels a émergé comme l’approche

la plus efficace pour la classification d’images. Nous proposons BossaNova, une nouvelle

représentation d’images permettant de conserver plus d’information lors de l’opération

d’agrégation (pooling) en exploitant la distribution des distances entre les descripteurs

locaux et les mots visuels.

L’évaluation expérimentale sur plusieurs bases de données de classification

d’images, telles que ImageCLEF Photo Annotation, MIRFLICKR, PASCAL VOC

et 15-Scenes, a montré l’intérêt de Bossanova vis-à-vis des techniques traditionnelles,

même sans utiliser de combinaisons complexes de multiples descripteurs locaux.

Une extension de notre approche a également été étudiée. Elle concerne la combi-

naison de BossaNova avec une autre représentation basée sur des vecteurs de Fisher très

coupétitive. Les résultats obtenus sont systématiquement meilleurs atteignant l’état de

l’art sur de nombreuses bases. Ils permettent ainsi de démontrer expérimentallement
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la complémentarité des deux approches. Cette étude nous a permis d’obtenir la sec-

onde place lors de notre participation à la compétition ImageCLEF 2012 Flickr Photo

Annotation Task parmi les 28 soumissions sur la partie visuelle.

Enfin, nous avons appliqué notre stratégie de représentation BossaNova dans un

contexte vidéo, en vue de faire de la détection de séquences à caractère pornographique.

Les résultats ont permis de valider une nouvelle fois l’intérêt de notre approche par

rapport à des détecteurs standards du marché sur une application réelle.
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Chapter 1

Introduction

The growth of the Internet, the availability of cheap digital cameras, and the ubiquity

of cell-phone cameras have tremendously increased the amount of accessible visual in-

formation, especially images and videos. The example given by Flickr, a photo-sharing

application, is illustrative, with more than 8 billion photos hosted as of December 2012.

The accelerated expansion of social networks has increased the amount of images avail-

able online even further (Table 1.1).

Table 1.1: Estimation of the numbers of photos available online from social
networks and photo sharing applicationsa.

220 billion Estimated number of photos on Facebook (October 2012)b

300 million Average number of photos uploaded to Facebook per day

8 billion Photos hosted on Flickr (December 2012)

4.5 million Average number of photos uploaded to Flickr per day

5 billion Estimated number of photos on Instagram (September 2012)

5 million Average number of photos uploaded to Instagram per day

a http://royal.pingdom.com/2013/01/16/internet-2012-in-numbers/
b http://gigaom.com/2012/10/17/facebook-has-220-billion-of-your-photos-to-put-on-ice/

In order to enjoy that immense and increasing collection of images, people need

tools to retrieve them using semantically rich terms. One solution to that problem is

manual annotation. But annotating images is a tedious task, and although there is a

number of ways to provide it (e.g., HTML language, EXIF meta-data, user-provided

tag), most users are unwilling to perform that task in with meaningful, useful terms.

1
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Furthermore, while we could conceive the manual semantic indexing of a personal

image collection, hand-processing large-scale/web-scale image collections is clearly un-

feasible: there is simply not enough human labor to cope with the exponential growth

of those data. Crowdsourcing, either by harnessing interactions in games and social

networks, either by micropayment systems like Amazon’s Mechanical Turk, presents

an opportunity to address part of the problem, and relatively large collections can

be annotated by those means. Still, those collections represent a tiny fraction of all

publicly available images on the web.

It is clear the we need some way to automatically annotate the images, or at

least to propagate labels from those small annotated collections to arbitrarily large

unlabeled ones. The challenge, however, is that the low-level image representation

(i.e., the pixels) provide no clue about its semantic concepts. Smeulders et al. [2000]

call the absence of this relationship “semantic gap”.

In order to bypass this problem, we can employ Machine Learning to create

statistical models that relate image content to the semantic annotations. In that way,

we can employ the small annotated collections as training sets for models meant to

propagate the labels for an arbitrary number of images. Therefore, although manual

indexing of images cannot provide a direct solution to the problem, it is still one of the

crucial steps for that solution.

Another critical step in the solution is the extraction of adequate features from the

images, which are used to characterize the visual content. That “relevant” information

depends on the task. For example, features based on color would be able to differentiate

between some concepts, such as night scenes and sunset scenes (see Figure 1.1), but

they would not be able to distinguish an adult person from an old person. Therefore,

a feature vector such as a color histogram, can be adequate for some specific tasks

without being able to solve the general problem.

In fact, bridging the semantic gap is probably too difficult for the usual, simple

image descriptors, such as color histograms, texture descriptors and simple shape des-

criptors. Recently, more elaborated image representations, known as mid-level repre-

sentations (i.e., richer representations of intermediate complexity), have been proposed

to deal with the complexity of the task, by aggregating hundreds, and even thousands

of low-level local descriptions about the image into a single feature vector. Exploring

those mid-level representations is the subject of this dissertation.
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night

sunset

adult person

old person

Figure 1.1: Example images from ImageCLEF 2011 Photo Annotation dataset
[Nowak et al., 2011]. Simple features, such as color histograms, are able to differentiate
between some concepts, such as night scenes and sunset scenes, but they cannot solve
the general problem of distinguish an adult person from an old person.

1.1 Motivation

Recognizing categories of objects and scenes is a fundamental human ability and an

important, yet elusive, goal for computer vision research. One of the challenges lies

in the large scale of the semantic space. In particular, humans can recognize visually

more than 10,000 of object classes and scenes [Biederman, 1995]. For humans, visual

recognition is fast, effortless and robust with respect to viewpoint, lighting conditions,

occlusion and clutter. Also, learning new categories requires minimal supervision and

a handful of examples [Biederman, 1987; Thorpe et al., 1996]. Achieving this level of

performance in a machine would enable a great number of useful applications, such as:

Web Search: Internet image search engines are currently the only way to find images

on the Internet. Their erratic performance is due to their excessive reliance on

textual metadata associated to the image, or contextual text close to the images

in the web pages, rather than the actual image content. As image recognition

becomes more precise, search by visual content will become a more reliable alter-

native. As it is difficult to specify a visual query directly, the user might select

a few examples, similar in nature to the desired image. Robust and efficient
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classification methods can greatly help such application.

Personal Photo Search: The task of organizing and managing a personal photo-

graphic collection becomes more difficult as the collection increases in size. Many

people have thousands of photos on their computers which are only loosely or-

ganized. Searching a photo in a collection requires much effort and is a time-

consuming activity.

Surveillance: Video-surveillance has become a key aspect of public safety: most large

cities have thousands of close-circuit TV cameras. Currently, the visual flow from

those cameras must currently be scrutinized by human operators. Automated

surveillance systems could provide an interesting aid or alternative to those ope-

rators, because they do not “get tired” or “distracted”. If they are to be useful,

those systems must detect and track objects/people, classify those objects and

identify suspicious activities, and perform well in crowded environments, e.g.,

stadiums and airports.

Biometrics: Biometric systems are, essentially, pattern recognition systems used to

detect and recognize a person for security purposes, using their physiological

and/or behavioral characteristics. Examples of physiological characteristics are

images of the face, fingerprint, iris, and palm; examples of behavioral characte-

ristics are dynamics of signature, voice, gait, and key strokes.

Robot Vision: The purpose of robot vision is to enable robots to perceive the exter-

nal world in order to perform a large range of tasks, such as object recognition,

navigation, visual servoing for object tracking and manipulation. Real-time pro-

cessing of visual content would enable robots to quickly infer the world around

and make them useful for a variety of situations. In that way, a completely

autonomous robot specialized to recognize certain objects would be able to subs-

titute humans in hostile environments, e.g., underwater exploration.

While there are many applications for recognition, no practical solution exist.

That is due to the challenges inherent to the problem, which will be introduced next.

1.2 Challenges

Successful approaches to image classification must address a variety of issues: viewpoint

and illumination changes, partial occlusion, background clutter, large intra-class visual
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diversity, and visual similarity between different classes. We discuss those challenges

in the following:

Viewpoint: Objects pose can suffer many transformations (e.g., translation, rotation,

scaling) that significantly change their appearance in the images. Even rigid

objects, like airplanes (Figure 1.2(a)), appear considerably differently according

to viewpoint.

Illumination: Changes of illumination causes large variations in pixel intensity values.

The change can be a shift or scaling of the pixel values or, if the light source

changes position, a non-linear transformation, complicated by objects’ proper

and cast shadows (Figure 1.2(b)).

Occlusion: Some parts of the target object may be hidden by other objects present

in the scene. Additionally, self-occlusion will almost always occur, since most

objects are opaque, and not all parts of the object will be visible at once. Figu-

re 1.2(c)) illustrates that challenge.

Background Clutter: Typically, images contain many more objects in addition to

the one of interest. Those background objects may confound the detection, espe-

cially because we cannot assume that the target object is clearly separated from

the background (Figure 1.2(d)).

Intra-class Diversity: The category of interest might have a large degree of visual

variability, in the geometry, appearance, texture and so on. Even a seemingly

simple concept, like “chair” (Figure 1.2(e)) may manifest huge visual diversity.

Inter-class Similarity: Conversely, a category might have similar appearance/struc-

ture to other categories, at least for some viewpoints. E.g., for some viewpoints

cows and sheep (Figure 1.2(f)) may be very similar.

1.3 Hypotheses

The canonical mid-level model is the Bag-of-Words (BoW) model. BoW for images was

inspired from the homonymous model for text retrieval [Baeza-Yates and Ribeiro-Neto,

1999], where a document is represented by a set of words, disregarding structural

aspects. In the case of images [Sivic and Zisserman, 2003] the “visual words” come from

a “dictionary” induced by quantizing the feature space of a low-level local descriptor
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(a) Viewpoint changes

(b) Illumination variations

(c) Occlusion

(d) Background clutter

(e) Intra-class diversity

scowp sheep scowp sheep scowp sheep
(f) Inter-class similarity

Figure 1.2: Illustration of several challenges which makes the image classification pro-
blem much harder, namely (a) viewpoint changes, (b) illumination variations, (c) oc-
clusion, (d) background clutter, (e) intra-class variation and (f) inter-class similarity.
Images from PASCAL VOC 2007 dataset.

(e.g., SIFT [Lowe, 2004], SURF [Bay et al., 2008]). The classical image BoW consists

of a histogram of the occurrences of those visual words in each image.

BoW models (the classical one described above, and the many extensions that

followed) can be understood as the application of two critical steps [Boureau et al.,

2010a]: coding and pooling. The coding step quantizes the image local features accor-

ding to a codebook or dictionary1. The pooling step summarizes the codes obtained

into a single feature vector. In the classical BoW, the coding step simply associates

1The codebook (or visual dictionary) is usually built by clustering a set of local descriptors. It
can be defined by the set of codewords (or visual words) corresponding to the centroids of clusters.
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the image local descriptors to the closest element in the codebook (this is called hard-

assignment coding), and the pooling takes the average of those codes over the entire

image (this is called average-pooling).

A hypothesis often found in the literature, and central to this dissertation, is

that the choice of coding and pooling functions has a huge impact on the performance

of BoW representations.

Concerning that hypothesis, we focus more specifically on the pooling step. In

general, the objective of pooling is to summarize a set of encoded features into a

more usable representation based on a single feature vector, which should preserve

important information while discarding irrelevant detail [Boureau et al., 2010b]. The

crux of the matter is to balance the invariance obtained and the ambiguity introduced

by the pooling function. Invariance to different backgrounds or object positioning is

obtained because the codewords will be activated despite the precise positioning of

the descriptors. However, since all activations are combined, ambiguities can arise if

different concepts represented in the image (e.g., a person and a car) end up activating

sets of codewords that overlap too much. If that confusion happens, the following step

of classification will have difficulty separating the concepts.

One way to mitigate that problem is to preserve more information about the

encoded descriptors during the pooling step. Instead of compacting all information

pertaining to a codeword into a single scalar, as performed by classical BoW represen-

tations, more detailed information can be kept.

Our main hypothesis is that a density function-based pooling strategy allows us

to better represent the links between visual codewords and low-level local descriptors in

the image signature.

Also, secondary hypotheses are considered and validated in this dissertation:

• Soft-assignment coding, with the density function-based pooling strategy, is rele-

vant to obtain effective mid-level image representations. Instead of using hard-

assignment coding, some weight may be given to related codewords. The soft cod-

ing enjoys computational efficiency and conceptual simplicity [Liu et al., 2011a].

• The normalization of mid-level image representation (obtained from the density

function-based pooling strategy) has important impact on classification tasks.

Formally, the dissertation problem statement can be formulated as follows.

Given an image, how to represent its visual content information for a clas-

sification task?
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1.4 Contributions

The main contribution of this dissertation is the development of a mid-level image

representation for classification tasks. By analyzing the BoW model, we pointed out

the weaknesses of the standard pooling operation. Thus, we propose the BossaNova

representation [Avila et al., 2011, 2013], which offers a more information-preserving

pooling operation based on a distance-to-codeword distribution.

In order to accomplish that goal, BossaNova departs from the fully parametric

models commonly found in the literature (e.g., [Perronnin et al., 2010c; Zhou et al.,

2010; Krapac et al., 2011]), by employing histograms. That density-based approach

allows us to conciliate the need to preserve low-level descriptor information and keeping

the mid-level feature vector at a reasonable size (see Chapter 4).

Another contribution is the empirical comparison of our approach against state-

of-the-art representations based on the BoW model for classification tasks. The ex-

perimental evaluations on many challenging image classification benchmarks, such as

ImageCLEF Photo Annotation, MIRFLICKR, PASCAL VOC and 15-Scenes, have

shown the advantage of BossaNova when compared to traditional techniques. More-

over, our participation at the competition ImageCLEF 2012 has achieved the 2nd rank

among the 28 visual submissions and 13 teams [Avila et al., 2012] (see Chapter 5).

Finally, there is the empirical evaluation of our BossaNova representation in the

specialized task of pornography detection, and the development of our own Porno-

graphy dataset to support this task [Avila et al., 2011, 2013] (see Chapter 6).

This dissertation has led to one refereed journal, four refereed international con-

ference papers and three refereed Brazilian conference papers (see Chapter 7).

1.5 Outline

The remainder of the text is organized as follows.

Chapter 2 – Literature Review We establish the foundations of the work. We re-

view the typical image classification pipeline: (i) low-level visual feature extrac-

tion, (ii) mid-level feature extraction (in particular, the BoW representation and

extensions), and (iii) supervised classification. We also discuss several approaches

for image classification.

Chapter 3 – Challenges and Benchmarks Addressed We introduce the variety

of benchmark image datasets used in the dissertation. We detail each dataset

and discuss how they differ from one another.
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Chapter 4 – BossaNova Representation We give a detailed description of our

BossaNova representation, which is based on a new pooling strategy. We in-

vestigate the complementarity of BossaNova and Fisher Vector representations.

We also present a generative formulation of our BossaNova strategy.

Chapter 5 – Experimental Results We analyze our empirical results, comparing

BossaNova performance with state-of-the-art methods in several datasets, vali-

dating its enhancements over the previously proposed BOSSA representation,

and studying its behavior as its key parameters change.

Chapter 6 – Application: Pornography Detection We explore BossaNova in

the real-world application of pornography detection, which because of its high-

level conceptual nature, involves large intra-class variability.

Chapter 7 – Conclusions and Perspectives We present our concluding remarks

and discuss future work directions.





Chapter 2

Literature Review

Visual information, in the form of digital images and videos, has become so omnipresent

in computer databases and repositories, that it can no longer be considered a “second

class citizen”, eclipsed by textual information. In that scenario, image classification

has become a critical task. In particular, the pursuit of automatic identification of

complex semantical concepts represented in images, such as scenes or objects, has

motivated researchers in areas as diverse as Information Retrieval, Computer Vision,

Image Processing and Artificial Intelligence [Smeulders et al., 2000; Lew et al., 2006;

Datta et al., 2008; Gosselin et al., 2008; Benois-Pineau et al., 2012]. Nevertheless, in

contrast to text documents, whose words carry semantic, images consist of pixels that

have no semantic information in themselves, making the task very challenging.

The typical image classification pipeline is composed of the following three layers:

(i) low-level visual feature extraction, (ii) mid-level feature extraction, and (iii) super-

vised classification. The low-level features, extracted from the image pixels, are still

purely perceptual, but aim at being invariant to viewpoint and illumination changes,

partial occlusion, and affine geometrical transformations. Mid-level features aim at

combining the set of local features into a global image representation of intermediate

complexity. The mid-level features may be purely perceptual or they may incorporate

semantic information from the classes, the former case being much more usual in the

literature. Finally, the goal of supervised classification is to learn a function which

assigns (discrete) labels to arbitrary images. That layer is intrinsically semantic, since

the class labels must be known during the training phase. Recently, several authors

have focused on improving the second layer (i.e., mid-level feature extraction), which

is the core subject of this dissertation.

This chapter reviews all three layers, and also briefly discusses alternative mo-

dels for image classification, like models inspired by biology, or generative part-based

11
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models. Our aim is to establish the foundations of the current dissertation, and to

put it within that context. We start by presenting an overview of low-level visual

feature extraction (Section 2.1). Next, we survey the literature on mid-level feature

extraction, in particular we approach the Bag-of-Words representation (Section 2.2).

We have dedicated an entire section to the issue of feature normalization (Section 2.3),

since this is emerging in the literature as an important step for the good performance of

representations. Then, we provide a brief description of machine learning algorithms

for image classification (Section 2.4). Finally, we discuss alternative approaches to

image classification (Section 2.5), based on biology, deep connectionist learning, and

generative part-based models.

2.1 Low-level Visual Feature Extraction

Low-level visual feature extraction is the first crucial step of all image analysis pro-

cedures, aiming at extracting visual properties from certain regions of the image via

pixel-level operations. According to the relative area of those regions, the extracted

features are commonly referred to as global or local. Intuitively, a global feature is

computed over the entire image, reflecting global characteristics of the image; by con-

trast, a local feature is computed over relatively small regions of the image, encoding

the detailed traits within those specific areas. This section provides an overview of the

low-level visual feature extraction. In particular, we focus on local features/descriptors,

which are one of the main actors of the astonishing advances of visual recognition sys-

tems in the past 10 years.

Local feature extraction usually includes two distinct steps: feature detection

and feature description. The former aims at finding a set of interest points, or salient

regions in the image that are invariant to a range of image transformations. The latter

step aims at obtaining robust local descriptors from the detected features. We start

by describing some feature spaces (i.e., visual properties) used by local (and global)

features (Section 2.1.1). Next, we compare local with global features (Section 2.1.2).

Then, we introduce some local feature detection operators (Section 2.1.3) and reference

local descriptors1 (Section 2.1.4).

1The terms “features” and “descriptors” are applied more or less interchangeably by different
authors. Sometimes “feature” denotes an invariant/covariant element in the image (e.g., an interest
point), and “descriptor” denotes a numerical representation extracted from an image patch inside or
around that feature. The terminology is somewhat confusing because the latter concept is often also
called a “feature vector”.
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2.1.1 Feature Spaces

Local and global approaches are often based on universal visual properties such as color,

texture, shape and edge. Many algorithms are available to extract descriptors/feature

vectors based on those properties. The choice of such algorithms organizes the images

in a geometry induced by the vector space of the descriptor, and the distance function

chosen to compare those descriptors (e.g., the Euclidean distance). Those geometries

are called feature spaces.

We briefly review below some choices of feature spaces, according to the visual

properties in which they are based:

Color is perhaps the most expressive of all visual properties [Trémeau et al., 2008].

In order to create a feature space, a color space must be chosen which might have

an impact on its performance: indeed, one of the main aspects of color feature

extraction is the choice of a suitable color space for a specific task. Many of

the color features in the literature are based on color spaces other than stan-

dard RGB, such as YUV, HSV, XYZ, L*u*v. Examples of color-based feature

spaces are Color histograms [Swain and Ballard, 1991], color average descriptor

[Faloutsos et al., 1994], color moments [Stricker and Orengo, 1995], color coher-

ence vector [Pass and Zabih, 1996], color correlogram [Huang et al., 1999], Bor-

der/Interior pixel classification [Stehling et al., 2002].

Texture is an intuitive concept, since it is easily perceived by humans, that defies

the formulation of a precise definition [Tuceryan and Jain, 2000]. Texture is

related to the spatial organization (or lack of it thereof) of colors and inten-

sities, e.g., the spots of a leopard, or the blades of grass in a lawn, or the

grains of sand in beach. Literature demonstrates that the “definition” of tex-

ture is formulated by different people depending upon the particular application,

without a consistently agreed-upon definition. Del Bimbo [1999] classified tex-

ture feature extractors into three different approaches: (i) space-based models

(e.g., co-occurrence matrix [Haralick et al., 1973], one the most traditional tech-

niques for encoding texture information), (ii) frequency-based models (e.g., Ga-

bor wavelet coefficients [Manjunath and Ma, 1996]), and (iii) texture signatures

(e.g., [Tamura et al., 1978]).

Shape is perhaps the most “high-level” of the visual properties, being thus an impor-

tant characteristic to identify and distinguish objects [Costa and Cesar Jr., 2000;

Zhang and Lu, 2004]. Shape descriptors are classified into (i) boundary-based

and (ii) region-based methods. This classification takes into account whether
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shape features are extracted from the contour only or from the whole shape region.

Many shape descriptors have been proposed [Yang et al., 2008], but often they as-

sume that the image has been previously segmented with confidence into objects,

and segmentation has proved itself a very elusive goal. Shape-based descrip-

tors include moments invariants [Hu, 1962], curvature scale space [Mokhtarian,

1995], signature histogram [Ankerst et al., 1999], shape context [Belongie et al.,

2002; Frome et al., 2004].

Edge points can be thought of as pixel locations of abrupt gray-level changes. Edges

characterize object boundaries and are therefore useful for recognition of objects

[Ahmad and Choi, 1999]. Thus, edge detection plays an important role in the

description of images. Hence, many methods have been proposed for detecting

edges in images [Ziou and Tabbone, 1998; Nadernejad et al., 2008]. Some of the

earlier methods, such as the Sobel [Sobel, 1970] and Prewitt detectors [Prewitt,

1970], used local gradient operators which only detect edges having certain ori-

entations. Since then, more sophisticated methods have been developed [Basu,

2002; Gonzalez and Woods, 2006]. For instance, the Histogram of Oriented Gra-

dient (HOG) descriptor [Dalal and Triggs, 2005] counts occurrences of quantized

gradient orientations in localized portions of an image.

2.1.2 Local versus Global Features

As we have mentioned before, the essential difference between local and global features

refers to the relative region they describe, the former aiming at relatively small por-

tions of the image, and the latter aiming at the entire image. Historically, though,

global features have appeared first (e.g., the color histogram [Swain and Ballard,

1991]) and have aimed at general-purposed image classification and retrieval, while

local features appeared almost ten years latter, and have initially aimed at Com-

puter Vision applications such as aerial view reconstruction, 3D reconstruction, and

panoramic image stitching, before they were “discovered” by the image retrieval com-

munity. The success of the local descriptor approach is explained due to the fact

that classical global features have difficulty in distinguishing foreground from back-

ground objects, and thus are not very effective in recognition tasks for cluttered images

[Tuytelaars and Mikolajczyk, 2008].

In addition to the classical color histogram [Swain and Ballard, 1991], many other

examples can be found. The GIST descriptor [Oliva and Torralba, 2001] is worth

mentioning because even recently it has received attention in the context of scene re-

cognition [Torralba et al., 2003, 2008]. It is based on the idea of developing a low
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dimensional representation of the scene, without need of segmentation. The image is

divided into a 4 × 4 grid, for which orientation histograms are extracted. This arbi-

trary segmentation, however, does not allow the recognition of images that have suffered

strong cropping, or images of objects from different viewpoints [Douze et al., 2009].

An approach to overcome the limitations of global descriptors is to segment the

image into a limited number of regions or segments, with each such region corresponding

to a single object or part thereof. The best known example of this approach is proposed

by Carson et al. [2002], who segment the image based on color and texture. However,

image segmentation is a very challenging task in itself, usually requiring a high-level

understanding of the image content. For the general case, color and texture cues are

insufficient to obtain meaningful segmentation.

Local features overcome those issues, allowing to find correspondences in spite of

large changes in illumination conditions, viewpoint, occlusion, and background clutter.

They also yield interesting descriptions of the visual image content for object or scene

classification tasks (both for specific objects as well as for categories), without needing

segmentation.

A local feature is an image pattern which differs from its immediate neighborhood

[Tuytelaars and Mikolajczyk, 2008]. It is usually associated with a change of an image

property or several properties simultaneously. Local features can be points, edgels or

small image patches. Typically, two types of patch-based approaches can be distin-

guished [Tuytelaars, 2010]: (i) interest points, such as corners and blobs, whose posi-

tion, scale and shape are computed by a feature detector algorithm (see Section 2.1.3)

or (ii) dense sampling, where patches of fixed size are placed on a regular grid (possibly

repeated over multiple scales). See Figure 2.1 for illustration.

Interest points focus on ‘interesting’ locations in the image and include various de-

grees of viewpoint and illumination invariance, resulting in better repeatability scores.

However, when the contrast in an image is low, no interest point is detected, making

the image representation useless. Dense sampling, on the other hand, gives a better

coverage of the entire object or scene and a constant amount of features per image

area. Regions with less contrast contribute equally to the overall image representation.

These two patch-based approaches are compared by Jurie and Triggs [2005] on

object recognition and image categorization tasks. They concluded that dense re-

presentations outperform equivalent interest points based ones on those tasks. Dense

sampling is also used in [Bosch et al., 2007; Vedaldi et al., 2009; Chatfield et al., 2011],

boosting image classification and object detection results. However, due to computa-

tional constraints, a combination of interest points and dense sampling can be useful

[Leibe and Schiele, 2003; Tuytelaars, 2010; Kim and Grauman, 2011].
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original image interest points dense sampling

Figure 2.1: Illustration of interest points and dense sampling. Interest points focus
on interesting locations in the image, while dense sampling gives a better coverage of
the image, a constant amount of features per image area, and simple spatial relations
between features. Figure from [Tuytelaars, 2010].

It should be mentioned that the current Bag-of-Words model has blurred some-

what the distinction between local and global descriptors, because they propose a single

(global) feature vector based on several (local) features. The distinction can be par-

ticularly questioned when dense sampling is employed instead of the Computer Vision

techniques of interest points or salient regions.

2.1.3 Local Feature Detection Operators

Feature detection is the identification of particular local features in the image (e.g.,

blobs, corners, edges, interest points). The main property of local feature detec-

tion algorithms is the repeatability, i.e., given two images of the same object or

scene, taken under different viewing conditions, a high percentage of the features

detected on the scene part visible in both images should be found in both images

[Tuytelaars and Mikolajczyk, 2008]. Besides the repeatability property, good features

detectors should have distinctiveness, locality, quantity, accuracy and efficiency. The

importance of those different properties depends on the actual application and settings.

In the following, we approach some local feature detection approaches. We especially

concentrate on interest-point based detectors.

The Hessian [Beaudet, 1978] and the Harris detectors [Harris and Stephens,

1988] focus on a particular subset of points, namely those exhibiting signal changes in

two directions. The former searches for image locations that exhibit strong derivatives

in two orthogonal directions. The latter defines the interest points to be corner-like
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structures. It was explicitly designed for geometric stability. In general, it can be

stated that Harris locations are more specific to corners, while the Hessian detector

also returns many responses on regions with strong texture variation. Also, Harris

points are typically more precisely located as a result of using first derivatives rather

than second derivatives and of taking into account a larger image neighborhood. Thus,

Harris points are preferable when looking for exact corners or when precise localization

is required, whereas Hessian points can provide additional locations of interest that

result in a denser cover of the object.

As pointed out by Schmid et al. [2000], Harris and Hessian detectors are ro-

bust to image plane rotations, illumination changes, and noise. Nevertheless, the lo-

cations returned by both detectors are only repeatable up to relatively small scale

changes. Hence, in order to be invariant to scale changes, the Harris-Laplace detector

[Mikolajczyk and Schmid, 2002] proposed combining the Harris operator’s specificity

for corner-like structures with the Laplacian-based scale selection [Lindeberg, 1998].

As a drawback, however, the original Harris-Laplace detector typically returns a small

number of points. An updated version of the Harris-Laplace detector has proposed

based on a less strict criterion [Mikolajczy and Schmid, 2004], which yields more in-

terest points at a slightly lower precision. As in the case of the Harris-Laplace, the

same idea was applied to the Hessian detector, leading to the Hessian-Laplace detector

[Mikolajczy and Schmid, 2004].

Additionally, both Harris-Laplace and Hessian-Laplace detectors were extended

to yield affine-invariant region, resulting in the Harris-Affine and Hessian-Affine detec-

tors [Mikolajczy and Schmid, 2004]. Detailed experimental comparisons can be found

in [Mikolajczyk et al., 2005; Tuytelaars and Mikolajczyk, 2008; Li and Allinson, 2008].

2.1.4 Feature Description

Once a set of local features have been detected from an image, some measurements

are taken from a region centered on local features and converted into local descriptors.

Researchers have been developed a variety of local descriptors for describing the image

content, such as: SIFT [Lowe, 2004], SURF [Bay et al., 2008], HOG [Dalal and Triggs,

2005], GLOH [Mikolajczyk and Schmid, 2005], DAISY [Tola et al., 2010]. In the fol-

lowing, we summarize the SIFT and SURF descriptors, the most commonly used local

descriptors for visual recognition tasks.
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2.1.4.1 Scale Invariant Feature Transformation (SIFT)

SIFT [Lowe, 1999, 2004] is the most widely used local approach for recognition tasks.

It was originally proposed as combination of a difference-of-Gaussian (DoG) interest

region detector and a histogram of gradient (HoG) locations and orientations feature

descriptor. However, both components have also been used in isolation. In particular, a

series of studies has confirmed that the SIFT descriptor is suitable for combination with

all of the above-mentioned detectors and that it usually achieves good performance

[Mikolajczyk and Schmid, 2005]. The SIFT descriptor has 128-dimensional feature

vectors. It is invariant to scale, rotation, affine transformations, and partially invariant

to illumination changes.

Initially, the SIFT descriptor was proposed to enable efficient point-to-point

matching in object recognition tasks [Lowe, 1999]. In more recent works, this tech-

nique have been explored in the Bag-of-Words representation [Sivic and Zisserman,

2003], formally introduced in Section 2.2.

Several extensions of the original SIFT have been proposed in the literature. For

example, PCA-SIFT [Ke and Sukthankar, 2004] applies PCA on normalized gradient

patches to reduce the size of the original SIFT descriptor. RIFT [Lazebnik et al.,

2005] divides each image patch into concentric rings of equal width to overcome

the problem of dominant gradient orientation estimation required by SIFT. GLOH

[Mikolajczyk and Schmid, 2005] extends SIFT by changing the location grid to a log-

polar one and using PCA to reduce the size. Rank-SIFT [Li et al., 2011] sets each

histogram bin to its rank in a sorted array of bins. Also, different ways of extending

the SIFT descriptor from grey-level to color images have been proposed by different au-

thors [Bosch et al., 2006; van de Weijer and Schmid, 2006; Burghouts and Geusebroek,

2009; van de Sande et al., 2010].

2.1.4.2 Speeded Up Robust Features (SURF)

SURF [Bay et al., 2006, 2008] is a scale and rotation-invariant interest point detector

and descriptor. The detector is based on the Hessian matrix, but rather than using a

different measure for selecting the location and the scale (as was done in the Hessian-

Laplace detector), Bay et al. apply the determinant of the Hessian for both. The

descriptor, on the other hand, describes a distribution of Haar-wavelet responses within

the interest point neighborhood. The SURF descriptor is based on similar properties

of localized information and gradient distribution as SIFT, with a complexity stripped

down even further.
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The main interest of the SURF descriptor lies in its fast computation of approxi-

mate differential operators in the scale-space, based on integral images and box-type

convolution filters. Moreover, only 64 dimensions are used, reducing the time for feature

computation and matching, and increasing simultaneously the robustness.

2.2 Mid-level Image Representations: BoW Models

and Extensions

Mid-level feature extraction aims at transforming low-level descriptors into a global and

richer image representation of intermediate complexity [Boureau et al., 2010a]. That

image representation is commonly referred to as mid-level representation, since global

features built upon low-level ones typically remain close to image-level information

without attempts at high-level semantic analysis.

In order to get the mid-level representation, the standard processing pipeline

follows three steps [Boureau et al., 2010a]: (i) low-level local feature extraction (previ-

ously addressed in the Section 2.1), (ii) coding, which performs a pointwise transforma-

tion of the descriptors into a representation better adapted to the task and (iii) pooling,

which summarizes the coded features over larger neighborhoods. Classification algo-

rithms are then trained on the mid-level vectors obtained (see Section 2.4).

In this section, we approach the family of mid-level representations which is

most central to this dissertation. In particular, we focus on the Bag-of-Visual-Words

representation (BoW) [Sivic and Zisserman, 2003], the most popular mid-level image

representation. Here, instead of an exhaustive survey, we opt for a more formal deve-

lopment: our target is to lay out the mathematical cornerstones common to all BoW

representations, exploring how those cornerstones have been established in early works,

and how they are evolving in very recent works.

2.2.1 Early Techniques

Inspired by the Bag-of-Words Model from textual Information Retrieval

[Baeza-Yates and Ribeiro-Neto, 1999], where a document is represented by a set

of words, the Bag-of-Visual-Words Model (BoW) describes an image as a histogram of

the occurrence rate of “visual words” in a “visual vocabulary” induced by quantizing

the space of a local descriptor (e.g., SIFT [Lowe, 2004]). The visual vocabulary of k

visual words, also known as visual codebook or visual dictionary, is usually obtained

by unsupervised learning over a sample of local descriptors from the training data.
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As far as we know, the NeTra toolbox [Ma and Manjunath, 1999] was the first

work to introduce that scheme, proposing dense grids of color points and unsuper-

vised learning to build the codebook, using the LBG algorithm [Linde et al., 1980].

The RETIN system [Fournier et al., 2001] is based on a similar scheme, using lo-

cal Gabor feature vectors and learning the codebook with Kohonen self-organized

maps [Kohonen, 1988]. The technique was definitively popularized with the intu-

itive “Video Google” formalism [Sivic and Zisserman, 2003], which employs SIFT local

descriptors and builds the codebook with k-means clustering algorithm [Duda et al.,

2001]. Sivic and Zisserman applied the BoW scheme for object and scene retrieval,

while Csurka et al. [2004] first exploited for the purpose of object categorization.

2.2.2 Current Formalism

Let us denote the “Bag-of-Features” (BoF), i.e., the unordered set of local descriptors

extracted from an image, by X = {xj}, j ∈ {1, . . . , N}, where xj ∈ RD is a local

descriptor vector and N is the number of local descriptors (either fixed grid points,

either detected points of interest) in the image.

Let us suppose we have obtained (e.g., by an unsupervised learning algorithm) a

codebook, or visual dictionary C = {cm}, cm ∈ RD, m ∈ {1, . . . ,M}, where M is the

number of codewords, or visual words. Obtaining the codebook is essential for the BoW

model, since the representation will be based on the codewords. Currently, the vast

majority of methods obtains the codebook using unsupervised learning over a sample

of local descriptors from the training images, usually employing k-means clustering

algorithm [Duda et al., 2001]. In Figure 2.2, we illustrate the procedure to form the

codebook. Other codebook learning algorithms are explored in Section 2.4.4.

The construction of the BoW representation can be decomposed into the sequen-

tial steps of coding and pooling [Boureau et al., 2010a]. The coding step encodes the

local descriptors as a function of the codebook elements; while the pooling step aggre-

gates the codes obtained into a single vector. The global aim is gaining invariance to

nuisance factors (positioning of the objects, changes in the background, small changes

in appearance, etc.), while preserving the discriminating power of the local descriptors.

The coding step can be modeled by a function f :

f : RD −→ RM ,

xj −→ f(xj) = αj = {αm,j} , m ∈ {1, . . . ,M} . (2.1)

It can be understood as an activation function for the codebook, activating the
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(a) (b)

(c) (d)

Figure 2.2: Illustration of visual codebook construction and codeword assignment.
(a) A large sample of local features are extracted from a representative corpus of
images. The black circles denote local feature regions in the images, and the small
black circles denote points in some feature space, e.g., SIFT descriptors. (b) Next, the
sampled features are clustered in order to quantize the space into a discrete number
of codewords. Those codewords are denoted with the large colored circles. (c) Now,
given a new image, the nearest visual codeword is identified for each of its features.
This maps the image from a set of high-dimensional descriptors to a list of codeword
numbers. (d) A bag-of-words histogram can be used to summarize the entire image.
It counts how many times each of the visual codewords occurs in the image.

codewords according to the local descriptor. In the classical BoW representation, the

coding function activates only the codeword closest to the descriptor, assigning zero

weight to all others:

αm,j = 1 iff m = argmin
k∈{1,...,M}

‖xj − ck‖22, (2.2)

where αm,j is the mth component of the encoded vector αj. That scheme corresponds

to a hard coding or hard quantization over the codebook. The resulting binary code

is very sparse, but suffers from instabilities when the descriptor being coded is on the

boundary of proximity of several codewords [van Gemert et al., 2010].
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The pooling step takes place after the coding step, and can be represented by a

function g:

g : RN −→ R,
αj = {αm,j} , j ∈ {1, . . . , N} −→ g({αj}) = z. (2.3)

Traditional BoW considers the sum-pooling operator:

g({αj}) = z : ∀m, zm =
N
∑

j=1

αm,j . (2.4)

The vector z, the final image representation, is given by sequentially coding,

pooling and concatenating: z = [z1, z2, · · · , zM ]T. Regarding image classification, the

goal is to find out which operators f and g provide the best classification performance

using z as input. In Figure 2.3, we illustrate the BoW image classification pipeline

showing coding and pooling steps.

2.2.3 BoW-based Approaches

The classical BoW representation has important limitations, and many alternatives to

that standard scheme have been recently developed. Both steps of coding and pooling

have been subject to important improvements, aiming at preserving more information

while keeping the robustness to geometrical transformations that is inherent to BoW.

A recent comparison of coding and pooling strategies is presented in [Koniusz et al.,

2013]. Here, we start with the enhancements that concerns the coding step.

The simplest coding in the literature assigns a local descriptor to the closest

visual codeword, giving one (and only one) nonzero coefficient. Quantization effects of

that hard coding are found to be a source of ambiguity [Philbin et al., 2008]. In order

to attenuate the effect of coding errors induced by the descriptor space quantization,

one can rely on soft coding [van Gemert et al., 2008, 2010]. It is based on a soft-

assignment to each codeword, weighted by distances/similarities between descriptors

and codewords. The soft-assignment αm,j to the codeword cm is computed as follows:

αm,j =
exp(−β‖xj − cm‖22)

∑K

m′=1 exp(−β‖xj − cm′‖22)
, (2.5)

where β is a parameter that controls the softness of the soft-assignment (hard-

assignment is the limit when β →∞).
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SIFT
descriptors

Hard Coding SVM

Label

Bag-of-Words Pipeline

Sum Pooling

(a) (b) (c) (d)

Figure 2.3: Overview of Bag-of-Words image classification pipeline showing coding and pooling steps. The construction of the
BoW mid-level representation is highlighted by the dashed box. (a) {xj}j∈N , where xj ∈ RD, SIFT local descriptors are extracted
from an image. (b) At the coding step, the f coding function activates only the codeword closest to the descriptor, assigning zero
weight to all others, which corresponds to a hard coding over the C visual codebook. M is the number of codewords. (c) Next,
the g pooling function compacts all information pertaining to a codeword (the values along rows) into a single scalar (z). The
vector z, the BoW image representation, can be represented as z = [z1, z2, · · · , zM ]T. (d) Classification algorithms (such as SVM
classifier) are then trained on the BoW mid-level vectors obtained.
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However, soft-assignment results in dense code vectors, which is undesirable,

among other reasons, because it leads to ambiguities due to the superposition of the

components in the pooling step. Therefore, several intermediate strategies — known

as semi-soft coding — have been proposed, often applying the soft assignment only to

the k nearest neighbors (k-NN) of the input descriptor [Liu et al., 2011a].

Sparse coding (SC) [Yang et al., 2009b; Boureau et al., 2010a] modifies the opti-

mization scheme by jointly considering reconstruction error and sparsity of the code,

using the property that regularization with the ℓ1-norm, for a sufficiently large regu-

larization parameter λ, induces sparsity:

αj = argmin
α

‖xj − Cα‖22 + λ‖α‖1. (2.6)

Yu et al. [2009] empirically observed that SC results tend to be local — nonzero

coefficients are often assigned to bases nearby to the encoded data. They suggested a

modification to SC, called Local Coordinate Coding (LCC), which explicitly encourages

the coding to be local, and theoretically pointed out that under certain assumptions

locality is more essential than sparsity, for successful nonlinear function learning using

the obtained codes.

Locality-constrained Linear Coding (LLC) [Wang et al., 2010], which can be seem

as a fast implementation of LCC, utilizes the locality constraint to project each des-

criptor into its local-coordinate system. It is similar to SC, but it adds a penalty for

using elements of the codebook that have a large Euclidean distance from the descriptor

being coded. Very close to LLC, the Sparse Spatial Coding (SSC) [Oliveira et al., 2012]

codes a descriptor using sparse codebook elements nearby in descriptor space. SSC

combines a sparse coding codebook learning and a spatial constraint coding stage (the

spatial Euclidean similarity).

One of the strengths of those approaches is that one can learn the codebook with

the same scheme, but optimizing over C and α. Efficient tools have been proposed to

get tractable solutions [Mairal et al., 2010].

The pooling step has also been subject to extensions and enhancements. The

simplest pooling operations, sum-pooling and average-pooling, have a “blurring” effect

due to the averaging of the activations of all elements in the image. That is not

always desirable, especially in the presence of very cluttered backgrounds. To overcome

that limitation, alternative pooling schemes have been developed, e.g., max-pooling

[Yang et al., 2009b]. Instead of performing averaging operation, max-pooling computes
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the maximum value of each dimension of αj :

z : ∀m, zm = max
j∈{1,...,N}

αm,j. (2.7)

Max-pooling is often preferred2 when paired with sparse coding and linear clas-

sifiers [Yang et al., 2009b; Boureau et al., 2010a].

Recently, Boureau et al. [2010b] conducted a theoretical analysis on feature pool-

ing in image classification. They demonstrated that several factors, including pooling

cardinality and sparsity of the features, affect the discriminative powers of different

pooling operations. Furthermore, they showed that the best pooling type for a given

classification task may be neither average nor max-pooling, but something in between.

Motivated by that consideration, Feng et al. [2011] proposed a geometric ℓp-norm

pooling (GLP) method to perform feature pooling. It utilizes the class-specific geome-

tric information on the feature spatial distributions, providing more discriminative

pooling results. However, GLP only works well for datasets with well-positioned fore-

ground objects (e.g., Caltech-101 dataset3), restricting its applicability for many chal-

lenging datasets, especially those datasets containing large intra-class spatial variances

(e.g., PASCAL VOC datasets).

In [Liu et al., 2011a], the authors discussed the probabilistic essence of max-

pooling and further developed a mix-order max-pooling strategy, which incorporates

the occurrence frequency information ignored in simple max-pooling by estimating

the probability of the “t-times” presence of a codeword in an image. The authors have

shown in their experiments that mix-order max-pooling can lead to better classification

performance (at least in classifying scenes and events) than the simple max-pooling.

Another extension to the BoW is to include spatial/layout information. The most

popular technique to overcome the loss of spatial information is the Spatial Pyramid

Matching (SPM) strategy [Lazebnik et al., 2006]. Inspired by the pyramid match of

Grauman and Darrell [2005], Lazebnik et al. proposed to split an image into multiple

levels of regular grids, which are described independently (i.e., the pooling is operated

over each block of the pyramid) and then concatenated into an image-level histogram.

In [Koniusz and Mikolajczyk, 2011], the authors proposed to include spatial

and angular information directly at descriptor level. They used soft-BoW and

sparse coding-based signatures, reporting promising results compared to SPM strategy.

Jia et al. [2012] introduced spatial regions that do not follow the fixed spatial regions

2Depending on the sparse optimization scheme, the αm,j values may be negative. If that occurs,
the following pooling is usually applied: z : ∀m, zm = maxj∈{1,...,N} ‖αm,j‖.

3Most images in the Caltech-101 dataset have roughly aligned and centered foreground objects.
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of SPM and capture better dataset-specific spatial information. Sánchez et al. [2012]

proposed to include information about the spatial layout of images in image signa-

tures based on average statistics. Russakovsky et al. [2012] presented an object-centric

spatial pooling approach which uses the location information of the objects to pool

foreground and background features separately.

Despite recent techniques to include spatial information [Penatti et al., 2011], the

simple SPM [Lazebnik et al., 2006] is still by far the most used approach to account

for spatial information in BoW-based methods.

Incorporating higher-order statistics is another possible improvement to the clas-

sical BoW. By counting the number of occurrences of visual codewords, BoW encodes

the zero-order statistics of the distribution of descriptors. The Fisher Vector (FV)

[Perronnin et al., 2010c], as well as the related Vector of Locally Aggregated Descrip-

tors (VLAD) [Jégou et al., 2010] and the Super-Vector Coding (SVC) [Zhou et al.,

2010], also model the distribution of descriptors assigned to each codeword, encoding

higher-order statistics.

Furthermore, Boureau et al. [2011] gives a new perspective to those recent po-

werful approaches, VLAD and SVC, as specific pooling operations. In those aggregated

approaches, locality constraints are incorporated during the pooling step: only descrip-

tors belonging to the same clusters are pooled together.

One of the best mid-level representations currently reported in the litera-

ture [Chatfield et al., 2011], the FV [Perronnin et al., 2010c] is based on the use of

the Fisher kernel framework popularized by [Jaakkola and Haussler, 1998], with Gaus-

sian Mixture Models (GMM) estimated over the whole set of images. That approach

may be viewed as a generalization to the second order of the SVC [Zhou et al., 2010].

Indeed, the final image representation is also a vector concatenating vectors over each

mixture term.

Several extensions of the FV have been proposed. Krapac et al. [2011] introduced

Spatial Fisher Vector (SFV) to encode spatial layout of features. In SFV, spatial cells

are adapted per codeword to the patch positions. While their representation is more

compact, their evaluation shows minimal improvement over SPM in terms of clas-

sification accuracy. Picard and Gosselin [2011] generalized FV to higher-orders, the

so-called Vector of Locally Aggregated Tensors (VLAT). However, its computational

complexity, vector size and difficulty in estimating higher-order moments with confi-

dence, limit the practicality of pushing the orders beyond the second. In [Negrel et al.,

2012], the authors proposed to reduce the Picard and Gosselin’s vector size.

In this dissertation, we propose BossaNova [Avila et al., 2012, 2013], a mid-level

image representation for image classification, that enriches the BoW representation.
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The fundamental novelty is an enhancement of the pooling operation by considering

no more a scalar output for each row as in Equation 2.3, but a vector, summarizing

the distribution of the αm,j. That strategy allows keeping more information, related

to the confidence of the detection of each visual word cm in the image.

In order to accomplish that goal, BossaNova departs from the parametric models

commonly found in the literature (e.g., [Perronnin et al., 2010c; Krapac et al., 2011]),

by employing histograms. That density-based approach allows us to conciliate the need

to preserve low-level local descriptor information and keeping the mid-level feature

vector at a reasonable size. A preliminary version of the BossaNova representation,

the so-called BOSSA [Avila et al., 2011], has allowed us to gain several insights into

the benefits of the non-parametric choice and to explore the compromises between

the opposite goals of discrimination versus generalization, representativeness versus

compactness. BossaNova is introduced in Chapter 4, as well the complementarity of

BossaNova and Fisher Vector. The latter one is summarized in the next section.

Fisher Vector Representation

We only provide a brief introduction to the Fisher Vector (FV). More details can be

found in [Perronnin and Dance, 2007; Perronnin et al., 2010c].

As mentioned before, BoW encodes the zero-order statistics of the distribution

of descriptors by counting the number of occurrences of codewords. The FV extends

the BoW by encoding the average first- and second-order differences between the des-

criptors and codewords. Mathematically speaking, the FV GXλ characterizes a sample

X by its deviation from a distribution uλ (with parameters λ):

GXλ = LλG
X
λ , (2.8)

GX
λ is the gradient of the log-likelihood with respect to λ:

GX
λ =

1

N
∇λ loguλ(X ), (2.9)

Lλ is the Cholesky decomposition of the inverse of the Fisher information matrix Fλ,

i.e. F−1
λ = L′

λLλ. In [Perronnin and Dance, 2007], X =
{

xj ∈ RD
}

, j ∈ {1, . . . , N},
where xj is a local descriptor vector and N is the number of local descriptors in the

image and uλ =
∑M

i=1wiui is a GMM. We denote λ = {wi, µi, σi}, where i ∈ {1, . . . ,M}
and wi, µi, σi are respectively the mixture weight, mean vector and diagonal covariance

matrix of Gaussian ui.
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Let γj(i) be the soft assignment of descriptor xj to Gaussian i. Let GXµ,i and GXσ,i
be the gradient with respect to µi and σi, respectively. As reported by Perronnin et al.

[2010c], the gradient with respect to the weight parameter brings little additional in-

formation, hence it is discarded. Then, mathematical derivations lead to:

GXµ,i =
1

N
√
wi

N
∑

j=1

γj(i)

(

xj − µi

σi

)

, (2.10)

GXσ,i =
1

N
√
2wi

N
∑

j=1

γj(i)

[

(xj − µi)
2

σi
2

− 1

]

. (2.11)

The FV GXλ is the concatenation of GXµ,i and GXσ,i vectors for i ∈ {1, . . . ,M} and
is therefore 2MD-dimensional. An advantage of FV with respect to the BoW is that

discriminative signatures can be obtained with small codebooks. On the other hand,

the high-dimensional signatures, as FV signatures, come at a high storage/memory

cost which poses a challenge to learning, especially on large-scale datasets.

2.3 Feature Normalization

2.3.1 Dimensionality Reduction

Feature descriptors are usually high-dimensional (e.g., SIFT is represented as a 128-

dimensional vector). That leads to a high memory usage and an elevated computational

time. Moreover, high-dimensional problems are often susceptible to the well-known

problem of the curse of dimensionality [Bellman, 1961]. To deal with this issue, di-

mension reduction techniques are often applied as a data preprocessing step. This

typically involves the identification of a suitable low-dimensional representation for the

original high-dimensional data. By working with this reduced representation, tasks

such as classification or clustering can often yield more accurate results, while compu-

tational costs may also be significantly reduced [Cunningham, 2008].

Principal Component Analysis (PCA)

One of the most popular techniques for dimensionality reduction is the Principal Com-

ponents Analysis (PCA). PCA, is a linear technique widely used for dimensionality

reduction [Jolliffe, 2002]. It aims to reduce the dimensionality of multivariate data

while preserving as much of the relevant information as possible. This method is a
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form of unsupervised learning in that it does not take class labels into account. The

PCA is also known as the Karhunen-Loève transform.

There are two commonly used definitions of PCA that give rise to the same

algorithm. PCA can be defined as the orthogonal projection of the data onto a lower

dimensional linear space, known as the principal subspace, such that the variance of

the projected data is maximized [Hotelling, 1933]. Equivalently, it can be defined as

the linear projection that minimizes the average projection cost, defined as the mean

squared distance between the data points and their projections [Pearson, 1901].

The PCA dimension reduction method has been successfully applied in a large

number of domains, such as object recognition [Fei-Fei et al., 2007; Perronnin et al.,

2010c; Zhou et al., 2010; Krapac et al., 2011; Sánchez et al., 2012; Avila et al., 2013]

and image retrieval [Jégou et al., 2010; Perronnin et al., 2010a; Jégou and Chum,

2012]. The main drawback of PCA is that the size of the covariance matrix is propor-

tional to the dimensionality of the data points. As a result, the computation of the

eigenvectors might be infeasible for very high-dimensional; for a matrix of size D×D,

the computational cost of computing the full eigenvector decomposition is O(D3). How-

ever, to project the data points onto the first N principal components, we only need

to find the first N eigenvalues and eigenvectors. This can be done with more efficient

techniques, for example the power method [Golub and Van Loan, 1996], whose the

computational complexity is O(ND2), or the expectation-maximization algorithm.

As mentioned before, the PCA is designed to model linear variabilities in high-

dimensional data. However, many high-dimensional datasets have a nonlinear nature.

In those cases, the high-dimensional data lie on or near a nonlinear manifold and

therefore PCA cannot model the variability of the data correctly. One of the algorithms

designed to address the problem of nonlinear dimensionality reduction is the Kernel

PCA [Schölkopf et al., 1998; Shawe-Taylor and Cristianini, 2004]. In KPCA, through

the use of kernels, principle components can be computed efficiently in high-dimensional

feature spaces that are related to the input space by some nonlinear mapping.

2.3.2 BoW Normalization Techniques

One possibility of increasing the systems’ performance is to carefully examine the

feature normalization techniques. In particular, large margin classifiers are known to

be sensitive to the way features are scaled (see, for example [Chang and Lin, 2011],

in context of SVM). Therefore, despite the fact it has been neglected so far in most

research papers in the literature, the mid-level feature normalization is a crucial step.

In the Bag-of-Words (BoW) model proposed by Sivic and Zisserman [2003], the
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vector components are weighted by a tf-idf transformation, where tf means ‘term-

frequency’ and idf means ‘inverse document-frequency’. The idea is that word fre-

quency weights words occurring often in a particular document, and thus describe it

well, whilst the inverse document frequency downweights words that appear often in

the dataset.

A technique usually regarded as part of term weighting is to normalize of the

term count by the number of terms in the document (i.e., document length) into a

unit-length term frequency vector. This ℓ1 normalization eliminates the difference

between long and short documents with similar word distribution. For images, this

means normalizing the count of visual words by the total number of local descriptors

in each image, which varies greatly according to the complexity of the image scene.

Recently, the ℓ1 and ℓ2 normalizations have been widely used to normalize the

BoW-based feature vectors, such as [Nister and Stewenius, 2006; Jégou et al., 2010;

Perronnin et al., 2010c; Avila et al., 2011; Chatfield et al., 2011; Picard and Gosselin,

2011; Negrel et al., 2012]. The normalization policy can be driven by the kernel choice,

and different kernels lead to different normalization strategies. For example, ℓ2 norma-

lization is appropriate when using linear kernels, whereas ℓ1 is optimal when using χ2

or intersection kernels, see [Vedaldi and Zisserman, 2012]. However, there is no general

agreement on the benefit of performing these normalizations, because they can discard

relevant information.

Contradicting experimental results have been reported in the literature, and the

optimal normalization policy remains largely data-dependent. For example, some

authors reported that ℓ2 normalization negatively impacts performances, and there-

fore they chose not performing any normalization method (e.g., [Liu et al., 2011a;

Boureau et al., 2011]). In [Yang et al., 2007], this normalization factor is evaluated

in two benchmarks, PASCAL VOC and TRECVID. The authors have contradicting

observations between the two datasets regarding the normalization factor. In PASCAL

VOC, normalized features consistently outperforms un-normalized ones. However, in

TRECVID the un-normalized features are always better than their normalized coun-

terparts. According to Yang et al. [2007], a plausible explanation is that, PASCAL

VOC has images of various sizes, and its classification performance benefits from the

normalization factor which eliminates the difference on image sizes. This is not the

case with TRECVID, which contains video frames of identical size, and normalization

decreases the performance by suppressing the information on the number of visual

words in each video frame.

In recent aggregate methods, e.g., Fisher Vector (FV) [Perronnin et al., 2010c],

VLAD [Jégou et al., 2010] or Super-Vector Coding (SVC) [Zhou et al., 2010], the cod-
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ing step outputs a vectorial representation where the mean cluster value is subtracted

from each local descriptor. In [Jégou and Chum, 2012], the favorable impact of this

centering on retrieval/classification performances is analyzed. The main claim of the

paper is that centering data with linear kernels4, negative evidence is better taken into

account. Negative evidence refers to the joint absence of a given visual word in two

image representations. If no centering is performed, negative evidence is encoded sim-

ilarly (i.e., 0) than when a given word is absent in one image but present in the other,

which is not desirable. Another feature highlighted in [Jégou and Chum, 2012] is the

ability of whitening to limit the impact of co-occurrences.

Another example of normalization technique is the power-law normalization

[Perronnin et al., 2010c]. It is performed by applying the operator f(z) = sign(z)|z|α
independently on each component, where 0 ≤ α ≤ 1. Perronnin et al. [2010c] empiri-

cally observed that the power normalization consistently improves the classification

performance. In [Jégou et al., 2012], several complementary interpretations that jus-

tify this transform are listed. However, in [Perronnin et al., 2010c; Jégou et al., 2012],

the authors have applied the power normalization with α = 0.5 for only one repre-

sentation, the Fisher Vector. Safadi [2012] studied the impact of the α parameter on

different representations, including color histograms and BoW approaches. He showed

that the optimal value of α varies for each of the representations.

2.4 Machine Learning Algorithms for Image

Classification

Machine Learning is concerned with the design and development of algorithms that

allow computers to learn based on data. The most fundamental distinction in machine

learning is that between supervised and unsupervised learning algorithms.

In supervised learning problems, a machine learning algorithm induces a predic-

tion function using a set of examples, called a training set. Each example consists of

a pair formed by an observation annotated with a corresponding label. The goal of

the learned function is to predict the correct label associated with any new observa-

tion. When the labels are discrete, the task is referred to as a classification problem.

Otherwise, for real-valued labels, the task is referred to as a regression problem.

The main goal of a machine learning algorithm is to perform correct predictions

for previously unknown observations. Therefore, machine learning is not simply a

4for translation-invariant kernels, such as radial-basis function kernels, the centering has of course
no impact.
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question of remembering, but mainly of generalizing a model to unknown cases. In

practice, a testing set, i.e. a set of examples never seen by the learning algorithm

during the training phase, along with a performance measure are thus employed to

evaluate the generalization ability of the learned model.

In unsupervised learning problems, one can consider unlabeled training examples

and try to uncover regularities in the data. One can also make use of both labeled

and unlabeled data for training (typically a small amount of labeled data with a large

amount of unlabeled data). This is referred to as semi-supervised learning problem.

In this section, we only consider some of the most successful supervised learning

algorithms for image classification problems. We start by presenting the Support Vector

Machines (Section 2.4.1), a very popular and powerful learning technique for data

classification. Next, we discuss ensemble techniques (Section 2.4.2), a strategy which

weighs several individual classifiers, and combines them in order to obtain a classifier

that outperforms every single one of them. Finally, we approach the k-Nearest Neighbor

classifier (Section 2.4.3).

2.4.1 Support Vector Machine

Support Vector Machines (SVMs) [Vapnik, 1998] are supervised learning methods

originally used for linear binary classification. They are the successful application of

the kernel idea [Aizerman et al., 1964] to large margin classifiers [Vapnik and Lerner,

1963] and have been proved to be powerful tools. In this section, we briefly intro-

duce SVMs. A deep and comprehensive introduction to SVMs can be obtained in

[Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola, 2001].

The basic ideas behind the SVM algorithm can be explained by three incremental

steps. First, Vapnik and Lerner [1963] proposed to construct the optimal hyperplane

which maximizes the margin, i.e. the minimal distance between the hyperplane sepa-

rating the training examples into its two classes. Then, Guyon et al. [1993] proposed

to construct the optimal hyperplane in the feature space induced by a kernel function

(a kernel function in the original space is equivalent to a standard scalar product in

this feature space). Finally, Cortes and Vapnik [1995] showed that noisy problems are

best addressed by allowing some examples to violate the margin constraint.

The SVM optimization problem is equivalent to a quadratic program (QP), that

optimizes a quadratic cost function subject to linear constraints. However, this op-

timization procedure can only be applied to small sized data sets due to its high

computational and memory costs. Thus, efficient batch numerical algorithms have

been developed to solve the SVM QP problem. One of the best known methods is
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the Sequential Minimal Optimization (SMO) [Platt, 1999], which iteratively solves the

smallest possible optimization problem each time with two examples. The advantage

of SMO is that a QP problem with two example can be solved analytically, and thus a

numerical QP solver is avoided. The state-of-the-art implementation of SMO algorithm

is the software LIBSVM [Chang and Lin, 2011].

The use of a linear kernel (or a explicit mapping) heavily simplifies the SVM

optimization problem. Computing gradients of either the primal or dual cost function is

cheap making linear optimization very interesting when one needs to handle large-scale

databases. However, this simpler complexity can also result in a loss of generalization

power compared to nonlinear kernels [Bordes, 2010].

Recent work exhibits new algorithms scaling linearly in time with the number

of training examples. For example, SVMperf [Joachims, 2006] is a simple cutting-

plane algorithm for training linear SVM converging in linear time for classification.

LIBLINEAR [Hsieh et al., 2008] also reaches very good performances on large scale

datasets, converging in linear time with an efficient dual coordinate descent procedure.

Recently, it has experimentally shown that for linear SVMs, stochastic gra-

dient descent (SGD) [Bottou and Bousquet, 2008] approaches in the primal sig-

nificantly outperform complex optimization methods (for instance, PEGASOS

[Shalev-Shwartz et al., 2007], SVMSGD [Bottou, 2007], SGDQN [Bordes et al., 2009]).

However, many real-world problems do not generalize well in the original feature space

with linear frontiers (hyperplanes). One way to tackle that problem is to approximate

nonlinear kernel by linear one [Williams and Seeger, 2001; Vedaldi and Zisserman,

2012]. In most cases, the approximated representations reach about the same level

of performances than the exact kernels.

SVM classifiers have been so successful in visual recognition problems, that it

is easy to pick dozens of papers that apply them in literature. A few selected ones

that apply linear kernels are: [Yang et al., 2009b; Perronnin et al., 2010c; Zhou et al.,

2010; Krapac et al., 2011; Sánchez et al., 2012]. A few that explore nonlinear SVM

classifiers are [Lazebnik et al., 2006; van Gemert et al., 2010; Guillaumin et al., 2010;

Picard and Gosselin, 2011; Avila et al., 2013].

2.4.2 Ensemble Techniques

The main idea behind the ensemble methodology is to weigh several individual clas-

sifiers, and combine them in order to obtain a classifier that outperforms every single

individual [Rokach, 2010]. That research area is know under different names in the

literature: committees of learners, mixtures of experts, classifier ensembles, multiple
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classifier systems, consensus theory, etc. [Kuncheva and Whitaker, 2003].

Diversity is a crucial condition for obtaining accurate ensembles

[Kuncheva and Whitaker, 2003; Brown et al., 2005]. One way to achieve diver-

sity is to use different training datasets to train individual classifiers. Such datasets

are often obtained through re-sampling techniques, such as bootstrapping or bagging,

where training data subsets are drawn randomly, usually with replacement, from the

entire training data. Another way is to use different training parameters for different

classifiers. Adjusting such parameters allows one to control the instability5 of the

individual classifiers, and hence contribute to their diversity. Furthermore, the most

popular method to achieve diversity is to train different classifiers on different feature

subsets. That is widely used in image classification tasks.

Numerous algorithms have been proposed to construct a good classifier ensemble,

improving both the accuracy of the base classifiers and the diversity among them. In

the following, we present some ensemble approaches.

Bagging, introduced by Breiman [1996], is one of the most intuitive and perhaps the

simplest ensemble based algorithms. Diversity of classifiers in bagging — a name

derived from “bootstrap aggregation” — is obtained by using bootstrapped repli-

cas of the training data. That is, different training data subsets are randomly

drawn (with replacement) from the entire training dataset. Each training data

subset is used to train a different classifier of the same type. Individual classifiers

are then combined by taking a simple majority vote of their decisions. For any

given instance, the class chosen by the most number of classifiers is the ensemble

decision. Since the training datasets may overlap substantially, additional mea-

sures can be used to increase diversity, such as using a subset of the training data

for training each classifier, or using relatively weak classifiers6. In general, bag-

ging improves recognition for unstable classifiers since it effectively averages over

their discontinuities [Alpaydin, 2010]. One example of unstable classifier that is

rendered useful by bagging are decision trees: they are unstable when trained by

greedy algorithms (a slight change in the position of a single training point can

lead to a radically different tree), but often present very good performance when

used in ensembles.

Examples of bagging in image recognition include a bagging ensemble of Linear

Discriminant Analysis used for scene recognition [Lu et al., 2005], and another

5A classifier is an unstable algorithm if small changes in the training set causes a large difference
in the generated learner.

6It suffices that their accuracy on the training set be slightly better than random guessing.
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one applied for recognizing different kinds of vegetables and fruits [Rocha et al.,

2008]. Zhang and Dietterich [2008] employed bagged Decision Lists for object

recognition task.

Boosting also creates an ensemble of classifiers by re-sampling the data, which are

then combined by majority voting. However, in contrast to bagging, the re-

sampling is applied to provide the most informative training data for each con-

secutive classifier. The original boosting algorithm [Schapire, 1990] combines

three weak classifiers to generate a strong weak classifier. A weak classifier has

an accuracy probability slightly over random guess, while a strong classifier has

an accuracy probability that can be made arbitrarily close to 100%. The some-

what counterintuitive principle of boosting, is that they require individual weak

classifiers in order to guarantee that the entire ensemble will converge to a strong

classifier. There are a number of variations on basic boosting. The most widely

used form of boosting algorithm is the AdaBoost [Freund and Schapire, 1995],

short for “adaptive boosting”. It improves the simple boosting algorithm via an

iterative process, allowing to choose automatically weak assumptions with ad-

justed weight. Schapire et al. [1998] explain that the success of AdaBoost is due

to its property of increasing the margin. If the margin increases, the training

instances are better separated and an error is less likely. That makes AdaBoost’s

aim similar to the SVM classifier [Alpaydin, 2010].

Over the years, boosting approaches have been proposed to image classification

tasks. For instance, the classical AdaBoost algorithm is applied by Opelt et al.

[2004] for object recognition. Wolf and Martin [2005] proposed a modified version

of the gentleBoost algorithm [Friedman et al., 2000] which enables it to work with

only a few examples. They tested their algorithm on Caltech datasets, which have

few training examples. Saffari et al. [2008] also proposed a generalization of the

gentleBoost algorithm, but to the semi-supervised domain. Gehler and Nowozin

[2009] presented a boosting-oriented scheme optimizing alternately the combina-

tion weights and the combined kernels. Inspired by the boosting framework,

Lechervy et al. [2012] introduced a novel algorithm for image categorization,

which designs multi-class kernel functions based on an iterative combination of

weak kernels.

Random Forests combine Breiman’s bagging idea and the random selection of fea-

tures, which is an example of the random subspace method introduced by Ho

[1995]. A random forest [Breiman, 2001] can be created from individual decision
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trees, varying randomly certain training parameters. Such parameters can be

bootstrapped replicas of the training data, as in bagging, but they can also be

different feature subsets as in random subspace methods.

Their popularity is largely due to the tracking application of Lepetit and Fua

[2006]. Random forests have been applied to object recognition problems in

[Moosmann et al., 2006; Winn and Criminisi, 2006] but only for a relatively small

number of classes. Bosch et al. [2007] increased the number of object categories

by an order of magnitude. In [Shotton et al., 2008], randomized decision forests

are used for both clustering and classification. Leistner et al. [2009] extended

the usage of random forests to semi-supervised learning problems. Yao et al.

[2011] proposed a random forest with discriminative decision trees algorithm for

fine-grained categorization tasks.

Stacked Generalization (or stacking) [Wolpert, 1992] is a different way of combining

multiple models, that introduces the concept of a meta-classifier. In Wolpert’s

stacking, an ensemble of classifiers is first trained using bootstrapped samples of

the training data, and the outputs are then used to train a second-level classifier

(meta-classifier). The underlying idea is to learn whether training data have

been properly learned. For example, if a particular classifier incorrectly learned a

certain region of the feature space, and hence consistently misclassifies instances

coming from that region, then the second-level classifier may be able to learn this

behavior, and along with the learned behaviors of other classifiers, it can correct

such improper training.

Stacking has been exploited in image classification tasks. Tsai [2005] presented a

two-level stacked generalization scheme composed of three generalizers (color, tex-

ture, and high-level concept) of SVMs for image classification. In [Abdullah et al.,

2009], the effectiveness of two different two-level stacking SVMs are compared to

the näıve approach, that combines all descriptors in a single input vector for

a SVM. They showed that the two-level stacking SVMs outperforms the näıve

approach for image classification. In [Znaidia et al., 2012], base classifiers are

trained on the considered modalities (visual, contextual and hierarchical) and

combined by the stack generalization approach proposed by Wolpert [1992].

The simplest strategy for building an ensemble is bagging, whose diverse compo-

nent classifiers are built by subsampling the training cases or subsampling the features.

Boosting will often produce even better improvements on error than bagging as it has

the potential to reduce the bias component of error in addition to the variance com-
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ponent. Random forests are an interesting strategy for building ensembles that can

provide some useful insights into the data in addition to providing a very effective

classifier. Finally, stacked generalization can be seen as a more sophisticated version of

cross-validation, exploiting a strategy more useful than cross-validation’s crude winner-

takes-all for combining the individual generalizers.

2.4.3 k-Nearest Neighbor

Perhaps the most straightforward classifier among machine learning techniques is the

Nearest Neighbor Classifier [Duda et al., 2001], where examples are classified based on

the class of their nearest neighbors in the descriptor space. It is often useful to take

more than one neighbor into account so the technique is more commonly referred to

as k-Nearest Neighbor (k-NN) Classification, where k nearest neighbors are used in

determining the class [Cunningham et al., 2008].

k-NN classifiers provide good image classification when the query image is similar

to one of the labeled images in its class [Boiman et al., 2008]. Indeed, k-NN classifiers

have proved to be competitive in restricted image classification domains (e.g., OCR

and texture classification [Zhang et al., 2006]), where the number of labeled dataset

images is very high relative to the class complexity.

Although k-NN classifiers are extremely simple, easy to implement, and require

no learning/training phase, the large performance gap between those classifiers and

SVM-based methods (see Section 2.4.1) often renders k-NN classifiers useless. In

[Boiman et al., 2008], the authors argued that two practices commonly used in image

classification methods (as BoW-based approaches) have led to the inferior performance

of k-NN image classifiers: (i) the quantization of local image descriptors (used to gene-

rate BoW features, visual codebooks) and (ii) the computation of ‘image-to-image’

distance (essential to kernel methods, e.g., SVM), instead of ‘image-to-class’ distance.

Hence, Boiman et al. [2008] proposed the Naive Bayes Nearest Neighbor (NBNN)

classifier. Its good performance is mainly due to the avoidance of a vector quantiza-

tion step, and the use of image-to-class comparisons, yielding good generalization.

Nonetheless, NBNN also has its limitations. The computational cost during testing

is high, especially when sampling very densely which often seems necessary to obtain

good results. Also, the method assumes similar densities in feature space for all classes,

which is often violated, resulting in a strong bias towards one or a few object classes.

Behmo et al. [2010] corrected NBNN for the case of unbalanced training sets.

They also pointed out that a major practical limitation of NBNN is the time that is

needed to perform the NN search. To overcome that limitation, Lowe [2012] proposed
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the local NBNN, which merges all of the reference data together into one search struc-

ture (instead of maintaining a separate search structure for each class), allowing quick

identification of a descriptor’s local neighborhood. Recently, Tuytelaars et al. [2011]

proposed a kernelized version of the NBNN classifier. Their scheme keeps the image-

to-class comparisons, while at the same time fitting it in the kernel-based line of work

popular for image classification. A shortcoming of the NBNN kernel is that it does not

scale well in the number of classes.

2.4.4 Visual Codebook Learning

Learning a visual codebook is an effective means of extracting the relevant visual

content of an image dataset, which is used by most of the classification systems. As

mentioned in Section 2.2.2, the codebook is essential for the BoW model, since the

representation will be based on the visual codewords. In this section, we explore the

most influential visual codebook learning approaches to image classification problems.

The standard pipeline to form the visual codebook consists of (i) collecting a large

sample of local descriptors from a representative corpus of images, and (ii) quantizing

the descriptor space according to their statistics. Therefore, the choice of quantization

algorithm used to construct it is an important concern in learning the visual codebook.

Usually, codebooks are constructed by using unsupervised learning algorithms over a

sample of local descriptors from the training images.

In that scenario, the k-means clustering algorithm [Duda et al., 2001] is a

standard approach applied in many works in the literature [Sivic and Zisserman,

2003; Csurka et al., 2004; Willamowski et al., 2004; Fei-Fei and Perona, 2005;

Bosch et al., 2006; Lazebnik et al., 2006; Quelhas et al., 2007; Jégou et al., 2010;

Picard and Gosselin, 2011; Avila et al., 2011, 2012, 2013]. Other unsupervised

learning algorithms also have been explored, such as agglomerative clustering

[Leibe and Schiele, 2003], co-clustering [Liu and Shah, 2007], hierarchical cluster-

ing [Nister and Stewenius, 2006; Fulkerson et al., 2008], mean-shift based clustering

[Jurie and Triggs, 2005], and Gaussian mixture model [Perronnin and Dance, 2007;

Parikh et al., 2009; Perronnin et al., 2010c; Krapac et al., 2011; Sánchez et al., 2012].

An alternative approach to obtain the visual codebook is randomly selecting

local descriptors as visual codewords [Nowak et al., 2006; Viitaniemi and Laaksonen,

2008; Penatti et al., 2011]. In [Nowak et al., 2006], the online k-means codebooks are

compared with the random ones. Although the former is better than the latter, the

randomly selected codebooks produce very respectable results. Those results are also

observed by Viitaniemi and Laaksonen [2008].
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The visual codebook learning methods mentioned until now, like all unsuper-

vised learning approaches, do not take into account the category labels. Hence,

many supervised approaches have been proposed to construct discriminative visual

codebooks that explicitly incorporate category-specific information [Farquhar et al.,

2005; Winn et al., 2005; Perronnin et al., 2006; Mairal et al., 2008; Moosmann et al.,

2008; Larlus and Jurie, 2009; Lazebnik and Raginsky, 2009; Boureau et al., 2010a;

Jiang et al., 2011]. For example, Perronnin et al. [2006] characterize images using

a set of category-specific histograms, where each histogram describes whether the

content can best be modeled by the universal codebook or by its corresponding

category codebook. Mairal et al. [2008] propose an algorithm to learn discrimina-

tive codebooks for sparse coding, which requires each encoded vector to be labeled.

Lazebnik and Raginsky [2009] incorporate discriminative information by minimizing

the loss of mutual information between features and labels during the quantization.

Moreover, the visual codebook may be constructed by manually labeling im-

age patches with a semantic label [van Gemert et al., 2006; Vogel and Schiele, 2007;

Liu et al., 2009]. For example, Vogel and Schiele [2007] construct a semantic codebook

by manually associating the local patches to certain semantic concepts such as “water”,

“sky”, “grass”. The idea behind a semantic codebook is that the meaning of an image

may be expressed in the meaning of its constituent codewords. The obvious drawback

is the large amount of manual labor required, which makes that approach infeasible.

Recently, more sophisticated techniques have been adapted to learn the visual

codebook, such as restricted Boltzmann machines (RBM). In [Goh et al., 2012], the

visual codebook is trained in two learning phases — unsupervised and supervised.

During the unsupervised learning phase, the authors employ a RBM regularization

method that enforces selective codewords. For the supervised phase, the codewords

are adapted to be discriminative with respect to a local classifier that is concurrently

learned. Although the codebooks are compact and inference is fast, the supervised

optimization for associating local descriptors to labels deviates from the actual problem

of global image classification.

2.5 Other Approaches for Image Classification

To put the Bag-of-Words model (see Section 2.2) in context, we briefly summarize some

alternative approaches for image classification.
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2.5.1 Biologically-inspired Models

Biologically-inspired computational models for image classification attempt to simu-

late the process of visual cortex in human vision task [Fukushima and Miyake, 1982;

Riesenhuber and Poggio, 1999; Serre et al., 2007; Thériault et al., 2012].

Research on biological visual systems has been an important field of study since

the awarded work of Hubel and Wiesel [1959, 1968]. Their studies suggested that

the processing in the visual cortex follows a hierarchical structure. Thereafter, va-

rious hierarchical image classification approaches have been developed. For example,

Fukushima and Miyake [1982] proposed Neocognitron, a hierarchical multi-layered net-

work that is capable of merging simple visual features into a more complex whole while

retaining some degree of invariance to basic visual transforms.

One biologically-inspired model which has been received attention in recent years

comes from the HMAX model of Riesenhuber and Poggio [1999], which focuses less on

learning and more on designing simple operations inspired by the visual cortex. This

model alternates layers of features extraction with layers of maximum pooling.

Several extensions of the HMAX model have been suggested. For instance,

Serre et al. [2007] extended the HMAX to add multi-scale representations as well

as more complex visual features. Mutch and Lowe [2008] improved the HMAX of

Serre et al. [2007] by tuning the complex visual features to the dominant local orienta-

tions. Thériault et al. [2011, 2012] proposed to build complex features in terms of the

local scales of image structures.

Despite the success of the HMAX model, there are two important limitations

of such a model [Han and Vasconcelos, 2010]. First, because the organization of the

network lacks a clear computational justification, the HMAX model lacks a principled

optimality criterion and training algorithm. That limits its relevance as an explana-

tion for the underlying biological computations. Second, and quite importantly, the

HMAX model does not account for the psychophysical and physiological evidence on

the important role played by visual attention in processes such as object recognition.

Another biologically-inspired model is the Convolutional Neural Network (CNN),

introduced by LeCun et al. [1990]. In the original CNN, parameters of the whole net-

work are trained in a supervised manner using the error backpropagation algorithm.

For image classification tasks, several variants of CNN have emerged either super-

vised feature learning [Nebauer, 1998; LeCun et al., 2004, 2010; Sermanet et al., 2012;

Krizhevsky et al., 2012] or unsupervised feature learning [Huang and LeCun, 2006;

Ranzato et al., 2007b; Kavukcuoglu et al., 2010; Taylor et al., 2010]. Most forms of

CNN models, besides being biologically inspired, should also be considered “deep”
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models, i.e., models characterized by the presence of several layers of learning nodes

(“neurons”), in contrast to the “shallow” models that have at most three layers (input,

a single hidden layer, and output). We will explore those “deep” models in more detail

in the next section.

2.5.2 Deep Models

Deep models aim at learning feature hierarchies with features from higher levels of the

hierarchy formed by the composition of lower level features [Bengio, 2009]. Automati-

cally learning features at multiple levels of abstraction allows a system to learn complex

functions mapping the input to the output directly from data, without depending so

much on human-crafted features.

Except for the CNN models, mentioned in the previous section, before 2006,

deeper architectures were considered “untrainable” for practical purposes. Re-

searchers reported positive experimental results with typically two or three le-

vels (i.e., one or two hidden layers), but training deeper networks consistently

yielded poorer results. A breakthrough was brought by the Deep Belief Network

(DBN) Hinton and Salakhutdinov [2006], which introduced a layer-by-layer unsu-

pervised strategy to pre-train deep models. Unsupervised training learns a good

model of the input that allows reconstruction or generation of input data. In

[Hinton and Salakhutdinov, 2006], the model is constructed as a stack of Restricted

Boltzmann Machines (RBM) [Smolensky, 1986; Hinton, 2002] that are trained in se-

quence to model the distribution of inputs; the output of each RBM layer is the input of

the next layer. The whole network is then trained (or “fine-tuned”) with a supervised

algorithm.

Other models used as building blocks of deep networks include semi-supervised

embedding models (e.g., [Collobert and Weston, 2008; Weston et al., 2008]), de-

noising auto-encoders (e.g., [Vincent et al., 2008]), and sparse auto-encoders (e.g.,

[Kavukcuoglu et al., 2008; Jarrett et al., 2009]).

Deep models have been used in image classification tasks [Larochelle et al., 2007;

Lee et al., 2008; Ranzato et al., 2007a; Lee et al., 2009a]. A disadvantage of those

architectures is that their depth imply a large number of coefficients to be learned

and often require to solve complex and highly non-convex optimization problems

[Bengio et al., 2007], but they have recently encountered much success for specific tasks

that can count on very large training sets [Krizhevsky et al., 2012].
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2.5.3 Part-based Category Models

Part-based category models arise from the observation that many objects consist of a

set of individual parts that are arranged in some characteristic geometry. Faces, for

example, consist of eyes, a nose, and a mouth, while airplanes consist of wings, a fuse-

lage, and a tail. Part-based category models exploit that observation by decomposing

an object into its component parts and then modeling the visual appearance of each

part individually for each object category. Those models also include some constraints

on the relative spatial configuration of the parts (for illustration, see Figure 2.4).

Figure 2.4: Two images containing different cars. The colored circles indicate regions
of both instances that are similar in visual appearance and relative position (Figure
from [Fergus, 2005]).

The concept of part-based models dates back at least to 1973 in the work of

Fischler and Elschlager [1973]. They proposed an appearance model for each individual

part, along with a spatial model that intuitively consists of springs connecting some

of the parts. That model has been extended in many directions and it has been

applied to a number of computer vision problems, in particular, object detection tasks

[Leibe et al., 2008; Felzenszwalb et al., 2010; Ott and Everingham, 2011; Zhu et al.,

2010; Azizpour and Laptev, 2012].

The part-based approaches can be divided into two categories [Kumar et al.,

2009]: generative and discriminative. Generative models are typically learnt by maxi-

mizing the likelihood of a single class (i.e., it uses only the data of the object class

to be modeled) [Burl et al., 1998; Weber et al., 2000; Fergus et al., 2003; Fei-Fei et al.,

2007]. By contrast, discriminative models attempts to learn a model which utilizes the

data from all object classes to discriminate one class from the other (i.e., it creates an

explicit decision boundary separating the classes of interest) [Holub and Perona, 2005;

Ramanan and Sminchisescu, 2006; Felzenszwalb et al., 2008].

Also, part-based models differ in the way the spatial relations among the indi-

vidual parts are defined. In Figure 2.5, we give an overview over the most popular
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Figure 2.5: Overview of different spatial configuration of the part-based category mod-
els in the literature (Figure adapted from [Carneiro and Lowe, 2006]). Each Xi repre-
sent one of the “parts” of the models for one particular object category.

designs. In the following, we approach two popular part-based models for object cate-

gorization: the Constellation Model (fully connected model) and the Implicit Shape

Model (star-based model).

The Constellation Model (CM), proposed by Burl et al. [1998]; Weber et al.

[2000]; Fergus et al. [2003], represents objects by estimating a joint appearance and

shape distribution of their parts. It has been designed with the goal of learning with

‘weak’ supervision. That is, neither the part assignments, nor even object bounding

boxes are assumed to be known, only the object labels are provided. A drawback

of that model is that (as fully connected model) it requires an exponentially growing

number of parameters as the number of parts increases, which severely restricts its

applicability for complex visual categories.

Fei-Fei and Perona [2005]; Fei-Fei et al. [2007] introduced a hierarchical Bayesian

version of the CM to use priors derived from previously learned classes in order to speed

up learning of a new class. Also, Fergus et al. [2005] proposed an updated version of the

CM incorporating a star topology. In the Star Model, each part is only connected to a

central reference part. Given this reference position, each part is treated independently

of the others.

The idea of the Star Model can be generalized to a Tree Model, where each part’s

location is only dependent on the location of its parent. This type of model is used

in the Pictorial Structures [Fischler and Elschlager, 1973] and it has become popular

for object detection tasks [Felzenszwalb and Huttenlocher, 2005; Felzenszwalb et al.,

2010; Ott and Everingham, 2011; Azizpour and Laptev, 2012] and articulated body

pose analysis [Ramanan et al., 2007; Ferrari et al., 2008; Yang and Ramanan, 2011].
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Learning such models, however, involves the optimization of a non-convex cost function

over a set of latent variables standing for image locations of object parts and mixture

component assignment. The success of training such models, hence, depends on the

good initialization of model parts in general [Parizi et al., 2012].

In contrast to the CM, the Implicit Shape Model (ISM) [Leibe et al., 2004, 2008]

requires labeled training examples, which should include a bounding box for each train-

ing object in order to know the object location and scale. As the name suggests, in the

ISM the object shape is only defined implicitly by the information which parts agree

on the same reference point.

The basic idea underlying ISM is to perform object category recognition and ins-

tances localization based on a non-parametric probability mass function of the position

of the object center. Those probability functions come from a probabilistic interpreta-

tion of the voting space of a Generalized Hough Transform algorithm. Votes are casted

by local descriptors that are matched against a visual codebook learned7, together with

votes, from a set of training examples. The advantage of this model, compared to CM,

is its computational efficiency.

Generally speaking, part-based models have the advantage that they can deal

with object shapes that are not well-represented by a bounding box with fixed aspect

ratio. They have therefore be applied for recognizing deformable object categories

[Grauman and Leibe, 2011]. However, the major disadvantage of those models is that

the number of parts needed to represent different classes grows linearly with each new

class that is added.

It is perhaps worth mentioning that part-based models are somewhat related to

the Bag-of-Words model, if we account for the fact that, unlike the orderless BoW, a

part-based model learns a deformable arrangement of features that represent an object

class. Similarly to BoW, part-based models often start with local low-level feature

detection and description stages. However, diverging from a BoW approach, part-

models must account for the arrangement of the parts, and often they do so in a

generative way, trying to model separately each object class.

2.6 Conclusion

In this chapter, we introduced the main concepts and techniques applied in this disser-

tation. We surveyed the three-layer pipeline to visual recognition problem: (i) low-level

7ISM codebooks model not only the appearance features of individual parts (as Bag-of-Words
codebooks) but also the relative positions among them.
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visual feature extraction, (ii) mid-level feature extraction, and (iii) supervised classifi-

cation. We gave special attention to mid-level image representations, more specifically

the Bag-of-Words models.

We observed that a large number of novel mid-level representations based on the

BoW model have proposed in the past three years, and both steps of coding and pooling

have been subject of important improvements. Briefly, these ameliorations have been

done in two ways: (i) by expressing features as combinations of codewords (e.g., soft

assignment [van Gemert et al., 2010; Liu et al., 2011a]), or/and (ii) by preserving the

difference between the features and the codewords (e.g., Fisher Vector [Perronnin et al.,

2010c], Super-Vector Coding [Zhou et al., 2010], VLAT [Picard and Gosselin, 2011]).

The latter generates the steady inflation of feature vector sizes.

In Chapter 4, we introduce our BoW-based image representation, which takes into

account SIFT descriptors densely sampled at multiple scales. As the low-level feature

extraction has a big influence on the quality of the results, to make the comparisons

fair, we apply the same descriptors for all techniques evaluated in this dissertation.

Most importantly, SIFT descriptors were used by those techniques in their original

papers. Additionally, SIFT still seems the most appealing descriptor for practical uses,

and also the most widely used nowadays.

Also, our image representation relies on a soft-based coding, which is is conceptu-

ally simpler and computationally more efficient compared with existing coding schemes.

It involves no optimization and only needs to compute the distance of a local feature

to each word. Furthermore, we notice that by carefully adjusting the pooling step,

relatively simple systems of local descriptors and classifiers can become competitive

with respect to more complex ones. In this dissertation, we propose a new pooling

operation.

In addition, to account for spatial information in our BoW-based method, we

employ the spatial pyramids approach. It provides a reasonable coverage over the

image space with scale information, and most existing classification methods either use

them directly, or use slightly modified/simplified versions.

Finally, to train our mid-level features vectors, we choose to apply the popular and

efficient SVM classifier using kernel similarity function adapted to the image signature.





Chapter 3

Challenges and Benchmarks Addressed

Over the last decade, progress in image classification has been quantifiable thanks to

the availability of benchmark image datasets with ground truth labels and standard

evaluation protocols. Those benchmarks provide a common ground for researchers

to compare their methods, besides provoking discussion in the community about the

types of imagery and annotation on which we should focus. In addition, in recent years,

dedicated workshops have been held at major vision meetings for groups to compete

with their algorithms on novel test sets. Organized annually from 2005 to present, the

PASCAL Visual Object Classes challenge is a prime example.

In order to evaluate our approach, we use a wide range of datasets. This chapter

gives details about each dataset and discusses how they differ among themselves. We

review each dataset, commenting on its relative challenges, such as intra-class variabi-

lity, viewpoint changes, occlusion, amount of training data, background clutter. We

also report the best published results for each dataset, restricting ourselves to results

that employ only visual information, since some tasks allow the use of other types of

media or metadata.

3.1 MIRFLICKR Challenge

The MIRFLICKR dataset (or MIRFLICKR-25000) [Huiskes and Lew, 2008] contains

25,000 images collected from the Flickr photo-sharing social network1, with associate

labels and tags. In our experiments, we only consider as features the visual image

content. The dataset is split into a collection of 15,000 training images and 10,000

test images, as defined by the standard challenge “Visual Concept/Topic Recogni-

tion” [Huiskes and Lew, 2008]. Example images are shown in Figure 3.1.

1http://www.flickr.com
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Figure 3.1: Example images from MIRFLICKR dataset [Huiskes and Lew, 2008] with
their associated concepts labels. The images are annotated for 24 potential concepts,
and 14 relevant concepts (marked with (r)), see the text for more details.

All images are manually annotated for 24 concepts, including categories that

describe the presence of specific object (car, bird, dog), categories that are concrete

but less spatially localized (clouds, night, sky) and more abstract categories (indoor,

food, structures, transport).

The annotation process is divided into two main stages. First, people are asked

whether the image is potentially relevant to the concept: to have a positive annotation,

the concept must be at least visible or recognizable in a given image. In a second stage,

the annotation is applied for a subset of 14 concepts by selecting only images in which

the topic is considered to be present with a strong evidence (e.g., object that are large

or clearly visible in the image). Finally, each image is thus annotated for 38 concepts.

We use a “(r)” for concepts to refer to the latter annotation.

Table 3.1 summarizes, for each concept, the number of images in the training and

test sets. The amount of training images varies greatly from concept to concept. For

instance, while the plant life concept has 5,259 training images, the baby(r) concept

contains only 71 training images. Also, MIRFLICKR images display different levels

of difficulty, including reasonable levels of occlusion and viewpoint variation, a higher

degree of intra-class variability, and concepts embedded in complex background clutter.

It is worth noting that the MIRFLICKR collection is a multi-label image classi-

fication dataset, which means multiple concepts may occur in the same image. In the

past, multi-label annotation was rare in Computer Vision challenges, but nowadays it is

becoming more common, since it reflects the real nature of images, that may represent

more than one concept.
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Table 3.1: Number of images for each concept in MIRFLICKR dataset.

Concepts #train #test Concepts #train #test

1: animals 1950 1266 20: male(r) 2194 1453
2: baby 152 107 21: night 1593 1118
3: baby(r) 71 45 22: night(r) 392 277
4: bird 439 303 23: people 6213 4160
5: bird(r) 288 196 24: people(r) 4685 3164
6: car 719 458 25: plant life 5259 3504
7: car(r) 232 148 26: portrait 2333 1598
8: clouds 2250 1450 27: portrait(r) 2270 1559
9: clouds(r) 813 537 28: river 540 354
10: dog 418 266 29: river(r) 88 61
11: dog(r) 359 231 30: sea 806 516
12: female 3682 2502 31: sea(r) 131 83
13: female(r) 2363 1619 32: sky 4731 3181
14: flower 1132 691 33: structures 5964 4028
15: flower(r) 677 400 34: sunset 1303 832
16: food 591 399 35: transport 1736 1159
17: indoor 4978 3335 36: tree 2762 1921
18: lake 479 312 37: tree(r) 396 272
19: male 3656 2425 38: water 1988 1343

The classification performance is evaluated using the standard metric for this

dataset, which is the Mean Average Precision (mAP). Precision-recall graphs can also

be used to report in more detail the performance on the test set.

The baseline MIRFLICKR dataset result [Huiskes et al., 2010] is 37.0% mAP.

The authors employed only global descriptors and the SVM classifier. Moreover,

Guillaumin et al. [2010] reported 53.0% mAP applying many (local and global) des-

criptors. Again, classification is performed with a SVM classifier.

The MIRFLICKR image collection can be downloaded and redistributed without

fees or registration.

3.2 ImageCLEF Evaluation Campaign

The ImageCLEF Evaluation Campaign was introduced in 2003 as part of CLEF (Cross

Language Evaluation Forum). Motivated by the need to support multilingual users

from a global community accessing the ever growing body of visual information, the

main aims of ImageCLEF were: (i) to develop the necessary infrastructure for the

evaluation of visual information systems, (ii) to provide reusable resources for such
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benchmarking purposes, and (iii) to promote the exchange of ideas towards the further

advancement of the field of visual media analysis, indexing, classification, and retrieval.

Since 2011, the Photo Annotation task has been based on various subsets of the

MIRFLICKR-1M collection [Huiskes et al., 2010]. Every year the list of concepts to

detect has been updated in order to cover a wider selection of concept types and to

make the task more challenging. There are three subtasks that allow the use of different

information (i) visual information only; (ii) Flickr user tags; (iii) multi-modal informa-

tion, considering both visual information and Flickr user tags, in addition (optionally)

to EXIF metadata contained in the images.

In this review, and in our experiments (Chapter 5), we consider only the visual-

only subtask. This task aims at the automated annotation of consumer photos

with multiple concepts. Further information can be found in the ImageCLEF book

[Müller et al., 2010], which describes the formation, growth, resources, tasks, and

achievements of ImageCLEF.

3.2.1 ImageCLEF 2011 Photo Annotation Challenge

The ImageCLEF 2011 Photo Annotation task [Nowak et al., 2011] poses the challenge

of an automated annotation of Flickr images with 99 visual concepts. The dataset

consists of 18,000 images, split into 8,000 training images and 10,000 test images. The

image set is annotated with concepts that describe the scene (e.g., indoor, outdoor,

landscape), depicted objects (e.g., car, animal, person), the representation of image

content (e.g., portrait, graffiti, art), events (e.g., travel, work), quality issues (e.g.,

overexposed, underexposed, blurry) or even sentiment concepts (e.g., happy, euphoric,

melancholic, scary). Example images are shown in Figure 3.2.

The relevance assessments for the annotation task was acquired by crowdsourc-

ing, using the Amazon Mechanical Turk (AMT). AMT is an online work marketplace

which distributes mini-jobs, called HITs (Human Intelligence Tasks), among a crowd of

people, the “turkers”. Those turkers can choose the HITs they would like to perform

(in exchange for small amounts of money, usually between 0.10 and 1.00 American

dollars per task) and submit the results to AMT. The proposer of the work collects the

results from AMT and can approve or reject the work of each turker.

The construction of the ground truth considers the majority vote for each image.

However, in some cases, no clear answer is obtained, in particular for the sentiment

concept annotation, which is very subjective. In that case, the annotation for that

kind of concept is discarded for that particular image [Nowak et al., 2011]. The authors

report that this situation occurred in about 14–15% of the images. Figure 3.3 illustrates
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Figure 3.2: Example images from ImageCLEF 2011 Photo Annotation dataset
[Nowak et al., 2011] with their associated concepts labels.

Figure 3.3: Example images from ImageCLEF 2011 Photo Annotation dataset
[Nowak et al., 2011] that have no sentiment information.

some of those problematic images without sentiment concept annotation.

Table 3.2 summarizes, for each concept, the number of images in the training

and test sets. As is often the case on this kind of dataset, the amount of training

images varies greatly from concept to concept. However, and more importantly, we

can notice that the distribution of concepts is not the same between the training and

test sets: some concepts are underrepresented in the training set and overrepresented in

the test set, or vice versa (e.g., male, beach holidays). That divergence is problematic

for learning schemes that assume that the training set distribution of concepts is a

prior about the relative abundance of those concepts “in the world”.

In the ImageCLEF 2011 dataset, there are huge variations in viewpoint, illumi-

nation and occlusions. The cluttered backgrounds, the large intra-class variability and

sometimes small inter-class variability also makes this dataset very challenging.

In order to evaluate the quality of the annotations, three measures are applied:

one for the evaluation per concept and two for the evaluation per photo. The evaluation

per concept is performed with the Mean interpolated Average Precision (mAP). The

evaluation per example is performed with the example-based F-Measure (F-ex) and

the Semantic R-Precision (SR-Precision).
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Table 3.2: Number of images for each concept in ImageCLEF 2011 dataset.

Concepts #train #test Concepts #train #test

1: party life 293 414 51: street 715 624
2: family friends 1109 1525 52: church 81 78
3: beach holidays 154 279 53: bridge 105 98
4: buildings sights 888 1088 54: park garden 621 569
5: snow 127 128 55: rain 37 25
6: city life 1142 1578 56: toy 206 297
7: landscape nature 1362 1661 57: musical instrument 87 72
8: sports 145 241 58: shadow 397 393
9: desert 30 27 59: body part 538 613
10: spring 105 56 60: travel 415 446
11: summer 887 764 61: work 237 249
12: autumn 153 182 62: birthday 43 35
13: winter 208 197 63: visual arts 3346 3058
14: indoor 1894 2228 64: graffiti 124 99
15: outdoor 4173 5032 65: painting 325 319
16: plants 1865 2642 66: artificial 862 906
17: flowers 367 413 67: natural 4594 5944
18: trees 890 1252 68: technical 533 392
19: sky 1977 2692 69: abstract 376 124
20: clouds 1104 1425 70: boring 483 567
21: water 761 1130 71: cute 3910 4932
22: lake 89 134 72: dog 211 238
23: river 130 171 73: cat 61 53
24: sea 222 324 74: bird 183 199
25: mountains 230 382 75: horse 28 34
26: day 4199 5049 76: fish 25 36
27: night 530 661 77: insect 91 88
28: sunny 1155 1545 78: car 268 380
29: sunset sunrise 362 404 79: bicycle 61 126
30: still life 651 839 80: ship 79 118
31: macro 705 1495 81: train 59 78
32: portrait 984 1533 82: airplane 41 50
33: overexposed 91 160 83: skateboard 12 6
34: underexposed 425 444 84: female 1254 1147
35: neutral illumination 7484 9396 85: male 2178 933
36: motion blur 244 332 86: baby 68 90
37: out of focus 150 164 87: child 176 270
38: partly blurred 2366 2676 88: teenager 413 270
39: no blur 5240 6828 89: adult 1461 2006
40: single person 1573 1955 90: old person 144 185
41: small group 723 886 91: happy 1402 1858
42: big group 236 349 92: funny 1012 1543
43: no persons 5468 6810 93: euphoric 280 193
44: animals 739 838 94: active 1242 1216
45: food 264 365 95: scary 443 419
46: vehicle 594 899 96: unpleasant 856 1103
47: aesthetic impression 1399 1771 97: melancholic 1226 1217
48: overall quality 1677 1405 98: inactive 1639 2752
49: fancy 1154 1284 99: calm 2045 2468
50: architecture 1135 955
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Most approaches with reported results on the ImageCLEF 2011 Photo Annotation

dataset employ complex combinations of several low-level features to achieve good

results. The best system during the competition (and the best published result to

date) [Binder et al., 2011] reported 38.8% mAP, employing nonsparse multiple kernel

learning and multi-task learning. They apply SIFT and color channel combinations to

build different extensions of the BoW models. The system of Su and Jurie [2011] uses

many features aggregating them into a global histogram using a BoW approach. In

addition, Fisher Vectors were used as enhancement of the BoW model. They achieved

38.2% mAP. The method of van de Sande and Snoek [2011] reported 36.7% applying

several color SIFT features with Harris-Laplace and dense sampling.

The ImageCLEF 2011 Photo Annotation dataset is not publicly available, but

access to the data can be granted after a license agreement is signed2.

3.2.2 ImageCLEF 2012 Photo Annotation Challenge

The ImageCLEF 2012 Photo Annotation dataset [Thomee and Popescu, 2012] consists

of 25,000 images, split into 15,000 training images and 10,000 test images. In this

edition, the Photo Annotation task continued along the lines of previous years in terms

of concepts. In total, the dataset contains 94 concepts, categorized as natural elements

(e.g., day, snow, fire), environment (e.g., coast, plant, bird), people (e.g., baby, female,

small group), image elements (e.g., in focus, home life, happy), and human elements

(e.g., car, bicycle, air vehicle).

In comparison with the ImageCLEF 2011 Photo Annotation dataset, a few con-

cepts were removed (e.g., beach holidays, neutral illumination, aesthetic impression)

because they were not sufficiently present in the dataset, or it was decided they were

ambiguously defined, based on feedback given by former participants. Furthermore, in

order to provide a more realistic context for the task, several new concepts were added,

inspired by popular queries issued to the Yahoo! image search engine3.

The ground truth for the newly defined concepts, as well as for the concepts

reused from the ImageCLEF 2011 Photo Annotation dataset, was also acquired with

the Amazon Mechanical Turk, a crowdsourcing platform (see the previous section).

However, due to the experience with turkers without genuine interest in performing

well the requested service, Thomee and Popescu [2012] used the intermediary service of

CrowdFlower4 to obtain the relevance judgments. This service automatically performs

the filtering of the workers based on the quality of the work they perform by validating

2http://imageclef.org/2011/Photo
3http://images.yahoo.com
4http://crowdflower.com/
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it against specific examples for which the correct answer is known. Such examples are

commonly referred to as gold and need to be supplied in addition to the job.

Table 3.3 summarizes, for each concept, the number of images in the training and

test sets. The amount of training images in the ImageCLEF 2012 Photo Annotation

dataset still varies considerably from concept to concept. However, this year, the

relative abundance of a concept is roughly the same between the training and the test

sets. Thomee and Popescu [2012] decided to be of paramount importance to assure

that concepts with few images are sufficiently present in both sets and in balance

with each other. Other than that, the challenges in the ImageCLEF 2012 dataset are

similar to the previous collection: variations in viewpoint, illumination and occlusions,

cluttered backgrounds, large intra-class variability and small inter-class variability.

In order to evaluate the quality of the annotations, three measures are applied:

Mean Average Precision (mAP), Geometric Mean Average Precision (GmAP), and F-

Measure (F-ex). The evaluation per concept is performed with mAP and GmAP. The

evaluation per example is performed with F-ex.

The best performance during the competition (and the best published result to

date) was the one obtained by Liu et al. [2012a], who reported 34.8% mAP, applying a

combination of the top 5 features among the 24 visual features for each concept based

on a late fusion scheme. Moreover, they applied BoW models and soft assignment.

The method of Ushiku et al. [2012] also uses numerous descriptors and Fisher Vectors

to achieve 32.4% mAP. The approach of Xioufis et al. [2012] reported 31.8% mAP

employing several descriptors which are used by different visual representations (BoW,

VLAD and VLAT). Furthermore, the authors applied a late fusion scheme.

Like the previous year, the ImageCLEF 2012 Photo Annotation dataset is not

available to the general public, but can be download after a license agreement is signed5.

The results in the ImageCLEF 2012 Photo Annotation task are particularly im-

portant for this dissertation, since we were ranked at the 2nd place out of 13 participants

and 28 submissions, considering only visual-based approaches (see Section 5.4).

3.3 PASCAL VOC Challenge

The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object

category recognition and detection, providing the machine learning community a stan-

dard dataset of images and annotation, in addition to standard evaluation procedures.

Organized annually from 2005 to present, the goal of the PASCAL VOC challenge is

5http://imageclef.org/2012/Photo
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Table 3.3: Number of images for each concept in ImageCLEF 2012 dataset.

Concepts #train #test Concepts #train #test

1: timeofday day 4897 3325 48: quantity two 682 432
2: timeofday night 685 431 49: quantity three 213 127
3: timeofday sunrisesunset 508 348 50: quantity smallgroup 313 239
4: celestial sun 363 224 51: quantity biggroup 383 223
5: celestial moon 101 68 52: age baby 81 81
6: celestial stars 44 25 53: age child 400 256
7: weather clearsky 1105 705 54: age teenager 313 220
8: weather overcastsky 694 433 55: age adult 3536 2306
9: weather cloudysky 1196 812 56: age elderly 225 127
10: weather rainbow 33 18 57: gender male 2484 1660
11: weather lightning 167 125 58: gender female 2619 1721
12: weather fogmist 168 100 59: relation familyfriends 816 563
13: weather snowice 100 91 60: relation coworkers 239 136
14: combustion flames 68 35 61: relation strangers 335 212
15: combustion smoke 71 47 62: quality noblur 9639 6421
16: combustion fireworks 54 18 63: quality partialblur 3549 2293
17: lighting shadow 861 576 64: quality completeblur 100 83
18: lighting reflection 448 273 65: quality motionblur 287 176
19: lighting silhouette 475 314 66: quality artifacts 318 199
20: lighting lenseffect 530 344 67: style pictureinpicture 113 64
21: scape mountainhill 295 218 68: style circularwarp 167 141
22: scape desert 73 36 69: style graycolor 306 219
23: scape forestpark 451 303 70: style overlay 567 371
24: scape coast 766 436 71: view portrait 1533 1069
25: scape rural 361 237 72: view closeupmacro 2340 1589
26: scape city 906 572 73: view indoor 2061 1399
27: scape graffiti 324 184 74: view outdoor 4856 3259
28: water underwater 53 44 75: setting citylife 1676 1128
29: water seaocean 369 197 76: setting partylife 368 256
30: water lake 135 75 77: setting homelife 945 645
31: water riverstream 181 115 78: setting sportsrecreation 506 283
32: water other 399 255 79: setting fooddrink 626 430
33: flora plant 419 262 80: sentiment happy 1146 840
34: flora tree 2129 1343 81: sentiment calm 2119 1441
35: flora flower 719 508 82: sentiment inactive 1262 877
36: flora grass 859 548 83: sentiment melancholic 880 594
37: fauna cat 106 72 84: sentiment unpleasant 623 447
38: fauna dog 361 267 85: sentiment scary 377 278
39: fauna horse 64 40 86: sentiment active 1087 735
40: fauna fish 49 39 87: sentiment euphoric 189 140
41: fauna bird 352 219 88: sentiment funny 765 557
42: fauna insect 137 114 89: transport cycle 220 142
43: fauna spider 16 11 90: transport car 500 321
44: fauna amphibianreptile 40 27 91: transport truckbus 69 44
45: fauna rodent 59 46 92: transport rail 93 61
46: quantity none 10335 6989 93: transport water 187 127
47: quantity one 3084 1990 94: transport air 89 50
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to investigate the performance of recognition methods on a wide spectrum of natural

images.

The PASCAL VOC 2007 dataset [Everingham et al., 2007] consists of annotated

consumer photographs collected from the Flickr photo-sharing website. The goal of

this challenge is to recognize 20 visual object classes in realistic scenes (i.e., not pre-

segmented objects). Those object classes are categorized as person (person), animal

(bird, cat, cow, dog, horse, sheep), vehicle (aeroplane, bicycle, boat, bus, car, motorbike,

train), and indoor objects (bottle, chair, dinning table, potted plant, sofa, tv/monitor).

In total, there are 9,963 images. Some example images are shown in Figure 3.4.

Figure 3.4: Example images from PASCAL Visual Object Classes 2007 dataset
[Everingham et al., 2007] with their associated class labels.

The VOC 2007 challenge contains two main tasks: classification and detection.

In our experiments, we show the results for the classification task. The dataset is split

into three subsets: training (2,501 images), validation (2,510 images) and test (4,952

images). Our experimental results are obtained on ‘trainval’/test sets (see Chapter 5).

In order to evaluate the classification challenge, the image annotation includes

(in addition to class labels) the attribute ‘difficult’ for every object in the target set

of object classes. An object is marked as ‘difficult’ when it is hard to recognize, for

example, when it is very small, or considerably occluded, so it is hard to identify

without substantial use of context. Objects marked as difficult are currently ignored

in the evaluation of the challenge [Everingham et al., 2007]. We, too, have opted to

ignore difficult objects.

Table 3.4 summarizes the number of images (containing at least one object of a
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Table 3.4: Number of images for each class in PASCAL VOC 2007 dataset.

Class #train #val #test Class #train #val #test

1: aeroplane 112 126 204 11: dining table 97 103 190
2: bicycle 116 127 239 12: dog 203 218 418
3: bird 180 150 282 13: horse 139 148 274
4: boat 81 100 172 14: motorbike 120 125 222
5: bottle 139 105 212 15: person 1025 983 2007
6: bus 97 89 174 16: potted plant 133 112 224
7: car 376 337 721 17: sheep 48 48 97
8: cat 163 174 322 18: sofa 111 118 223
9: chair 224 221 417 19: train 127 134 259
10: cow 69 72 127 20: tv/monitor 128 128 229

given class) for each class in the training, validation and test sets. The data has been

split into 50% for training/validation and 50% for test. The distributions of images by

class are approximately equal across the training/validation and test sets.

The PASCAL VOC 2007 dataset is an image classification benchmark, which

contains significant variability in terms of object size, orientation, pose, illumination,

position and occlusion. Moreover, the VOC 2007 annotation procedure was designed to

be consistent, accurate and exhaustive for the classes. The dataset is freely available6.

The classification performance is measured by the precision/recall curve. The

principal quantitative measure used is the Mean Average Precision (mAP).

The best system during the competition [Everingham et al., 2007] reported 59.4%

mAP using multiple feature channels and non-linear SVMs. van Gemert et al. [2010]

reported 60.5% mAP employing many channels and and soft assignment. Yang et al.

[2009a] also use many feature channels and multiple kernel learning to achieve 62.2%

mAP. Using only SIFT descriptors, Zhou et al. [2010] reported 64.0% mAP employing

the Super Vector (SV) coding. However, Chatfield et al. [2011] showed that the best

reproducible result for SV coding is 58.2%. Moreover, Chatfield et al. achieved 61.7%

for Fisher Vector representation, using SIFT descriptors extremely dense. The best

published result for the PASCAL VOC 2007 dataset is 68.3% reported by Znaidia et al.

[2012], but employing as features the image tags. Without access to that information,

their Bag-of-Words baseline drops to 52.1%.

6http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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3.4 15-Scenes Dataset

The 15-Scenes dataset [Lazebnik et al., 2006] contains 4,485 images of 15 natural scene

categories, in which 8 categories (highway, inside city, tall building, street, forest, coast,

mountain, open country) are provided by Oliva and Torralba [2001], 5 categories (su-

burb, bedroom, kitchen, living room, office) are provided by Fei-Fei et al. [2004] and

2 categories (industrial, store) are provided by Lazebnik et al. [2006]. Each category

has 210 to 410 images, and the average image size is 300 × 250 pixels. The major

sources of images in the dataset include the COREL collection, personal photographs,

and Google image search. Example images are shown in Figure 3.5.

Figure 3.5: Example images from 15-Scenes dataset [Lazebnik et al., 2006] with their
associated class labels.

Table 3.5 summarizes for each category the number of images. The standard

benchmarking protocol consists in randomly selecting 100 training images per category

and using the remaining ones for the test. The classification performance is measured

by the average recognition rates over N random training/test splits. The final result is

reported as the mean and standard deviation of the results from the individual splits.

Usually, a confusion table is used to illustrate the results.

The 15-Scenes is a single-label image classification dataset, unlike the pre-

vious multi-label datasets (MIRFLICKR [Huiskes and Lew, 2008], ImageCLEF

Photo Annotation [Nowak et al., 2011; Thomee and Popescu, 2012] and VOC 2007

[Everingham et al., 2007]). Also, although the 15-Scenes dataset contains less classes

and intra-class variation is smaller, this dataset is relatively widely used within the

community for evaluating image classification. It is publicly available7.

The authors of the 15-Scenes dataset [Lazebnik et al., 2006] reported 81.4% per-

formance accuracy employing the spatial pyramid approach. Recently, Krapac et al.

7http://www-cvr.ai.uiuc.edu/ponce grp/data/
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Table 3.5: Number of images for each class in 15-Scenes dataset.

Class #train #test Class #train #test

1: bedroom 100 116 9: inside city 100 208
2: suburb 100 141 10: mountain 100 274
3: industrial 100 211 11: open country 100 310
4: kitchen 100 110 12: street 100 192
5: living room 100 189 13: tall building 100 256
6: coast 100 260 14: office 100 115
7: forest 100 228 15: store 100 215
8: highway 100 160

[2011] achieved 88.2% by using the Spatial Fisher Vector representation. The best

result published is 89.8% [Gao et al., 2010] for a Laplacian sparse coding method.

3.5 Oxford Flowers Dataset

The Oxford Flowers dataset [Nilsback and Zisserman, 2006] contains 1,360 images of

17 different flower species (80 images per category). The images were acquired by

searching the web and taking pictures. The dataset is separated into three different

folds, each with its own training (17 × 40 images), validation (17 × 20 images) and

test sets (17 × 20 images). Example images are shown in Figure 3.6.

Figure 3.6: Example images from Oxford Flowers dataset [Nilsback and Zisserman,
2006] with their associated class labels.

Classifying flowers is a difficult task even for humans. In the Oxford Flowers

images, there are large variations in viewpoint and scale, illumination, partial occlu-

sions, cluttered backgrounds. The large intra-class variability and the sometimes small
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inter-class variability makes this dataset very challenging. The flower categories are

deliberately chosen to have some ambiguity on each aspect. For example, some classes

cannot be distinguished on color alone (e.g., dandelion and colt’s foot), others cannot

be distinguished on shape alone (e.g., sunflower and daisy).

The accuracy rate is reported by the average scores of the three folds. The final

result is reported as the mean and standard deviation of the three folds.

The authors of the Oxford Flowers [Nilsback and Zisserman, 2006] have employed

a BoW scheme (with 800 codewords), using SIFT descriptors and k-Nearest Neighbor

classifier. They have reported 71.8% performance accuracy. Lechervy et al. [2012]

has proposed a linear combination of base kernels using the boosting paradigm to

achieve 88.3%. The best published result, as far as we know, is 95.2%, reported by

Koniusz and Mikolajczyk [2011]. They have applied soft-BoW and sparse coding-based

signatures, combined with color SIFT at kernel level. Also, they have used a kernel

discriminant analysis (KDA) classifier. The dataset is freely available8.

3.6 Conclusion

Datasets and challenge are an integral part of contemporary image recognition research.

They have been one important factor in the considerable progress in the field, not

just as source of large amounts of training data, but also as means of measuring and

comparing performance of competing algorithms. Such databases allow recognition

systems exercising the ability to handle intra-class variability, varying size and pose,

partial occlusion, contextual cues, cluttered backgrounds.

Table 3.6: Summary of all datasets used in this dissertation.

Dataset #images #class #train #test
classification publicly

measure available?

MIRFLICKR 25,000 38 15,000 10,000 mAP yes

ImgCLEF 2011 18,000 99 8,000 10,000 mAP no

ImgCLEF 2012 25,000 94 15,000 10,000 mAP no

VOC 2007 9,963 20 5,011 4,952 mAP yes

15-Scenes 4,485 15 1,500 2,985 Accuracy yes

Oxford Flowers 1,360 17 680 340 Accuracy yes

8http://www.robots.ox.ac.uk/∼vgg/data/flowers/
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The 6 different datasets used in this dissertation offer different challenges. The

15-Scenes is easier than others. The Oxford Flowers is more challenging. The MIR-

FLICKR and PASCAL VOC 2007 are a very challenging datasets. Finally, the Image-

CLEF Photo Annotation datasets offers a hard test. To summarize, statistics of all

datasets mentioned are listed in Table 3.6.





Chapter 4

BossaNova Representation

The last decade has witnessed two important breakthroughs in the field of image clas-

sification: (i) the development of very discriminant low-level local descriptors (such as

SIFT descriptors [Lowe, 2004]); and (ii) the emergence of mid-level aggregate repre-

sentations, based on the quantization of those features, in the so-called Bag-of-Words

(BoW) model [Sivic and Zisserman, 2003]. Those advances in feature extraction and

representation have closely followed a previous turning point on statistical learning, rep-

resented by the maturity of kernel methods and support vector machines [Sebe et al.,

2005; Cord and Cunningham, 2008].

BoW models can be obtained by a succession of two steps [Boureau et al., 2010a]:

coding and pooling. Traditionally, the coding step simply associates the image local

descriptors to the closest element in the codebook, and the pooling takes the average

of those codes over the entire image. Since the pooling operation compacts all the

information contained in the individually encoded local descriptors into a single feature

vector, that step is critical for BoW-based representations.

In this chapter, we introduce our BossaNova representation, which is based on

a new pooling strategy. Therefore, we open this chapter by reintroducing the cod-

ing/pooling formalism, using a novel matrix formalism (Section 4.1). Then, we ex-

pose how our early ideas of extending BoW pooling came to light (Section 4.2). We

then introduce the complete BossaNova pooling formalism (Section 4.3). Next, we

detail the computational steps of our representation: the semi-soft coding scheme

(Section 4.4) and the normalization strategy (Section 4.5). Then, we describe the

proposed BossaNova algorithm in pseudo-code, followed by an analysis of its computa-

tional complexity (Section 4.6). After, we analyze how BossaNova and Fisher Vector

representations can be expected to complement each other well (Section 4.7). Finally,

we present a generative formulation of our BossaNova strategy (Section 4.8).

63
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4.1 Coding & Pooling Matrix Representation

As discussed in Section 2.2, the classical BoW model can be interpreted as an oc-

currence histogram of visual words, where the visual codebook has been trained from

a set of local descriptors. The mapping of the visual codebook into image descrip-

tors can be decomposed into a coding step followed by a pooling step, as formalized

by [Boureau et al., 2010a]. In the original BoW model [Sivic and Zisserman, 2003], a

vector quantization stage is applied for coding, and the codes are aggregated with an

average-pooling strategy. In this section, we rediscuss those steps, using a novel matrix

formalism.

Let X be an unordered set of local descriptors extracted from an image. X =

{xj}, j ∈ {1, . . . , N}, where xj ∈ RD is a local descriptor vector and N is the number

of local descriptors in the image. In the BoW model, let C be a visual codebook

obtained by an unsupervised learning algorithm (e.g., k-means clustering algorithm).

C = {cm}, m ∈ {1, . . . ,M}, where cm ∈ RD is a codeword and M is the number of

visual codewords. z ∈ RM is the final vectorial representation of the image used for

classification.

Therefore, in order to represent the coding and pooling functions, we introduce

the matrix representation H of the BoW model, with columns X and rows C. As

illustrated in Figure 4.1a, the coding function f for a given descriptor xj corresponds

to the jst column, and may be interpreted as an activation function for the codebook,

activating each of the codewords according to the local descriptor. The pooling function

g for a given visual codeword cm corresponds to the mst row, and may be understood

as the aggregation of the activations of that codeword.

In the classical BoW model, the coding function activates only the cm codeword

closest to the local descriptor xj (i.e, αm,j = 1), assigning zero weight to all others. The

pooling function computes the average value of each dimension of αj pertaining to a

codeword cm, compacting all information into a single scalar zm (i.e., zm =
∑N

j=1 αm,j).

As illustrated in Figure 4.1b, the vector z representing the whole image is given

by z = [z1, z2, · · · , zM ]T.

4.2 Early Ideas

Our goal in this dissertation is to address the problem of classifying images based

on their visual content. Nowadays, most state-of-the-art image classification systems

are based on the BoW representation. Therefore, we have explored the literature of
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(a) Matrix representation of the BoW model. (b) Final representation.

Figure 4.1: (a) Matrix representationH of the BoWmodel illustrating coding and pool-
ing functions, with columns X related to the low-level local descriptors, and rows C
related to the visual codewords. The coding function f for a given descriptor xj cor-
responds to column j, and may be interpreted as how much that descriptor activates
each visual codeword. The pooling function g for a given visual codeword cm corre-
sponds to a summarization of row m and may be interpreted as the aggregation of
the activations of that codeword. (b) The final representation is a vector z, containing
those aggregated activations, for each visual codeword.

BoW model to be thoroughly familiar with, to identify possible shortcomings and to

determine the variety of BoW-based approaches (see Section 2.2).

As we have observed in the literature, recent research has been mostly focused

on coding to improve the BoW representation (e.g., FV [Perronnin et al., 2010c],

VLAD [Jégou et al., 2010], SVC [Zhou et al., 2010], SFV [Krapac et al., 2011], VLAT

[Picard and Gosselin, 2011]). The focus on coding functions that preserve more infor-

mation has been resulting the steady inflation of vector sizes.

By contrast, we have pointed out the weakness in the standard pooling operation

used in the BoW signature generation: it compacts all information pertaining to a

codeword into a single scalar. In general terms, the objective of pooling is to summarize

the information contained in the individually encoded descriptors into a single feature

vector, preserving important information while discarding irrelevant details.

From this perspective, instead of averaging all the values from one row in the H

matrix, we propose to describe their distribution. The representation can be seen as a

histogram of distances between the descriptors found in the image and each codebook

element. BOSSA (Bag Of Statistical Sampling Analysis) is, therefore, an extension to

the BoW approach, resulting in a new representation that better preserves the informa-

tion from the encoded local descriptors, by using a density-based pooling description.
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BOSSA is an early work that presents a proof-of-concept of our strategy (the

achieved representation, which incorporates all enhancements, was named BossaNova

and is presented in the next sections). BOSSA was first evaluated in basic experiments

using the Oxford Flowers dataset (Section 3.5), which we have published in [Avila et al.,

2011], and which we reproduce next.

We have compared the performance of the BOSSA representation with BoW. We

have implemented a simple BOSSA strategy with an hard coding from the H matrix

and few bins to quantify the distance-to-codeword distribution. Table 4.1 reports the

classification performances for BOSSA and BoW (using their best tested configuration

parameters1).

Table 4.1: BOSSA and BoW classification performances on the Oxford Flowers dataset
[Nilsback and Zisserman, 2006]. The table shows the means and standard deviations over
three accuracy measures.

Accuracy (%)

BOSSA [Avila et al., 2011] 64 ± 2

BoW [Sivic and Zisserman, 2003] 59 ± 1

This basic experiment shows that BOSSA outperforms BoW with 8.5% relative

improvement. That highlights the relevance of such a pooling strategy. It is also

important to point out that, in order to better isolate the improvement due to our

pooling, we do not have considered in those experiments extended representations of

the BoW, like the spatial pyramid of Lazebnik et al. [2006] or others.

To provide a more comprehensive analysis of our representation, we need to fur-

ther investigate all its facets. Typically, we need to analyze the range of distances used

to compute each codeword histogram, and the ways to encode this histogram (number

of bins). We also need to explore normalization aspects. In the BOSSA representation,

the final representation merges all the local histograms computed per codeword. We

already suspected that the global normalization would not be sufficient in order to ex-

1As a low-level local descriptor, we employed HueSIFT [van de Sande et al., 2010], a SIFT variant
that includes color information. The 165-dimensional HueSIFT descriptors are extracted from 21 ×
21 pixel patches on regular grids (every 6 pixels). As a result, roughly 8,500 descriptors are extracted
from each image of Oxford Flowers. The codebooks are learnt by k-means clustering algorithm with
Euclidean distance over one million randomly sampled descriptors. For classification, we have applied
the SVM classifier, specifically a χ2 kernel and the one-versus-all approach for multi-class approach.
Kernel matrices are computed as exp(−γd(x, x′)) with d being the distance and γ being fixed to the
inverse of the pairwise distances mean.
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ploit the local structure of such feature space, so we wanted to explore more powerful

normalization strategies.

In short, we proposed the BOSSA representation to introduce our density

function-based pooling strategy in order to keep more information than the BoW

during the pooling. Preliminary results have shown the significance of such a pool-

ing. We propose now to explore and optimize the whole image representation scheme:

the local feature extraction, the extended coding techniques and the BOSSA pooling.

The resulting scheme, called BossaNova, which also integrates parametrization and

normalization, is presented next.

4.3 BossaNova Pooling Formalism

Our approach follows the BoW formalism, but proposes a new image representation

which keeps more information than BoW during the pooling step. Thus, our pooling

estimates the distribution of the descriptors around each codeword. We choose a non-

parametric, density-based estimation of the descriptors distribution, by computing a

histogram of distances between the descriptors found in the image and each codeword.

The proposed pooling function g estimates the probability density function of

αm: g(αm) = pdf(αm), by computing the following histogram of distances zm,b:

g : RN −→ RB,

αm −→ g(αm) = zm,

zm,b = card
(

xj | αm,j ∈
[ b

B
;
b+ 1

B

])

, (4.1)

b

B
≥ αmin

m and
b+ 1

B
≤ αmax

m .

where B denotes the number of bins of each histogram zm, and [αmin
m ;αmax

m ] limits the

range of distances for the descriptors considered in the histogram computation. We

have observed that, due to the “curse of dimensionality” [Bellman, 1961], distances

between descriptors seldom fall below a certain range, making some bins of the his-

tograms always zero (see Figure 4.2 for illustration). The double range makes better

use of the representation space.

The function g represents the discrete (over B bins) density distribution of the

distances αm,j between the codeword cm and the local descriptors of an image. That

is illustrated in Figure 4.3. For each center cm, we obtain a local histogram zm. The

colors (green, yellow and blue) indicate the discretized distances from the center cm
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Figure 4.2: Number of SIFT descriptors assigned to each codeword at each bin in the
Oxford Flowers dataset [Nilsback and Zisserman, 2006]. The graphical representation
is obtained for 512 codewords and 6 bins ([αmin

m , αmax
m ] = [0 · σm, 2 · σm]

a for each
visual codeword cm); it is coded according to a color scale, which ranges from blue (the
number of SIFT descriptors is zero) to red (many numbers of SIFT descriptors).

aσm is the standard deviation of each cluster cm obtained by k-means clustering algorithm.

to the local descriptors shown by the black dots. For each colored bin zm,b, the height

of the histogram is equal to the number of local descriptors xj, whose discretized

distance to codeword cm fall into the bth bin. In Figure 4.3, B = 3. We can note that if

B = 1, the histogram zm reduces to a single scalar value counting the number of feature

vectors xj falling into center cm. Therefore, the proposed histogram representation can

be considered as a generalization of BoW pooling step.

Note that αm,j, introduced in Figure 4.1, traditionally quantifies a similarity

between the descriptor xj and the codeword cm, while in our pooling formalism, it

represents a dissimilarity (indeed, a distance). That choice makes illustrations clearer

and more intuitive, and no generality is lost, since estimating a similarity probability

density function for αm,j from our model is straightforward.

After computing a local histogram zm for all the cm centers, we concatenate them

to form the whole image representation. In addition, since the occurrence rate of each

codeword cm in the image is lost, we incorporate in our image representation z an

additional scalar value tm for each codeword, counting the number of local descriptors
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Figure 4.3: Illustration of a local histogram zm. For each center cm, we obtain a local
histogram zm. The colors indicate the discretized distances from the center cm to the
local descriptors shown by the black dots. For each colored bin zm,b, the height of the
histogram is equal to the number of local descriptors xj, whose discretized distance to
codeword cm fall into the bth bin.

xj close to that codeword. That value corresponds to a classical BoW term, accounting

for a raw measure of the presence of the codeword cm in the image. Also, we apply a

weight factor s to each tm value2. Thus, our image representation z can be written as:

z = [[zm,b] , stm]
T , (m, b) ∈ {1, . . . ,M} × {1, . . . , B} , (4.2)

where z is a vector of size M × (B +1) and M is the codebook size. The Equation 4.2

lets us interpret BossaNova as an improvement over the BoW representation, through

the use of an additional term coming from the more informative pooling function.

Recently, that idea of enriching BoW representations with extra knowledge from

the set of local descriptors has been explored on several representations. It can be

found, for example, on Fisher Vector [Perronnin et al., 2010c] and Super-Vector Cod-

ing [Zhou et al., 2010]. Those works, however, opt by parametric models that lead to

very high-dimensional image representations. By using a simple histogram of distances

to capture the relevant information, our approach remains very flexible and keeps the

representation compact.

Our BossaNova representation is defined by the three followings parameters: the

number of codewords M , the number of bins B in each histogram zm, and the range of

distances [αmin
m , αmax

m ] – the minimum distance αmin
m and the maximum distance αmax

m

in the RD descriptor space that define the bounds of the histogram. In Section 5.2, we

2The factor s may be manually set or learned via cross-validation on a training/validation sub-set.
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evaluate the key aspects of the parametric space of our representation.

In Figure 4.4, we illustrate the overview of BossaNova image classification

pipeline. For low-level visual feature extraction, we extract SIFT descriptors [Lowe,

2004] on a dense spatial grid at multiple scales. As we have discussed in Section 2.1.2,

that setup for low-level visual feature extraction proves to give very good performances

in standard image datasets (e.g., see Chatfield et al. [2011]). Next, the dimensionality

of the SIFT descriptors is reduced by using PCA. It was observed [Jégou et al., 2012]

that the performance of BoW (and consequently, BoW-based approaches) is improved

by PCA, while, by working with the reduced representation, computational costs may

also be significantly reduced.

After, our BossaNova mid-level feature vector is obtained by a succession of four

steps: coding, pooling, normalization and weighting. In the coding step, instead of

using hard-assignment (which introduces coding errors induced by the descriptor space

quantization), we propose applying a localized soft-assignment coding (see Section 4.4),

employing the soft assignment only to the n closest codewords in a visual codebook

(obtained by clustering a large set of descriptors with k-means). That coding scheme

achieves comparable or even better performance than existing sparse or local coding

schemes [Liu et al., 2011a]. In the pooling step, we apply our density function-based

pooling strategy, which computes a histogram of distances between the descriptors

found in the image and each codeword. As we have shown in Section 4.2, the prelim-

inary results demonstrated the significance of our pooling. Additionally, we compute

the occurrence rate of each codeword in the image (i.e., BoW term), accounting for

a raw measure of the presence of each codeword in the image. In the normalization

step, we propose applying a two step normalization (see Section 4.5). We employ a

power-law normalization, which consistently improves the classification performance

[Perronnin et al., 2010c], followed by ℓ2-normalization, that has widely been used to

normalize the BoW-based feature vectors (as we have observed in Section 2.3.2). Those

normalizations are applied separately to the local histograms and BoW histogram. Fi-

nally, in the weighting step, the local histograms and the BoW terms are concatenated

by applying a weight factor on the latter in order to set the relevance of each term in

BossaNova mid-level feature vector.

Once we obtained the BossaNova vectors, SVM classifiers are applied by us-

ing a nonlinear Gauss-ℓ2 kernel, since linear SVMs have been repeatedly reported to

be inferior to nonlinear SVMs on BoW-based representation [Perronnin et al., 2010b;

Vedaldi and Zisserman, 2012].
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Figure 4.4: Overview of BossaNova image classification pipeline. (a) Extraction of the {xj} low-level local descriptors (SIFT)
from an image. (b) Dimensionality reduction by applying Principal Component Analysis (PCA). (c) At the coding step, the f
coding function activates n closest codewords to the descriptor, which corresponds to a localized soft coding over the C visual
codebook. M is the number of codewords. (d) Our pooling strategy: the g pooling function computes histograms of distances
zm for each cm codeword. αm,j represents a dissimilarity (i.e., a distance) between cm and xj . B is the number of bins. tm
corresponds to a classical BoW term, accounting for a raw measure of the presence of the codeword cm in the image. (e) Two-step
normalization: power normalization followed by ℓ2-normalization. (f) Weighting of the histogram (zm) and counting components
(tm), by applying a weight factor s on the latter. The vector z, the BossaNova image representation, can be represented as
[[zm,b] , stm]

T, where m ∈M and b ∈ B. (g) Classification algorithms (such as SVM classifier) are then trained on the BossaNova
vectors obtained.
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4.4 Localized Soft-Assignment Coding

In BossaNova coding, we propose a soft-assignment strategy, for both the local his-

tograms and the raw counts in the feature vector. Soft assignment is chosen because

it has been shown to considerably enhance the results over hard-assignment, without

incurring the computational costs of sparse coding [Yang et al., 2009b; Boureau et al.,

2010a]. In addition, a recent evaluation [Liu et al., 2011a] reveals that well-designed

soft coding can perform as well or even better than sparse coding.

Soft-assignment coding attenuates the effect of coding errors induced by the quan-

tization of the descriptor space. Different soft coding strategies have been presented

and evaluated by van Gemert et al. [2010], the most successful approach being the one

they call “codeword uncertainty”. Other authors [Wang et al., 2010; Liu et al., 2011a;

Boureau et al., 2011] point out the importance of locality in the coding, which leads

us to a localized “semi-soft” coding scheme.

Thus, like [Liu et al., 2011a], we consider only the K-nearest codewords in coding

a local descriptor, and we perform for those neighbors a “codeword uncertainty” soft as-

signment. Let us consider a given local descriptors xj , and its K closest codewords cm.

The soft-assignment αm,j to the codeword cm is computed as follows:

αm,j =
exp−βmd2(xj ,cm)

∑K
m′=1 exp

−βmd2(xj ,cm′ )
, (4.3)

where d2(xj, cm) is the (Euclidean) distance between cm and xj . The parameter βm

regulates the softness of the soft-assignment (the bigger it is, the hardest the assign-

ment). The main difference between our approach and the one of Liu et al. [2011a]

is that we allow βm to vary for each codeword, while they use a global β parameter,

determined by cross-validation. Since our codewords cm correspond to cluster centers

obtained by a k-means algorithm, we take advantage of the standard deviation σm of

each cluster cm to setup βm = σ−2
m .

4.5 Normalization Strategy

In BossaNova normalization, we propose a two-step signature normalization. The first

step in that normalization is motivated by the following observation: as the number

of codewords increases, the local histogram becomes sparser. That is also the case

for most BoW-like representations: Perronnin et al. [2010c] have also observed that

effect, which is indeed a direct consequence of the ratio between the number of local
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descriptors and the mid-level representation vector size. They observe that similarities

become less reliable when the vector signatures become too sparse, proposing a power-

law normalization to alleviate that drawback. Therefore, we choose to incorporate that

normalization into the BossaNova representation.

Formally, the power normalization consists of applying the following operator in

each histogram bin zm,b:

f(zm,b) = sign(zm,b)|zm,b|δ, 0 < δ ≤ 1. (4.4)

In our experiments, we consider δ = 0.5, which has shown in preliminary experi-

ments to provide better performance.

The second step is an ℓ2-normalization applied to the final vector. We apply the

power-law normalization first and then the ℓ2-normalization.

4.6 Computational Complexity

In Algorithm 1, we formally describe the BossaNova algorithm. In this section, we

analyze our algorithm in terms of computational complexity.

Let X and C be the input for the algorithm. X = {xj}, j ∈ {1, . . . , N} is an

unordered set of local descriptors extracted from an image, where xj ∈ RD is a local

descriptor vector and N is the number of local descriptors in the image. C = {cm} is
a codebook, where cm ∈ RD, m ∈ {1, . . . ,M} and M is the number of codewords.

The algorithm is composed of three consecutive steps: (i) the localized soft coding

and pooling scheme (lines 1:12), (ii) the two-step normalization (lines 13:16), and

(iii) the weighting scheme (line 17). We analyze the algorithm for each step.

Step (i): The loop of lines 1:12 is executed N times. The loop in line 2 is executed

M times. The loop of lines 3:11 is executed k times (the k parameter refers to

k nearest codewords), and it has an (implicit) inner loop in line 5 that executes

k times. Then, the outer loop of line 1 is executed O(N ·M · k) times, where

k ≪M < N .

Step (ii): The loop of lines 13:15 is executed O(M · B) times. The instruction in

line 16 is also executed O(M · B) times, where B ≪M .

Step (iii): The instruction in line 17 is executed O(M) times, because it involves M

multiplication operations (s · tm).
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The running time of BossaNova algorithm is O(N ·M · k) + O(M ·B) + O(M).

Considering the summation rule to find a total running time for the entire algorithm,

we can conclude that the running time of BossaNova algorithm is O(N ·M · k).

Algorithm 1 BossaNova algorithm in pseudo-code.

Input: X = {xj}, C = {cm}.
Output: BossaNova representation z.

1: for all xj do
2: ∀cm compute d2(xj , cm) = ‖xj − cm‖2
3: for i← 0, k do
4: Let cm be the i nearest codeword to xj

5: Compute αm,j with Equation 4.3
6: if d2(xj, cm) ∈ [αmin

m , αmax
m ] then

7: b← ⌊B · (d2(xj, cm)− αmin
m )/(αmax

m − αmin
m )⌋

8: zm,b ← zm,b + αm,j {Computation of the local histogram zm}
9: end if
10: tm ← tm + αm,j {Computation of the BoW term tm}
11: end for
12: end for
13: for all zm,b, tm do
14: zm,b ← √zm,b, tm ←

√
tm {Power Normalization}

15: end for
16: z ← z/‖z‖2, t← t/‖t‖2 {ℓ2-normalization}
17: z← [[zm,b] , stm]

T {Weighting zm and tm}
18: return z

4.7 BossaNova & Fisher Vector: Pooling

Complementarity

Although alternative pooling strategies have recently been explored (e.g., max-

pooling [Yang et al., 2009b]), average-pooling remains the most commonly employed

scheme for aggregating local descriptors. As pointed out by Boureau et al. [2011],

incorporating locality constraints during coding or pooling is mandatory for extract-

ing a meaningful image representation when using average-pooling. That is espe-

cially the case for state-of-the-art local descriptors such as SIFT [Lowe, 2004] or

HOG [Dalal and Triggs, 2005] that cannot be averaged without considerably loosing

information. For example, if we do not consider any coding step (i.e., M = D, f = ID

in Figure 4.1), aggregating SIFT or HOG descriptors with average-pooling would pro-
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duce a global histogram of gradient orientation for the image. Thus, if care is not

taken, the pooling step makes the representation uninformative for classification.

In aggregated methods, such as VLAD [Jégou et al., 2010], Fisher Vec-

tor [Perronnin et al., 2010c] or Super-Vector Coding [Zhou et al., 2010], the locality

constraints are mainly incorporated during the pooling step. In that class of methods,

since the coding step is much more accurate (for each codeword, a vector is stored

instead of a simple scalar value with standard BoW coding schemes), the authors often

claim that they can afford to use a codebook of limited size (e.g., M ∼ 100) and get

very good performances. However, reducing the codebook size intrinsically increases

the hypervolume of each codeword in the descriptor space. That naturally decreases

the range of the locality constraints that can be incorporated during pooling: all local

descriptors falling into a (now larger) codeword are averaged together.

Therefore, we argue that average-pooling used in aggregate methods may lack

locality, as soon as the distribution of local descriptors becomes multi-modal inside a

codeword. For example, Fisher Vectors model the distribution of local descriptors in

each codeword with a single Gaussian. When that Gaussian assumption does not hold,

the pooled representation may be unrepresentative of the local descriptor statistics.

This is illustrated in Figure 4.5.

a) Aggregate methods b) BossaNova

Figure 4.5: Aggregated methods, e.g. Fisher Vector [Perronnin et al., 2010c], may
lack locality during pooling for small codebooks, whereas BossaNova does not. In
counterpart, aggregated methods are more accurate during the coding steps, making
the two representation complementary. See discussion in Section 4.7.

Figure 4.5a shows an illustration of a cluster around codeword cm with local

descriptors xj having two different modes (i.e., sub-clusters). When averaging the

codes during pooling, we get for cm a pooled vector
∑

j cm − xj that is far away

from any local descriptors xj. In contrast to that, BossaNova representation uses
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additional locality constraints during the pooling, since only the feature vectors xj

that are close to the codewords cm are pooled together, as shown in Figure 4.5b. The

pooled representation is thus able to capture the statistics of the local descriptors.

On the other hand, when the Gaussian assumption is fulfilled, aggregated me-

thods provide powerful signatures thanks to the improved accuracy of the coding step.

The two mid-level representations are thus complementary, and we can expect impro-

ving performances by combining them. In a supervised learning task, the classifier is

supposed to select the most relevant pooling strategy for each cluster, in a discrimina-

tive manner.

We propose combining those two mid-level representations by using a kernel com-

bination or by applying a late fusing strategy. The former can take advantage of choo-

sing the appropriate kernel functions according to the mid-level representation, while

the latter allows the use of a specific method of classification for each mid-level re-

presentation. For the kernel combination, we first compute the individual kernels: a

linear kernel for Fisher Vector and a nonlinear Gauss-ℓ2 kernel for BossaNova. Then,

we apply a linear combination of those kernels as follows:

K = ϕ ·KBN + (1− ϕ) ·KFV . (4.5)

The weighting coefficient ϕ represents the relative importance given to the two

mid-level representations. It can be fixed heuristically, or learned by cross-validation.

Our late fusion strategy is done by a linear combination (as the kernel fusion) of

classification scores of the two mid-level representations.

As shown in the experiments (Chapter 5), we report that combining BossaNova

with Fisher Vector indeed boosts the classification performances.

4.8 BossaNova as a Fisher Kernel Formalism

In order to further comment on the link with Fisher-based approaches, we present a

generative formulation of our strategy. Indeed, we propose to derive our strategy as a

Fisher Kernel on a generative model, called the (Fisher) BossaNova.

Let us consider the underlying distribution of the local features x as a mixture of

several (basic) distribution functions pk(x):

p(x|θ) = pθ(x) =

K
∑

k=1

wkpk(x), (4.6)
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where M = {pθ(x) : θ ∈ Θ ⊆ R
N} is a parameterized function set, with

∑K
k=1wk = 1.

For instance, if pk(x) are Gaussian functions, we recognize the classical Gaussian Mix-

ture Model (GMM).

When considering a probability function pk(x) constant on a limited support of

the function domain, the model is a multinomial law on the weights. If the parameters

of this multinomial are fitted from the data used to learn the k-means quantizer, and

are then simply given by the fraction of the local features assigned to each visual word,

one can recognize the basic BoW strategy. The corresponding graphical representation

is given in Figure 4.6 following notations of Krapac [2011].

Figure 4.6: Graphical representation of the BoW model.

In BossaNova, we are considering not a constant but a slightly more complex den-

sity function for pk(x): a mixture of B constant non overlapping radial-based functions

pb(x|k) between αmin
k and αmax

k to each visual word ck. We have:

pk(x) =
B
∑

b=1

w(b,k)pb(x|k), (4.7)

where pb(x|k) may be expressed with ∆k =
1
B
(αmax

k −αmin
k ) and the indicator function

1I as:

pb(x|k) = 1Iαmin
k

+ (b−1)∆k ≤ ||x−ck|| ≤ αmin
k

+ b∆k
.

Let the normalization term to guarantee probabilities be contained in the weights

w(b,k). Note that a straightforward extension of our strategy (not explored in this

dissertation) comes from choosing overlapping supports. pk(x) acts as sum of ring

functions in the feature space. Because our function is only dependent of the distance

of a point to the visual word, it is no more a quantification problem of the feature

space, at least in its classical formulation. Finally, by combining Equations 4.6 and
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4.7, the generative model is:

p(x|θ) = pθ(x) =

K
∑

k=1

wk

(

B
∑

b=1

w(b,k)pb(x|k)
)

. (4.8)

The resulting graphical models are given in Figure 4.7.

Figure 4.7: Graphical representation of our generative BossaNova model (left), and
with Spatial Pyramid (right).

This kind of models pθ(x) may be trained in different ways.

Jaakkola and Haussler [1998] define a very poor model for DNA splice site clas-

sification problem that assigns the same probability to all examples, while Holub et al.

[2005] create underlying generative models from categories on Caltech101 dataset.

Alternatively, a fully unsupervised strategy using all images without any class label

information may be used to learn the model parameters θ by maximizing the likelihood

over the whole dataset of local descriptors. Perronnin and Dance [2007] have shown

that there is no significant differences with supervised approaches.

Let θ0 be the learnt model. To derive a kernel from our generative model, many

marginalization kernels may be used [Tsuda et al., 2002]. Following the Fisher kernel

strategy introduced in Chapter 2, the likelihood Lθ(X) for one image noted X =

{xt, t = 1 . . . T} (supposing the points generated independently) is given by Lθ(X) =
∏T

t=1 pθ(xt). The gradient with respect to the parameters θ is:

g(θ,X) =

(

∂
1

T
logLθ(X)/∂θi

)N

i=1

.

The Fisher score of X with respect to the learnt model is g(θ0, X).
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To compute g, we parameterize the multinomial laws using softmax:

wk = exp(αk)/
∑

j

exp(αj),

and

w(b,k) = exp(β(b,k))/
∑

j

exp(β(j,k)).

We note γi(xt) = pi(xt)wi/pθ(xt) the occupancy probability, which represents

the probability that any observation xt has been generated by i-th mixture term, and

γ(b,k)(xt) the probability that xt has been generated by the b-th ring related to the k-th

visual word in the image.

The resulting scores are given below (a detailed derivation is given in Ap-

pendix A):

g(αk, X) =
1

T

T
∑

t=1

γk(xt)− wk, (4.9)

g(β(b,k), X) =
1

T

T
∑

t=1

(

γ(b,k)(xt)− w(b,k)

)

γk(xt). (4.10)

The Fisher kernel is the dot product κ(X,Z) = g(θ0, X)′I−1
M g(θ0, Z) weighted by

the inverse of the Fisher information matrix I−1
M with respect to the setting θ0, but other

kernels may be considered: often the simple dot product κ(X,Z) = g(θ0, X)′g(θ0, Z),

called the “practical” Fisher kernel is employed [Shawe-Taylor and Cristianini, 2004].

When using a Gauss-ℓ2 kernel in the Fisher score space, we have: κ(X,Z) =

exp (−||g(θ0, X)− g(θ0, Z)||2/2σ2).

Finally, the Fisher score g(θ0, X) is easy to compute for the (Fisher) BossaNova

model and much more compact than many other Fisher-based representations provided

that b is small. In Equations 4.9 and 4.10, we see that this expression is close to

the formulation of the BossaNova. The contribution of each xt to the final vector

score is very similar to BossaNova because usually pi(xt) ≈ 0 and γi(xt) ≈ 0 if the

cluster i is not in the K-nearest neighbors of xt (as the localized soft assignment of

BossaNova in Section 4.4). The main difference is that it is no more counting the

number of points in a ring but the difference between this number and the “mean”

number w0
(b,k) (or w

0
i ) estimated over the image dataset. Note that some kernels (as the

Gauss-ℓ2) are invariant to global shift. Even if some preliminary tests did not indicate

significant performance difference with the original BossaNova, further investigation
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on this formulation and comparison with BN could reveal deeper relationships.

In contrast with Perronnin and Dance’s, whose GMM Fisher Kernels are not de-

signed with any pooling process in mind, in our proposition the pooling operation is

central: our Fisher score is computed over a generative mixture model which represents

the information obtained during the pooling step. Krapac et al. [2011], have also in-

vestigated alternatives to GMM generative model, but in the context of incorporating

spatial information to the generative model. Our aim is different: enhancing the repre-

sentation by building a mixture model less constrained by the Gaussianity hypotheses

of GMM and more in touch with the needs of low-level feature representativeness.

4.9 Conclusion

In image classification, most of the highest-performing statistical learning approaches

are based on the Bag-of-Words model. In this chapter, we proposed an extension of

this formalism. Considering the Bag-of-Features, coding and pooling steps, we aim to

advance the state-of-the-art by introducing a density function-based pooling strategy.

Our hypothesis is that a well-chosen pooling strategy allows us to better represent the

links between codewords and local descriptors in the image signature.

Our proposed BossaNova representation [Avila et al., 2012, 2013] is based on that

novel pooling strategy, enhancing the Bag-of-Words model. The idea is to estimate

the distribution of the descriptors around each codeword, by computing a histogram of

distances between those descriptors and each codeword. The core of that idea has been

introduced in our BOSSA representation [Avila et al., 2011], as a “proof-of-concept”.

Therefore, in addition to that pooling strategy, BossaNova integrates three well-

motivated computational steps over the BOSSA representation: the weighting scheme

to balance the BoW term and the histogram of distances (BOSSA implicitly assigns

equal importance to the both terms), the semi-soft coding scheme (BOSSA applies a

hard coding) and the two-step normalization (BOSSA does not implement the power

normalization and employs an ℓ1-block normalization strategy instead of the ℓ2).

Moreover, the BossaNova representation is interesting from a technical point of

view: the simple vector computation, the ease of implementation and the relatively

compact feature vector are non-negligible advantages, especially when tackling datasets

which are becoming progressively larger in scale and scope. Also, BossaNova geometric

properties lead us to predict an interesting complementarity with the Fisher Vector rep-

resentations, which is confirmed empirically in the next chapter. That complementarity

can also be understood in a generative model of BossaNova, since the density-based
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model of our pooling “onion-rings” can be modeled conveniently in a likelihood model.

That generative model can be employed in a Fisher kernel approach to BossaNova.





Chapter 5

Experimental Results

In this chapter, we present our empirical results. We choose five challenging bench-

marks to perform our experiments: MIRFLICKR [Huiskes and Lew, 2008], Image-

CLEF 2011/2012 Photo Annotation [Nowak et al., 2011; Thomee and Popescu, 2012],

PASCAL VOC 2007 [Everingham et al., 2007] and 15-Scenes [Lazebnik et al., 2006].

After describing our experimental setup, we report the results of the BossaNova

representation, the proposed in this dissertation. Those results are organized in three

groups. First, we evaluate the impact of the three proposed improvements of BossaNova

over BOSSA (Section 5.1), analyzing the isolated and joint impact of each enhancement

on the BossaNova representation. Next, we explore the key aspects of the parametric

space of our representation (Section 5.2). We then perform a comparison with state-

of-the-art methods (Section 5.3), including both experiments with methods we have

reimplemented ourselves, and published results reported in the literature. In order

to make that comparison fair, we carefully follow the experimental protocol of each

dataset. In what concerns the methods we reimplemented, we compare BossaNova

[Avila et al., 2013] to BOSSA [Avila et al., 2011], but also to one of the best methods

currently available, the Fisher Vectors [Perronnin et al., 2010c]. To provide a control

baseline, we also employ the classical BoW. Finally, we present our participation in the

ImageCLEF 2012 Photo Annotation task, in which we were ranked at the 2nd place

out of 13 participants, considering only visual-based approaches (Section 5.4).

All experiments were conducted on a 64-bit Debian Linux machine powered by

Intelr Xeonr CPU X5677 @ 3.47 GHz with 16 cores and 144 GB RAM. Despite

the large computational power available, we do not require that power to process our

experimental results. Our source code is written in C, C++ and Java.

83
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Experimental Setup

The low-level feature extraction has a big influence on the quality of the results. If

not controlled, it can easily become a nuisance factor in the experiments. Therefore,

to make the comparisons fair, we use the same low-level descriptors for all techniques

evaluated. We have extracted SIFT descriptors [Vedaldi and Fulkerson, 2010] on a

dense spatial grid, with the step-size corresponding to half of the patch-size, over

8 scales separated by a factor of 1.2, and the smallest patch-size set to 16 pixels. That

feature extraction process is also employed by Krapac et al. [2011].

As a result, roughly 8,000 local descriptors are extracted from each image of MIR-

FLICKR, ImageCLEF 2011/2012 Photo Annotation and PASCAL VOC 2007 datasets,

and close to 2,000 local descriptors are extracted from each image of 15-Scenes dataset.

The dimensionality of the SIFT is reduced from 128 to 64 by using principal compo-

nent analysis (PCA). That setup for local descriptor extraction proves to give very

good performances in standard image datasets, as reported in [Chatfield et al., 2011].

In order to learn the codebooks, we apply the k-means clustering algorithm with

Euclidean distance over one million randomly sampled descriptors. For Fisher Vec-

tors [Perronnin et al., 2010c], the descriptor distribution is modeled using a Gaussian

mixture model (GMM), whose parameters (w, µ,Σ) are also trained over one million

randomly sampled descriptors, using an expectation maximization algorithm. For all

mid-level representations, we incorporate spatial information using the standard spatial

pyramidal matching (SPM) scheme [Lazebnik et al., 2006]. In total, 8 spatial cells are

extracted for MIRFLICKR, ImageCLEF 2011/2012 Photo Annotation and PASCAL

VOC 2007, and 21 spatial cells for 15-Scenes.

One-versus-all classification is performed by support vector machine (SVM) clas-

sifiers. We use a linear SVM for Fisher Vectors, since it is well known that nonlinear

kernels do not improve performances for those representations, see [Perronnin et al.,

2010c]. For BoW [Sivic and Zisserman, 2003], BOSSA [Avila et al., 2011] and

BossaNova [Avila et al., 2013], we use a nonlinear Gauss-ℓ2 kernel. Kernel matrices

are computed as exp(−γd(x, x′)) with d being the distance and γ being set to the

inverse of the pairwise mean distances.

Statistical significance tests for the differences between the means were performed

using a Student t-test [Jain, 1991], paired over the dataset classes. The test consists of

determining a confidence interval for the differences and simply checking if the interval

includes zero, i.e., if the confidence interval does not include zero, the difference is

significant at that confidence level (see [Jain, 1991, chap. 13] for more details). Also,

for the analysis of the improvements brought by each enhancement of BossaNova over
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BOSSA, we have employed a factorial analysis of variance (ANOVA) [Jain, 1991, chap.

20], i.e., a statistical procedure to analyze the significance of various factors (weighting

scheme, localized-soft coding strategy and normalization). Those statistical tests are

explored in the following section.

5.1 BOSSA to BossaNova Improvements Analysis

In this section, in order to quantify the performance gains of BossaNova over BOSSA,

we propose to evaluate the individual performance increase brought out by each of the

three proposed improvements: (i) learning the weighting scheme to balance the word-

count (BoW) and the distances-histogram parts of the vectors, (ii) using a localized-soft

coding strategy, and (iii) applying a new normalization to the final vector.

The joint activation of the three steps leads to eight different configurations where

the performance of the corresponding mid-level representation is evaluated (denoted

as Weight, Soft and Norm in Tables 5.1 and 5.2). Then, we apply a statistical t-test

[Jain, 1991] to attest the significance of the difference between two given configurations.

We perform the test for paired samples, i.e., we evaluate the performance of two

configurations on N different folds of train/test images and compute the difference

between the performance metrics on each fold. The confidence interval (CI) for the

average difference is computed using a Student-t model, and the difference is considered

significative if the interval does not include zero (marked with X). For the tests in this

section, we ask for a confidence of 95%.

Table 5.1 shows the evaluation of the eight different configurations on the 15-

Scenes database, for N = 30 folds. We can see that the performances, measured by

accuracy, monotonically increase from configuration 1 (BOSSA) to 8 (BossaNova).

When only one improvement is added to BOSSA (configurations 2, 3 and 4), the

performance gain is always significant. That already proves the relevance of the three

modifications. When two improvements are incorporated, the performances increase

are significant when compared to BOSSA (1), but also when compared to configurations

with only one improvement: configurations 5, 6 and 7 are all significantly better than

the best configuration with one improvement (4). Adding the three improvements, the

difference is again significant: 8 is better than 7.

Testing just for the difference between BOSSA (1) and BossaNova (8) allows us

to set the confidence to the large value of 99.9% and still obtain a CI that does not

include zero, showing therefore that the difference is significant.

We apply the same setup on the PASCAL VOC database [Everingham et al.,
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Table 5.1: Impact of the proposed improvements to the BossaNova on 15-Scenes
[Lazebnik et al., 2006]. We use M = 4096, B = 2, λmin = 0, λmax = 2. Weight: the
weighted factor s, No = no cross-validation, Yes = cross-validation. Soft: soft assignment
coding, No = hard assignment, Yes = localized soft assignment. Norm: normalization, No
= ℓ1 block normalization, Yes = power normalization + ℓ2-normalization. The table shows
the means and standard deviations of the 30 accuracy measures.

Weight Soft Norm Accuracy CI (95%)

1 No No No 82.9 ± 0.5
2 Yes No No 83.2 ± 0.2 2 ↔ 1 X

3 No Yes No 83.4 ± 0.5 3 ↔ 1 X

4 No No Yes 83.6 ± 0.1 4 ↔ 1 X

5 Yes No Yes 83.9 ± 0.1 5 ↔ 1 X, 5 ↔ 4 X

6 Yes Yes No 84.5 ± 0.4 6 ↔ 1 X, 6 ↔ 4 X

7 No Yes Yes 84.5 ± 0.4 7 ↔ 1 X, 7 ↔ 4 X

8 Yes Yes Yes 85.3 ± 0.4 8 ↔ 1 X, 8 ↔ 7 X

Table 5.2: Impact of the proposed improvements to the BossaNova on PASCAL VOC 2007
[Everingham et al., 2007]. We use M = 4096, B = 2, λmin = 0, λmax = 2. Weight: the
weighted factor s, No = no cross-validation, Yes = cross-validation. Soft: soft assignment
coding, No = hard assignment, Yes = localized soft assignment. Norm: normalization, No
= ℓ1 block normalization, Yes = power normalization + ℓ2-normalization. The table shows
the means and standard deviations of the 10 mAP measures.

Weight Soft Norm mAP CI (95%)

1 No No No 54.9 ± 0.5
2 Yes No No 55.2 ± 0.4 2 ↔ 1 X

3 No Yes No 55.8 ± 0.5 3 ↔ 1 X

4 No No Yes 55.6 ± 0.4 4 ↔ 1 X

5 Yes No Yes 55.9 ± 0.4 5 ↔ 1 X, 5 ↔ 4 X

6 Yes Yes No 56.4 ± 0.4 6 ↔ 1 X, 6 ↔ 4 X

7 No Yes Yes 58.1 ± 0.4 7 ↔ 1 X, 7 ↔ 4 X

8 Yes Yes Yes 58.8 ± 0.4 8 ↔ 1 X, 8 ↔ 7 X

2007]. Here, the performance metric is the mAP, computed over the 20 classes for

N = 10 folds1. The same conclusions apply: each improved configuration significantly

outperforms its predecessor, as illustrated in Table 5.2.

Again, the difference between BOSSA (1) and BossaNova (8) is significant with

a large confidence. For 99.9% confidence, the CI does not include the zero.

For both datasets, we have also tested the influence of the proposed improve-

1Note that in the VOC 2007 database, the train/val/test folds are fixed for evaluating perfor-
mances. Here, we use random folds to obtain the necessary number of runs for statistical analysis.
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ments using a factorial analysis of variance (ANOVA) [Jain, 1991]. In both cases, the

models obtained were highly significant (with confidence above 99.9%) for all three im-

provements, confirming the results above. In addition, the ANOVA allows to measure

the relative impact of each proposed improvement. For the more challenging PASCAL

VOC dataset, the soft coding explains almost 48% of the BossaNova performance,

while the two-step normalization explains about 31%. The weighting scheme, in isola-

tion, is responsible for only 3% of the variation, but there is a cross-effect between the

weighting and the soft coding that accounts for another 9%. The impact of the cod-

ing is clearly the largest, but the importance of the normalization is quite surprising,

especially considering the optimization of that step is often neglected in the literature.

5.2 BossaNova Parameter Evaluation

The key parameters in BossaNova representation are the number of codewords M , the

number of bins B in each histogram zm, and the range of distances [αmin
m , αmax

m ] – the

minimum distance αmin
m and the maximum distance αmax

m in the RD descriptor space

that define the bounds of the histogram.

The codebook size M has a similar meaning as in standard BoW approaches.

Histogram size B defines the granularity to which pdf(αm) is estimated. The choices

of M and B are co-dependent, and M ·B determines the compromise between accuracy

and robustness. The smaller M ·B is, the less the representation is accurate, the larger

M · B is, the less confidence we have on the estimate of each bin of the histogram

representing the underlying distribution. In addition, too large M ·B values may lead

to excessively sparse vector representations.

The bounds αmin
m and αmax

m define the range of distances for the histogram com-

putation. Local descriptors outside those bounds are ignored. For αmax
m , the idea is

to consider only descriptors that are “close enough” to the center, and to discard the

remaining ones. For αmin
m , the idea is to avoid the empty regions that appear around

each codeword, in order to avoid wasting space in the final descriptor.

In BossaNova, αmin
m and αmax

m are set up differently for each codeword cm. Since

our codebook is created using k-means, we take advantage of the knowledge about the

“size” of the clusters, given by the standard deviations σm. We set up the bounds as

αmin
m = λmin · σm and αmax

m = λmax · σm, as shown in Figure 5.1.

To provide more comprehensive analysis of our representation, we evaluate its

behavior as three key parameters change: the codebook size M (Section 5.2.1), the

number of bins B (Section 5.2.2) and the minimum distance αmin
m (Section 5.2.3).
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Figure 5.1: Illustration of the range of distances [αmin
m , αmax

m ] which defines the bounds
of the histogram. The hatched area corresponds to the bounds. Local descriptors
outside those bounds are ignored.

We report the results using the MIRFLICKR [Huiskes and Lew, 2008], but as our

experiments already suggested, the conclusions can be generalized to the other datasets.

5.2.1 Codebook Size

The impact of codebook size M on BossaNova classification performance is shown on

Table 5.3, which clearly shows that larger codebooks lead to higher accuracy. BoW

performance, however, stops growing at 4096 visual words.

As stated in Section 5.3, the performances reported in Table 5.6 correspond to a

BossaNova with good parameters, but not strongly fine-tuned. Therefore, our repre-

sentation can reach an even higher score of 55.2% with a dictionary of size M = 8192.

However, the last improvement from 4096 to 8192 is not that high, suggesting that

the growth will soon stop. Meanwhile, the representation has doubled in size. Hence,

we define as our standard setting M = 4096 in order to get a good tradeoff between

effectiveness and efficiency.

Table 5.3: Codebook size impact on BossaNova (BN) and BoW performance (mAP (%)) on
MIRFLICKR [Huiskes and Lew, 2008]. BN: B = 2, λmin = 0, λmax = 2, s = 10−3.

Codebook size
1024 2048 4096 8192

BN [Avila et al., 2013] 51.8 52.9 54.4 55.2
BoW [Sivic and Zisserman, 2003] 50.3 51.3 51.5 51.1
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Comparison with Hierarchical BoW

We contrast BossaNova to a Hierarchical BoW (H-BoW) since there are some simi-

larities between our pooling approach and a 2-step descriptor space clustering. The

pooling performed in BossaNova can indeed be regarded as a special form of cluster-

ing, where the second-level of clustering corresponds to regions that are equally spaced

from the center. On the other hand, in a standard H-BoW, the second-level clusters

are similar to the first-level ones (e.g., hyper-sphere, if ℓ2 norm is used for clustering).

We claim that the special shape of the second-level clustering, which is based on

the idea of pooling descriptors depending on their similarity to the center, is better

founded that a naive 2-level clustering (with Euclidean distance).

To achieve that comparison, we build a 2-level hierarchical codebook using

BossaNova codebook size (M) at the first-level, and BossaNova histograms bin count

plus one (B + 1) at the second-level. That makes the comparison fair, allocating the

same size for both representations. For instance, BossaNova with a codebook of size

M = 4096 and two bins per histogram (B = 2), will be compared with a H-BoW

first-level of 4096 and second-level of 3 clusters (both representation are therefore of

size 4096 × 3 × 8, 8 being the spatial cells of the SPM scheme).

Table 5.4 compares BossaNova with H-BoW on the MIRFLICKR dataset. For

each codebook size, we observe that BossaNova is superior to H-BoW, and that the

difference tends to grow as the (first-level) codebook size grows. That confirms the

relevance of the improved pooling scheme introduced in the dissertation.

Table 5.4: Comparison of BossaNova (BN) and Hierarchical BoW performance (mAP (%))
on MIRFLICKR [Huiskes and Lew, 2008]. BN: B = 2, λmin = 0, λmax = 2, s = 10−3.

Codebook size
1024 2048 4096

BN [Avila et al., 2013] 51.8 52.9 54.4
Hierarchical BoW 50.6 51.3 51.4

5.2.2 Bin quantization

We next investigate how BossaNova classification performance is affected by the number

of bins (B). Using M = 4096, the number of bins is varied among 2, 4 and 6. The

results of our experiments are shown in Table 5.5.
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Table 5.5: Bin quantization influence on BossaNova (BN) mAP (%) performances on MIR-
FLICKR [Huiskes and Lew, 2008]. BN: M = 4096, λmin = 0, λmax = 2, s = 10−3.

Number of Bins
B = 2 B = 4 B = 6

mAP 54.4 54.7 54.9

First, we observe that increasing the number of bins yields a slight amelioration in

performance. However, the growth depends on the topic of MIRFLICKR dataset: for

30 out of 38 concepts the performance increases up to 1.9% and for 3 isolated concepts

(bird(r), car(r), sea(r)) the performance decreases slightly, by 0.2%.

Once again, further investigations will certainly provide optimized parameters

but with a higher complexity. We handled default parameters to 2 here in order to get

compact representations.

5.2.3 Minimum Distance αmin
m

The fact that descriptors seldom, if ever, fall close to the codewords is a counter-

intuitive consequence of the geometry of high-dimensional spaces. Figure 5.2 illustrates

the phenomenon, displaying the average density of SIFT descriptors on the neighbor-

hood of codewords, in MIRFLICKR dataset [Huiskes and Lew, 2008].

Figure 5.2: Average density of SIFT descriptors in the neighborhood of codewords
in MIRFLICKR dataset [Huiskes and Lew, 2008], showing that descriptors seldom,
if ever, are closer than a certain threshold to the codewords. That counter-intuitive
phenomenon is a consequence of the “curse of dimensionality” [Bellman, 1961].
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Note that the parameters may act jointly to the locality constraints defined in

Section 4.4: a descriptor xj that is the k-NN from a center cm is not considered for

generating the signature if d2(xj, cm) > αmax
m .

Therefore, we study the effects of the minimum distance αmin
m on BossaNova

classification performance. Using the test values of BossaNova parameters (i.e., B =

2, M = 4096, λmax = 2), we set λmin based on Figure 5.2.

For λmin = 0.4 and λmax = 2, corresponding to 95% of the total SIFT descriptors

on the whole dataset, we obtain a mAP = 54.9% which is slightly better than the range

of λmin = 0 and λmax = 2 (mAP = 54.4%, see Table 5.6). That is in accordance with

our intuition.

Interestingly, we observe considerable improvements for the most of the concepts

(up to 1%) and also a decrease for some ones (up to 0.5%). That suggests that setting

a λmin and even λmax per codeword seems to be useful to exploit as future research.

5.3 Comparison of State-of-the-Art Methods

We compare BossaNova to other representations, perform our own re-implementation

of those techniques. The methods chosen were:

• BossaNova (BN) [Avila et al., 2013], the method proposed in this dissertation.

• BOSSA [Avila et al., 2011], which can be regarded as a proof-of-concept of pro-

posed pooling. Also, BOSSA is chosen to validate our BossaNova improvements.

• Fisher Vectors (FV) [Perronnin et al., 2010c], one of the best mid-level represen-

tations currently reported in the literature [Chatfield et al., 2011].

• The kernel combination BN + FV, chosen to evaluate the methods’ complemen-

tarity2.

• Bag-of-Words (BoW) [Sivic and Zisserman, 2003]. A classical histogram of code-

words, obtained with hard quantization coding and average-pooling; it constitutes

a control baseline for the other methods.

The “overall picture” from the comparison of state-of-the-art methods we have

implemented ourselves can be summarized as follows. All recent methods improve

the classification performance over the BoW baseline. Consequently, that illustrates

the relevance of improving the pooling scheme introduced in this dissertation. Also,

2It is explicitly shown in the text when we apply the late fusion strategy.
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we observe a considerable improvement of performance from BOSSA to BN, showing

the benefits brought out by the weight factor, soft coding and new normalization.

Furthermore, the combination of BN and Fisher Vector representations (obtained by a

kernel fusion) outperforms both individual methods, which corresponds to a remarkable

success of the complementariness of BN and FV representations. Besides, with at least

99% confidence, all differences are significant for those methods. Results published in

the literature, unfortunately, do not include significance tests or confidence intervals.

We also report the best results available for each dataset. That allows us to eval-

uate other recent methods that build upon the standard baseline BoW, e.g., methods

using sparse coding and max pooling [Yang et al., 2009b; Boureau et al., 2010a].

It is important to note that, although we have chosen for BossaNova parameters

we believed were good, in the interest of a fair comparison, we have not fine-tuned it

for each dataset. Therefore, the numbers reported do not represent the limit of the

performance achievable by the method (in a few cases higher results are achieved in

this dissertation in Section 5.2, where we explore the parameters more thoroughly).

Moreover, two essential aspects should be kept in mind when interpreting the

results of this section. The first is that many methods nowadays work by exploiting

complex schemes, often involving dozens of different features and classifiers. Since our

aim here is to isolate the performance of the mid-level representation component, we

opt for a single-descriptor approach (using SIFT), and emphasize our comparison to

baselines that only employ single-descriptor schemes.

The second one is that the impact of the low-level feature step (density, fine-

tune parametrization) is nonneglectable, but currently very little understood. We have

cooperated with the authors to bring the reported numbers to the best agreement

possible, it was not our aim here to optimize the low-level extraction phase, neither for

our method, nor for theirs. It is also important to notice that, although we have not

optimized the low-level feature step, we consider a dense sampling strategy, which gives

better results. Additionally, our results can be further improved by using high density

sampling of local descriptors (typically, denser sampling yields higher performance

[Chatfield et al., 2011]).

5.3.1 Results for MIRFLICKR

Table 5.6 shows the results over MIRFLICKR, and details the parameter settings for

each method. We can notice that the BOSSA representation, our proof-of-concept, out-

performs BoW with 1.2% absolute improvement (2.3% relative improvement). Com-

paring the BOSSA to the BN, our proposed representation, we observe an increase



5.3. Comparison of State-of-the-Art Methods 93

Table 5.6: Image classification mAP (%) results of BossaNova, BOSSA, standard
implemented state-of-the-art representations and published methods on MIRFLICKR
[Huiskes and Lew, 2008]. BOSSA: M = 2048, B = 6, λmin = 0, λmax = 2, as in [Avila et al.,
2011]; BN: M = 4096, B = 2, λmin = 0, λmax = 2, s = 10−3, as in [Avila et al., 2013], BoW:
M = 4096; FV: 256 Gaussians, as in [Perronnin et al., 2010c].

mAP (%)

Our methods
BOSSA [Avila et al., 2011] 52.7
BN [Avila et al., 2013] 54.4
BN + FV [Avila et al., 2013] 56.0

Implemented methods
BoW [Sivic and Zisserman, 2003] 51.5
FV [Perronnin et al., 2010c] 54.3

Published results
[Huiskes et al., 2010] 37.5
[Guillaumin et al., 2010] 53.0

from 52.7% to 54.4% (an absolute improvement of 1.7%).

Furthermore, BN is tied with FV, the current state-of-the-art method. Note that

our representation (12,288 dimensions for each spatial cell) is about three times smaller

than FV (32,768 dimensions for each spatial cell). Also, we observe that our method

is better than FV for 22 out of 38 concepts. Additionally, unlike the overall picture,

at 99% confidence the difference is not significant for BN and FV.

Finally, we can notice the considerable improvement obtained when combining

BN and FV, reaching a mAP of 56.0%. The combination surpasses both individual

methods for 31 out of 38 concepts while performing similarly for the seven remaining

concepts. Table 5.7 shows the results of each concept over MIRFLICKR.

From the literature, we choose the baseline dataset result [Huiskes et al., 2010],

and the best, as far as we know, result published [Guillaumin et al., 2010]. The baseline

performances [Huiskes et al., 2010] are quite low, 14% below our re-implementation of

the classical BoW. The main reason is the features employed there, global descriptors,

which are much outperformed by highly discriminant local descriptors such as SIFT.

In comparison to Guillaumin et al.3, BN performs better for 29 out of 38 concepts,

and its mAP increases from 53.0% to 56.0%. It is notable BN employs only SIFT to

build the mid-level representation, while Guillaumin et al. combines 15 different image

representations, including SIFT.

3The authors also consider as features the image tags. Here, we show their results which use only
the visual image content as features.
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Table 5.7: Image classification AP and mAP (%) results of BossaNova, BOSSA, standard
implemented state-of-the-art representations and published methods on MIRFLICKR dataset
[Huiskes and Lew, 2008]. BOSSA: M = 2048, B = 6, λmin = 0, λmax = 2, as in [Avila et al.,
2011]; BN: M = 4096, B = 2, λmin = 0, λmax = 2, s = 10−3, as in [Avila et al., 2013], BoW:
M = 4096; FV: 256 Gaussians, as in [Perronnin et al., 2010c]; MIR’10 [Huiskes et al., 2010];
CVPR’10 [Guillaumin et al., 2010].

Our methods Impl. methods Published results
BOSSA BN BN + FV BoW FV MIR’10 CVPR’10

1: animals 48.2 49.2 49.6 45.1 47.1 27.8 48.7
2: baby 14.9 16.5 16.4 14.0 14.1 8.4 17.0
3: baby(r) 19.6 21.4 22.6 18.7 20.5 8.8 21.4
4: bird 17.8 20.1 22.3 16.7 20.3 12.8 22.7
5: bird(r) 23.9 25.5 27.9 22.5 24.3 12.9 29.3
6: car 40.2 42.3 44.9 38.8 43.6 17.9 37.5
7: car(r) 55.6 57.7 62.6 52.3 60.8 22.7 52.2
8: clouds 83.7 85.6 86.0 82.2 84.2 65.1 82.5
9: clouds(r) 76.4 78.4 80.1 75.7 80.3 51.1 75.5
10: dog 32.2 33.2 36.2 32.0 31.5 15.5 32.3
11: dog(r) 35.8 36.8 40.5 35.6 35.7 15.6 36.7
12: female 60.2 61.8 65.5 60.0 62.5 46.1 57.5
13: female(r) 58.4 60.3 60.9 56.8 59.2 38.9 54.9
14: flower 46.3 47.5 50.8 44.3 49.2 46.9 53.6
15: flower(r) 59.4 61.8 66.3 58.1 66.1 51.9 54.9
16: food 44.8 45.1 46.6 44.4 44.1 29.3 50.1
17: indoor 73.9 75.7 75.9 71.6 74.2 60.5 74.5
18: lake 32.6 33.6 35.9 32.4 34.6 18.8 31.3
19: male 53.9 55.9 56.4 53.0 55.3 40.7 51.7
20: male(r) 46.2 49.9 50.2 45.9 47.0 29.4 45.0
21: night 62.9 64.2 64.6 61.1 63.7 55.4 64.9
22: night(r) 47.5 50.9 50.6 46.8 49.5 39.0 55.8
23: people 81.6 83.3 83.2 80.1 81.7 63.1 78.9
24: people(r) 78.8 81.1 81.1 77.0 79.1 55.8 75.1
25: plant life 76.2 77.8 78.1 76.1 78.3 68.7 78.5
26: portrait 72.3 74.8 75.7 70.4 74.1 49.3 68.1
27: portrait(r) 72.6 74.9 75.8 70.2 74.1 49.3 68.2
28: river 28.6 29.7 33.3 28.2 32.2 17.9 26.5
29: river(r) 7.9 8.0 11.8 7.4 10.3 10.2 8.1
30: sea 54.4 57.0 59.4 53.3 58.4 36.6 57.1
31: sea(r) 34.2 36.2 36.6 33.5 33.4 12.6 33.4
32: sky 87.3 88.7 88.9 86.7 88.1 77.5 86.6
33: structures 80.1 82.1 82.6 79.9 81.6 62.6 77.4
34: sunset 53.7 54.4 55.9 53.6 54.6 58.8 66.5
35: transport 48.4 50.3 51.3 46.8 49.2 29.8 46.4
36: tree 70.9 71.7 73.3 70.7 73.8 51.4 67.1
37: tree(r) 59.4 61.4 64.1 57.1 61.5 20.5 54.8
38: water 61.5 63.5 65.8 58.7 64.6 44.8 62.2

mAP 52.7 54.4 56.0 51.5 54.3 37.5 53.0
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To the best of our knowledge, ours is the best result reported to date on MIR-

FLICKR dataset, using only visual features.

5.3.2 Results for ImageCLEF 2011 Photo Annotation

Table 5.8 gives the results, both the ones implemented and tested by us, and the

ones reported on literature. We note an absolute improvement of 1.7% from BoW

to BOSSA, highlighting the relevance of our pooling scheme. We also observe a con-

siderable improvement of performance from BOSSA to BN, from 32.9% to 35.3% (a

2.4% absolute improvement). Furthermore, the combination of BN and Fisher Vector

representations outperforms the other methods by up to 3.1%.

We also compare our results with those of the five best systems reported in the

literature. In the ImageCLEF 2011 Photo Annotation task, each group registered for

the challenge is restricted to a maximum of five runs. Table 5.8 shows the best run for

each group, with the restriction to results that employed only the visual information.

We also show the results of each concept for the (re)implemented methods and the two

best systems (see Table 5.9).

The best system during the competition ([Binder et al., 2011]) reported 38.8%

Table 5.8: Image classification mAP (%) results of BossaNova, BOSSA, standard imple-
mented state-of-the-art representations and published methods on ImageCLEF 2011 Photo
Annotation task [Nowak et al., 2011]. BOSSA: M = 2048, B = 6, λmin = 0, λmax = 2,
as in [Avila et al., 2011]; BN: M = 4096, B = 2, λmin = 0.4, λmax = 2, s = 10−3, as
in [Avila et al., 2013], BoW: M = 4096; FV: 256 Gaussians, as in [Perronnin et al., 2010c].

mAP (%)

Our methods
BOSSA [Avila et al., 2011] 32.9
BN [Avila et al., 2013] 35.3
BN + FV [Avila et al., 2013] 38.4

Implemented methods
BoW [Sivic and Zisserman, 2003] 31.2
FV [Perronnin et al., 2010c] 36.8

Published results
[Mbanya et al., 2011] 33.5
[Le and Satoh, 2011] 33.7
[van de Sande and Snoek, 2011] 36.7
[Su and Jurie, 2011] 38.2
[Binder et al., 2011] 38.8
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Table 5.9: Image classification AP and mAP (%) results of BossaNova, BOSSA, standard
implemented state-of-the-art representations and published methods on ImageCLEF 2011
Photo Annotation task [Nowak et al., 2011]. BOSSA: M = 2048, B = 6, λmin = 0, λmax =
2, as in [Avila et al., 2011]; BN: M = 4096, B = 2, λmin = 0, λmax = 2, s = 10−3, as
in [Avila et al., 2013], BoW: M = 4096; FV: 256 Gaussians, as in [Perronnin et al., 2010c];
Top1 [Binder et al., 2011]; Top2 [Su and Jurie, 2011].

Our methods Impl. methods Published results
BOSSA BN BN + FV BoW FV Top2 Top1

1: party life 25.2 29.3 31.2 20.0 30.5 33.0 32.4
2: family friends 49.6 52.7 55.6 47.6 54.0 54.8 54.6
3: beach holidays 33.4 40.9 46.2 32.4 44.9 43.0 49.1
4: buildings sights 57.8 58.8 63.8 53.8 61.2 61.4 60.4
5: snow 13.8 16.0 19.2 13.4 16.8 24.5 25.3
6: city life 51.0 52.9 56.5 50.4 55.0 56.7 54.9
7: landscape nature 80.5 81.9 82.2 79.0 81.5 78.2 80.5
8: sports 12.3 13.7 16.4 9.8 15.8 14.7 17.1
9: desert 5.8 15.6 19.3 3.6 17.6 22.6 16.2
10: spring 10.8 13.1 15.4 7.8 14.5 19.1 21.9
11: summer 23.0 23.0 24.7 21.8 23.2 31.7 32.3
12: autumn 19.0 19.2 22.2 18.0 21.3 32.8 37.6
13: winter 15.9 21.3 27.9 15.5 26.0 25.6 30.0
14: indoor 56.4 58.9 62.0 55.9 59.1 61.1 62.9
15: outdoor 88.5 88.3 90.5 88.5 88.7 86.4 90.1
16: plants 71.3 73.4 75.3 70.1 74.8 77.2 79.8
17: flowers 33.2 41.7 45.3 32.2 43.2 51.1 52.8
18: trees 63.5 64.5 69.3 61.5 68.5 66.6 68.0
19: sky 84.9 85.8 89.6 83.7 87.5 85.6 89.2
20: clouds 83.2 83.5 89.2 82.2 83.7 80.8 84.7
21: water 61.4 65.5 67.7 59.5 66.0 63.1 67.6
22: lake 28.6 34.1 37.6 25.4 36.0 32.2 33.9
23: river 23.1 23.1 28.3 22.1 27.0 28.5 27.2
24: sea 48.2 52.7 56.2 45.8 55.4 51.4 52.5
25: mountains 47.7 53.9 57.2 44.1 56.3 54.6 56.4
26: day 84.9 84.7 85.9 84.6 85.3 84.7 87.5
27: night 49.6 55.3 49.6 47.5 56.0 58.6 59.2
28: sunny 38.1 38.6 42.3 36.1 40.0 50.5 51.8
29: sunset sunrise 59.2 60.9 64.1 56.8 62.9 74.7 80.2
30: still life 35.3 39.3 40.3 31.3 39.8 42.9 41.3
31: macro 45.5 48.6 50.5 44.5 49.8 52.8 51.2
32: portrait 63.5 67.9 69.9 61.7 68.3 68.3 67.7
33: overexposed 12.8 17.2 18.7 11.6 18.3 20.6 24.1
34: underexposed 24.2 28.3 30.2 23.2 30.1 34.5 32.9
35: neutral illumination 95.4 96.4 98.2 94.5 97.7 98.0 98.3
36: motion blur 24.6 28.9 30.3 22.5 29.4 29.7 25.7
37: out of focus 23.2 23.3 26.1 22.8 24.8 27.8 24.3
38: partly blurred 76.5 77.3 80.4 76.0 79.1 72.9 74.5
39: no blur 92.0 92.2 93.6 91.7 92.4 91.0 90.7
40: single person 52.4 56.2 58.4 50.3 55.7 58.8 57.8
41: small group 29.1 29.9 35.0 27.3 33.0 35.8 38.8
42: big group 40.2 44.9 49.2 34.7 48.5 45.0 45.7
43: no persons 89.0 89.8 92.0 88.9 90.3 89.8 91.9
44: animals 44.1 48.9 54.4 43.2 53.3 56.1 52.6
45: food 45.2 47.1 50.5 44.6 48.5 56.6 54.9

continued on next page
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Our methods Impl. methods Published results
BOSSA BN BN + FV BoW FV Top2 Top1

46: vehicle 45.9 49.6 52.3 44.7 50.9 51.0 49.9
47: aesthetic impression 27.0 27.0 27.7 26.1 27.4 32.0 31.1
48: overall quality 20.0 22.6 26.0 20.0 20.2 22.9 28.8
49: fancy 15.9 17.3 19.9 15.3 18.0 22.7 24.8
50: architecture 30.5 33.2 36.5 29.5 34.0 34.0 35.4
51: street 33.0 34.9 37.2 31.8 36.4 37.7 39.0
52: church 18.2 19.9 22.4 20.3 24.9 14.2 18.0
53: bridge 8.3 9.3 10.5 9.6 12.3 10.9 13.0
54: park garden 32.0 37.0 41.5 40.2 43.0 47.8 45.9
55: rain 0.5 3.3 6.1 5.9 7.3 6.2 1.0
56: toy 17.8 18.9 23.5 20.9 25.5 27.7 28.5
57: musical instrument 3.2 5.4 8.0 7.7 9.4 8.8 7.0
58: shadow 9.4 10.4 11.4 10.4 16.4 14.9 19.5
59: body part 18.1 21.9 26.3 24.8 28.9 27.8 30.1
60: travel 11.1 12.3 19.1 17.4 21.3 14.4 20.8
61: work 3.7 4.3 7.9 6.6 8.3 13.2 5.6
62: birthday 0.8 0.9 1.2 1.0 1.4 1.0 0.9
63: visual arts 32.6 33.2 35.0 34.3 39.3 33.4 38.5
64: graffiti 4.8 5.0 5.4 5.2 7.1 8.8 3.0
65: painting 13.9 16.9 20.7 19.7 23.9 24.7 24.5
66: artificial 11.7 12.7 11.9 12.7 14.7 12.6 14.5
67: natural 68.0 69.2 71.9 70.3 75.3 72.6 73.8
68: technical 5.9 6.7 9.6 7.7 10.5 6.5 7.7
69: abstract 1.8 1.9 2.0 2.3 2.4 2.1 3.4
70: boring 7.5 7.9 8.1 8.3 9.9 9.2 9.5
71: cute 55.5 57.5 61.7 59.9 63.5 62.2 62.7
72: dog 29.0 32.1 38.6 36.9 40.4 41.7 38.4
73: cat 12.4 20.4 27.0 22.7 26.4 17.8 19.8
74: bird 19.0 24.2 30.6 29.3 33.9 27.9 27.5
75: horse 5.7 6.3 10.8 9.2 12.4 9.4 12.9
76: fish 1.3 2.3 2.8 2.7 3.6 2.4 4.1
77: insect 15.4 16.8 20.5 19.1 22.9 24.1 22.9
78: car 30.9 31.9 41.5 39.8 44.2 40.1 39.3
79: bicycle 16.0 17.5 31.7 28.4 33.5 32.4 32.0
80: ship 10.5 14.8 18.9 16.9 20.5 12.9 12.0
81: train 16.3 17.3 20.2 20.6 22.4 2.8 19.2
82: airplane 9.9 15.8 21.4 15.8 22.8 23.2 16.6
83: skateboard 0.1 0.1 0.2 0.1 0.3 0.2 0.6
84: female 42.0 43.0 51.0 50.2 54.6 51.5 49.8
85: male 18.4 20.2 26.4 24.1 27.4 22.1 21.7
86: baby 12.5 13.1 18.1 16.4 20.3 24.1 25.5
87: child 8.2 9.3 16.6 14.3 17.3 18.2 20.1
88: teenager 18.8 20.5 26.7 25.3 26.5 27.1 27.6
89: adult 47.9 48.7 54.3 52.9 56.9 57.3 56.3
90: old person 4.9 5.7 6.5 5.7 6.8 8.4 10.5
91: happy 35.2 38.1 43.3 42.7 46.2 44.3 43.3
92: funny 29.8 30.3 32.3 30.3 34.9 36.8 35.9
93: euphoric 4.7 5.9 7.1 6.2 7.9 8.8 13.6
94: active 25.8 27.0 32.9 29.7 33.4 35.2 36.0
95: scary 11.6 12.6 14.1 13.7 15.4 20.3 20.0
96: unpleasant 18.0 18.5 21.3 18.9 22.8 26.5 25.8
97: melancholic 23.1 23.8 24.8 22.9 29.8 34.3 35.7
98: inactive 44.8 45.6 49.7 45.3 53.3 54.1 55.8
99: calm 48.6 50.9 52.9 50.2 56.4 56.5 57.1

mAP 32.9 35.3 38.4 31.2 36.8 38.2 38.8
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mAP, employing nonsparse multiple kernel learning and multi-task learning. They ap-

ply SIFT and color channel combinations to build different extensions of the BoW

models with respect to sampling strategies and BoW mappings. The system of

Su and Jurie [2011] uses many features, such as SIFT, HoG, Texton, Lab–1948, SSIM,

and Canny, aggregating them by a BoW into a global histogram. Fisher Vectors and

contextual information were used as enhancement of the BoW models. The method

of van de Sande and Snoek [2011] employs several color SIFT features with Harris-

Laplace and dense sampling, and apply the SVM classifier. The system of Le and Satoh

[2011] also use numerous features. As global features, they use color moments, color

histogram, edge orientation histogram and local binary patterns; and as local features,

keypoint detectors such as Harris Laplace, Hessian Laplace, Harris Affine, and dense

sampling are used to extract SIFT descriptors. Again, classification is performed with

a SVM classifier. The approach of Mbanya et al. [2011] is based on the BoW model.

They apply feature fusion of the opponent SIFT descriptor and the GIST descriptor.

Moreover, a post-classification processing step is incorporated in order to refine clas-

sification results based on rules of inference and exclusion between concepts. As we

can notice, all those top-performing systems employ complex combinations of several

low-level features to achieve their good results.

In view of that, our results of 35.3% for BN, and 38.4% for BN + FV (the latter

practically tied with the best reported results) are remarkably good, since we employ

just SIFT descriptors. Moreover, the performance our method can be further improved

by feature combination expansions [Picard et al., 2010, 2012].

5.3.3 Results for PASCAL VOC 2007

Table 5.10 shows the results, detailing the parameter settings for each method. Again,

we observe that the BOSSA representation, our proof-of-concept, outperforms BoW

with 1.2% absolute improvement. Also, we achieve a considerable improvement of

performance from BOSSA to BN, from 54.4% to 58.5% (an absolute improvement of

4.1%). Furthermore, the combination BN + FV outperforms the previous methods.

For some categories its improvement in mAP reached up to 10%, especially challenging

ones (e.g., bottle, cow). Additionally, our late fusion strategy reaches a performance of

62.4%. Table 5.11 shows the results of each visual object class for the (re)implemented

methods and the available published methods.

Table 5.10 also shows the comparison with published results. The comparison

with Krapac et al. [2011] is particularly relevant, because we employ the same low-

level descriptor extraction as them, although our representation ends up being more
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Table 5.10: Image classification mAP (%) results of BossaNova, BOSSA, standard im-
plemented state-of-the-art representations and published methods on PASCAL VOC 2007
dataset [Everingham et al., 2007]. BOSSA: M = 4096, B = 2, λmin = 0, λmax = 2; BN:
M = 4096, B = 2, λmin = 0.4, λmax = 2, s = 10−3, as in [Avila et al., 2013]; BoW: M =
4096; FV: 256 Gaussians, as in [Perronnin et al., 2010c].

mAP (%)

Our methods
BOSSA [Avila et al., 2011] 54.4
BN [Avila et al., 2013] 58.5
BN + FV [Avila et al., 2013] 61.6
Late Fusion (BN + FV) 62.4

Implemented methods
BoW [Sivic and Zisserman, 2003] 53.2
FV [Perronnin et al., 2010c] 59.5

Published results
[Krapac et al., 2011] 56.7
[Wang et al., 2010] 59.3
[Chatfield et al., 2011] 61.7
[Sánchez et al., 2012] 66.3

compact. The LLC method of Wang et al. [2010] is evaluated with HOG descriptors.

LLC was also evaluated on extremely dense SIFT descriptors (sampling step of 3 pixels

at four scales), roughly 70,000 per image, obtaining a mAP of 53.8% with a codebook

of 4,000 words [Chatfield et al., 2011].

Zhou et al. [2010] published a score of 64.0% using Super-Vector (SV) coding,

but Chatfield et al. showed that the best reproducible result for SV coding is 58.2%4.

Moreover, Chatfield et al. achieved 61.7% for Fisher Vector. Those results are encour-

aging, since the SIFT descriptors employed on those experiments are extremely dense.

By using SIFT features nearly 10 times less dense, our result of 62.4% surpasses the

result reported by Chatfield et al. for FV.

The best published result, using only SIFT descriptors as low-level features, is

66.3% for a system based on a late fusion approach [Sánchez et al., 2012], which av-

erages the outputs of the classifiers from a (i) FV system based on the combination

of augmented low-level features and an objectness measure to estimate the location of

objects in images and (ii) a spatial pyramids system. The authors also employed dense

SIFT, whose dimensionality are reduced to 80 by PCA. Furthermore, FV are extracted

4The difference results from nontrivial optimizations not described in their paper, making it ex-
tremely hard to reproduce.
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Table 5.11: Image classification AP and mAP (%) results of BossaNova, BOSSA, standard
implemented state-of-the-art representations and published methods on PASCAL VOC 2007
dataset [Everingham et al., 2007]. BOSSA: M = 4096, B = 2, λmin = 0, λmax = 2; BN:
M = 4096, B = 2, λmin = 0.4, λmax = 2, s = 10−3, as in [Avila et al., 2013]; BoW: M =
4096; FV: 256 Gaussians, as in [Perronnin et al., 2010c]; BMVC’11 [Chatfield et al., 2011];
PRL’ 12 [Sánchez et al., 2012].

Our methods Impl. methods Published results
BOSSA BN BN + FV LF BoW FV BMVC’11 PRL’12

1: aeroplane 75.9 79.5 82.1 82.8 74.5 80.5 79.0 83.8
2: bicycle 59.3 64.5 67.0 69.2 57.3 64.9 67.4 72.0
3: bird 43.7 49.8 53.9 55.3 42.6 50.5 51.9 59.7
4: boat 69.4 72.2 75.1 75.0 68.1 73.0 70.9 74.6
5: bottle 19.3 21.5 31.5 30.2 18.3 27.2 30.8 37.8
6: bus 61.2 64.6 67.7 71.0 60.6 65.0 72.2 72.9
7: car 76.1 79.4 82.1 82.5 74.7 80.6 79.9 82.9
8: cat 58.9 59.5 60.8 61.9 56.2 59.3 61.4 67.7
9: chair 50.8 53.2 54.8 55.7 50.1 54.2 56.0 57.8
10: cow 36.7 41.0 44.1 45.7 36.5 42.5 49.6 55.1
11: dining table 39.9 57.0 62.4 59.4 38.8 59.5 58.4 66.7
12: dog 39.5 43.9 45.9 47.8 38.9 44.8 44.8 54.9
13: horse 77.0 77.2 83.0 81.3 76.7 79.5 78.8 81.6
14: motorbike 62.1 65.1 68.2 67.4 61.7 65.4 70.8 71.2
15: person 83.6 86.0 87.0 87.4 82.8 86.0 85.0 87.0
16: potted plant 23.5 27.6 29.9 31.2 22.5 27.6 31.7 37.6
17: sheep 37.9 42.4 44.6 47.6 36.0 42.9 51.0 53.5
18: sofa 46.9 52.8 55.2 57.6 45.0 53.6 56.4 63.0
19: train 75.4 79.4 82.1 82.3 74.3 80.9 80.2 84.0
20: tv/monitor 49.9 52.8 55.3 57.2 47.6 52.9 57.5 60.7

mAP 54.4 58.5 61.6 62.4 53.2 59.5 61.7 66.3

by using a model with 1024 Gaussians.

Finally, Znaidia et al. [2012] reported 68.3% on the PASCAL VOC 2007 but also

considering as features the image tags. Without access to such information, their BoW

baseline dropped to 52.1%.

5.3.4 Results for 15-Scenes

Results, both the ones implemented and tested by us, and the ones reported on the

literature are shown in Table 5.12. Once again, we achieve an absolute improvement

of 1.8% from BoW to BOSSA, validating the relevance of our pooling scheme. We also

observe that the BN method surpasses BOSSA by 2.4%, which confirms the proposed

improvements of BossaNova over BOSSA. In comparison to FV, BN classification per-

formance is peculiarly inferior.We must note for one single class (industrial) our result

is much lower than expected, weighting down the averages. When combining BN and
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Table 5.12: Image classification accuracy (%) results of BossaNova, BOSSA, standard
implemented state-of-the-art representations and published methods on 15-Scenes dataset
[Lazebnik et al., 2006]. BOSSA: M = 4096, B = 2, λmin = 0, λmax = 2; BN: M = 4096, B =
2, λmin = 0.4, λmax = 2, s = 10−3, as in [Avila et al., 2013]; BoW: M = 4096; FV: 256 Gaus-
sians, as in [Perronnin et al., 2010c]. The table shows the means and standard deviations of
the 30 accuracy measures.

Accuracy (%)

Our methods
BOSSA [Avila et al., 2011] 82.9 ± 0.5
BN [Avila et al., 2013] 85.3 ± 0.4
BN + FV [Avila et al., 2013] 88.9 ± 0.3

Implemented methods
BoW [Sivic and Zisserman, 2003] 81.1 ± 0.6
FV [Perronnin et al., 2010c] 88.1 ± 0.2

Published results
[Yang et al., 2009b] 80.3 ± 0.9
[Lazebnik et al., 2006] 81.4 ± 0.5
[Boureau et al., 2010a] 85.6 ± 0.2
[Krapac et al., 2011] 88.2 ± 0.6

Table 5.13: Image classification accuracy (%) results of BossaNova, BOSSA, standard
implemented state-of-the-art representations and published methods on 15-Scenes dataset
[Lazebnik et al., 2006]. BOSSA: M = 4096, B = 2, λmin = 0, λmax = 2; BN: M = 4096,
B = 2, λmin = 0.4, λmax = 2, s = 10−3, as in [Avila et al., 2013]; BoW: M = 4096; FV:
256 Gaussians, as in [Perronnin et al., 2010c]; CVPR’06: [Lazebnik et al., 2006]; ICCV’11:
[Krapac et al., 2011].

Our methods Impl. methods Published results
BOSSA BN BN + FV BoW FV CVPR’06 ICCV’11

1: bedroom 71.8 72.3 75.5 67.6 74.8 68.3 73
2: coast 87.5 88.1 89.8 86.3 89.4 82.4 90
3: forest 95.9 96.1 96.2 94.7 96.2 94.7 96
4: highway 85.3 88.1 92.2 83.6 90.3 86.6 91
5: industrial 65.4 70.7 80.0 61.5 78.2 65.4 79
6: inside city 82.3 84.0 88.4 78.2 87.3 80.5 91
7: kitchen 74.3 77.1 82.3 72.5 81.8 68.5 82
8: living room 59.1 68.4 74.3 58.6 73.5 60.4 71
9: mountain 90.1 90.2 95.1 89.3 94.3 88.8 93
10: office 98.5 98.9 99.8 96.2 99.6 92.7 96
11: open country 75.7 78.0 80.0 74.7 79.4 70.5 83
12: store 75.9 82.0 89.5 74.9 88.1 76.2 84
13: street 89.6 92.7 94.2 88.8 93.1 90.2 94
14: suburb 100.0 100.0 100.0 98.2 100.0 99.4 100
15: tall building 91.5 93.6 96.9 90.7 95.6 91.1 96

Accuracy 82.9 85.3 88.9 81.1 88.1 81.4 88.2
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FV methods, that issue is solved, and the combination is better than FV in isolation.

The combination BN + FV surpasses both individual methods for 13 out of 15 natural

scene categories (see Table 5.13).

We also compare our results with those of the best systems reported in the liter-

ature. BN outperforms considerably the methods reported by Yang et al. [2009b] and

Lazebnik et al. [2006], using improved BoW with sparse coding and max pooling. If we

now take our best result (88.9%), we observe that it is slightly better than the result

of Krapac et al. [2011], obtained with spatial FV. Again, that comparison is relevant

since both of us employ similar low-level local descriptor extractions.

Figure 5.3 illustrates the confusion matrix for our best classification performance.

Not surprisingly, confusion occurs between indoor classes (e.g., bedroom, living room,

kitchen), urban architecture classes (e.g., inside city, street, tall building) and also

between natural classes (e.g., coast, open country). Our result reaches near state-of-

the-art performance for that dataset.

Figure 5.3: Confusion matrix for the 15-Scenes dataset [Lazebnik et al., 2006]. The
average classification rates for individual classes are listed along the diagonal, and the
columns are the true classes.
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5.4 BossaNova in the ImageCLEF 2012 Challenge

In this section, we report our results in the ImageCLEF 2012 Photo Annotation task.

The findings according to the official evaluations confirms that: the proposed image

representation in this dissertation has the potential to become a new standard repre-

sentation in image classification tasks.

In total, 13 teams submitted 28 runs exclusively used visual features, where the

maximum number of runs per team was limited to five. In our participation, we

submitted four runs. Our best result (mAP = 34.4%), which applies the combination

of BossaNova and Fisher Vector representations, achieved the second rank among the

28 purely visual submissions, while our BossaNova representation achieved the third

rank (mAP = 33.6%), see Table 5.14.

Table 5.14 shows the best run of the five best teams in the ImageCLEF 2012

Flickr Photo Annotation task5, and details the parameter settings for our method. We

also show the results of each concept for the five best teams (see Table 5.15). Among

those teams, all differences are significant with at least 99% confidence, except for our

team (Top2) and the first team (Top1), whose difference is not significant.

Table 5.14: Image classification mAP (%) results for the best visual run per team on Ima-
geCLEF 2012 Flickr Photo Annotation task [Thomee and Popescu, 2012]. BN: M = 4096,
B = 2, λmin = 0.4, λmax = 2, s = 10−3; FV: 384 Gaussians.

Rank mAP (%)

[Liu et al., 2012a] 1 34.8
BN + FV [Avila et al., 2012] 2 34.4
BN [Avila et al., 2012] 3 33.6
Paper not available 6 33.2
[Ushiku et al., 2012] 10 32.4
[Xioufis et al., 2012] 11 31.8

The best system [Liu et al., 2012a] reported 34.8% mAP, applying a combination

of the top 5 features among the 24 visual features (including color, texture, shape,

high level, and SIFT) for each concept based on the Selective Weighted Late Fusion

scheme [Liu et al., 2012b]. Also, they applied BoW models with 4000 codewords and

soft assignment. The method of Ushiku et al. [2012] uses numerous descriptors (SIFT,

C-SIFT, RGB-SIFT, OpponentSIFT and LBP). Fisher Vectors are used with 256 Gaus-

sians. A linear classifier for each label is obtained with an online multilabel learning

called Passive-Aggressive with Averaged Pairwise Loss. The approach of Xioufis et al.

5All results are available at http://www.imageclef.org/2012/photo-flickr/annotation.
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Table 5.15: Image classification AP and mAP (%) results for the best visual run per
team on ImageCLEF 2012 Flickr Photo Annotation task [Thomee and Popescu, 2012]. Ours
(BN + FV) BN: M = 4096, B = 2, λmin = 0.4, λmax = 2, s = 10−3; FV: 384 Gaus-
sians; Top1 [Liu et al., 2012a]; Top6 (paper not available); Top10 [Ushiku et al., 2012];
Top11 [Xioufis et al., 2012]

.

Top1 Ours Top6 Top10 Top11

1: timeofday day 52.4 53.8 54.2 51.8 54.7
2: timeofday night 34.9 34.6 35.1 31.9 32.4
3: timeofday sunrisesunset 44.0 39.0 39.7 38.4 43.8
4: celestial sun 50.4 47.0 45.3 44.4 50.5
5: celestial moon 38.9 36.1 31.6 36.1 26.8
6: celestial stars 63.3 66.3 65.0 64.0 54.0
7: weather clearsky 60.0 53.1 56.7 49.9 56.3
8: weather overcastsky 35.1 32.6 29.5 29.5 29.7
9: weather cloudysky 68.3 65.7 64.7 65.0 64.5
10: weather rainbow 51.5 37.9 43.0 33.3 45.4
11: weather lightning 24.7 16.9 18.2 14.3 18.6
12: weather fogmist 33.3 33.2 30.4 28.2 32.5
13: weather snowice 23.4 20.6 23.6 18.4 21.6
14: combustion flames 19.6 14.5 19.1 8.4 21.5
15: combustion smoke 18.4 19.3 16.9 14.8 16.9
16: combustion fireworks 67.3 72.2 61.9 68.4 64.6
17: lighting shadow 28.5 25.7 23.7 23.1 25.4
18: lighting reflection 43.0 45.3 41.1 41.3 35.0
19: lighting silhouette 57.4 57.4 54.9 55.4 55.6
20: lighting lenseffect 43.3 41.4 40.1 40.1 42.7
21: scape mountainhill 26.9 35.5 31.8 32.8 32.3
22: scape desert 17.8 7.5 7.6 6.3 9.4
23: scape forestpark 53.5 50.0 52.2 46.8 50.2
24: scape coast 60.4 60.0 59.9 60.8 58.3
25: scape rural 33.9 32.2 29.9 30.0 31.0
26: scape city 61.9 65.0 61.3 61.8 56.3
27: scape graffiti 34.9 31.6 33.3 31.9 29.6
28: water underwater 25.7 18.9 28.0 10.2 29.8
29: water seaocean 30.2 30.5 29.0 31.0 28.9
30: water lake 17.1 25.7 21.0 25.1 18.4
31: water riverstream 22.4 22.3 19.4 20.0 22.6
32: water other 8.9 18.6 16.7 11.0 13.5
33: flora tree 71.4 73.0 69.6 68.4 69.1
34: flora plant 21.1 13.9 14.6 15.4 20.3
35: flora flower 64.3 58.9 53.3 56.8 61.4
36: flora grass 58.8 48.3 51.3 47.0 57.1
37: fauna cat 25.0 29.9 24.0 27.0 16.2
38: fauna dog 42.9 44.7 41.4 44.9 37.1
39: fauna horse 26.5 26.1 22.4 23.5 21.4
40: fauna fish 14.2 14.7 20.3 11.1 16.7
41: fauna bird 31.6 38.5 29.3 30.4 28.6
42: fauna insect 28.8 26.0 24.5 24.1 21.6
43: fauna spider 11.4 19.5 1.7 3.3 9.1
44: fauna amphibianreptile 1.1 1.3 1.5 1.7 3.7

continued on next page
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Top1 Ours Top6 Top10 Top11

45: fauna rodent 16.8 22.2 16.2 20.3 7.5
46: quantity none 92.3 92.7 92.2 92.7 91.2
47: quantity one 60.3 60.9 61.2 59.8 56.5
48: quantity two 14.3 20.3 16.3 14.0 11.7
49: quantity three 6.6 13.3 6.7 6.8 6.2
50: quantity smallgroup 25.5 22.6 26.8 25.1 21.9
51: quantity biggroup 44.8 45.2 40.0 38.4 39.8
52: age baby 30.9 32.2 24.2 25.9 23.6
53: age child 21.1 20.4 14.2 20.0 13.0
54: age teenager 15.5 10.0 16.0 10.0 16.3
55: age adult 61.9 61.2 62.2 61.9 60.2
56: age elderly 14.3 8.6 9.3 8.0 6.9
57: gender male 52.4 53.1 51.6 51.7 49.2
58: gender female 58.4 61.6 58.1 60.0 57.3
59: relation familyfriends 34.9 36.4 33.1 33.8 29.2
60: relation coworkers 20.5 21.4 19.2 21.4 22.0
61: relation strangers 22.3 17.8 23.2 20.5 17.6
62: quality noblur 87.9 88.7 87.5 88.8 87.5
63: quality partialblur 76.1 79.0 76.0 77.3 72.5
64: quality completeblurv 18.8 24.1 20.3 25.3 19.4
65: quality motionblur 35.8 39.5 31.6 35.3 29.2
66: quality artifacts 15.4 15.6 19.5 18.6 17.8
67: style pictureinpicture 12.6 22.3 18.1 17.3 6.4
68: style circularwarp 32.4 32.7 32.3 29.7 23.7
69: style graycolor 29.0 4.0 15.9 8.6 21.7
70: style overlay 25.2 31.8 23.6 27.5 18.6
71: view portrait 37.4 39.0 39.7 39.9 36.9
72: view closeupmacro 34.9 33.9 35.2 31.4 36.7
73: view indoor 40.8 39.4 41.4 37.1 38.0
74: view outdoor 59.1 58.1 58.4 55.8 58.3
75: setting citylife 59.9 60.4 58.0 58.7 55.7
76: setting partylife 32.1 30.9 31.7 30.0 27.5
77: setting homelife 39.4 40.0 38.6 36.2 35.5
78: setting sportsrecreation 20.3 20.2 22.9 18.7 21.3
79: setting fooddrink 55.5 52.0 49.7 51.4 49.7
80: sentiment happy 26.2 20.2 22.5 19.8 25.1
81: sentiment calm 40.0 38.7 38.4 37.9 37.8
82: sentiment inactive 23.3 16.2 23.7 24.0 15.6
83: sentiment melancholic 21.2 13.2 21.1 14.9 15.4
84: sentiment unpleasant 7.1 9.0 8.8 8.7 9.2
85: sentiment scary 10.1 7.3 15.6 10.3 8.9
86: sentiment active 16.1 17.1 15.7 14.8 18.1
87: sentiment euphoric 3.4 6.4 4.6 3.6 5.2
88: sentiment funny 14.3 19.6 14.3 14.3 19.5
89: transport cycle 38.6 38.9 33.6 35.2 27.8
90: transport car 47.1 49.9 46.3 46.9 37.8
91: transport truckbus 8.6 12.2 7.3 13.0 2.1
92: transport rail 29.2 27.8 23.6 31.0 22.5
93: transport water 16.5 25.7 16.7 22.9 13.7
94: transport air 16.8 12.7 17.1 15.4 13.7

mAP 34.8 34.4 33.2 32.4 31.8
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[2012] also employs several descriptors (SURF, SIFT and color SIFT) which are used

by different visual representations (BoW, VLAD and VLAT). For each combination of

descriptor, a multi-label model is built using the Binary Relevance approach coupled

with Random Forests as the base classifier. Moreover, a late fusion scheme averages

the output of the different multi-label models.

In short, we can notice (again) that all those top-performing systems employ

complex combinations of several low-level features to achieve their good results. Our

team achieved the second and the third rank using a single low-level feature (SIFT

descriptors) and SVM classifiers. On account of that, our results of 34.4% for BN +

FV, and 33.6% for BN are notably good.

5.5 Conclusion

In this chapter, we have presented our experimental results, which were organized in

three groups. First, we have proposed to evaluate the impact of each improvement of

BossaNova over BOSSA in statistically sound experiments. We have validated through

a Student t-test the relevance of the three modifications. Also, we have analyzed the

significance of each improvement (and combinations) using the ANOVA test. We have

observed that the semi-soft assignment explains almost 48% of the improvements, while

the normalization explains about 31%. The weighting scheme, however, is responsible

for only 3% of the variation.

The second round of experiments has explored the behavior of the key parameters

in BossaNova representation: the number of codewords M , the number of bins B in

each local histogram zm, and the range of distances [αmin
m , αmax

m ].

Finally, the third group of experiments are a comparison with state-of-the-art

methods, which have allowed us: (i) to confirm the relevance of the improved pooling

scheme introduced in this dissertation, (ii) to show the benefits brought out by the three

proposed improvements of BossaNova over BOSSA; (iii) to observe that BossaNova is

tied with Fisher Vector, the current state-of-the-art method; and iv) to validate the

complementariness of BossaNova and Fisher Vector representations.

Additionally, we have reported our results in the ImageCLEF 2012 Photo Anno-

tation task, in which we have achieved the 2nd rank among 28 visual submissions and

13 teams.



Chapter 6

Application: Pornography Detection

Pornography consumption has increased in recent years, which is due in large part to

the availability and anonymity provided by the Internet [Short et al., 2012]. Porno-

graphic material, however, is often unwelcome is certain environments (e.g., schools,

workplaces), channels (e.g., general-purpose social networks), or for certain publics

(e.g., children). That raises the need to detect and filter such content.

Pornography is less straightforward to define than it may seem at first, since

it is a high-level semantic category, not easily translatable in terms of simple visual

characteristics. Though it certainly relates to nudity, pornography is a different con-

cept: many activities which involve a high degree of body exposure (swimming, boxing,

sunbathing, etc.) have nothing to do with it. That is why systems based on skin detec-

tion [Jones and Rehg, 2002; Zheng and Daoudi, 2004; Rowley et al., 2006; Lee et al.,

2009b; Zuo et al., 2010; Bouirouga et al., 2012] often accuse false positives in contexts

like beach shots or sports.

A commonly used definition is that pornography is “any sexually explicit material

with the aim of sexual arousal or fantasy” [Short et al., 2012]. That raises several

challenges. First and foremost, what threshold of explicitness must be crossed for the

work to be considered pornographic? Some authors deal with that issue by further

dividing the classes [Deselaers et al., 2008] but that not only falls short of providing a

clear cut definition, but also complicates the classification task. The matter of purpose

is still more problematic, because it is not an objective property of the document.

Here, we have opted to keep the evaluation conceptually simple, by assigning only two

classes (pornographic and nonpornographic). On the other hand, we took great care

to make them representative.

In this chapter, we explore our approach in the real-world application of porno-

graphy detection, which because of its high-level conceptual nature, involves large
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intra-class variability. In Section 6.1, we explore some related work, both in terms

of images and videos pornography detection. In Section 6.2, we introduce our own

pornography dataset. In Section 6.3, we present our scheme for pornography detection.

In Section 6.4, we discuss our experimental results. Finally, in Section 6.5, we relate

our concluding remarks.

6.1 Related Work

Most work regarding the detection of pornographic material has been done for the

image domain [Ries and Lienhart, 2012]. The vast majority of those works is based on

the detection of human skin. For example, in [Fleck et al., 1996; Forsyth and Fleck,

1996, 1997, 1999], the authors proposed to detect skin regions in an image and match

them with human bodies by applying geometric grouping rules. Jones and Rehg [2002]

focused on the detection of human skin by constructing RGB color histograms from a

large dataset of skin and non-skin pixels, which allows to estimate the “skin probability”

of a pixel based on its color. Rowley et al. [2006] used Jones and Rehg’ skin color

histograms in a system installed in Google’s Safe Search. Lee et al. [2007] developed a

learning-based chromatic distribution matching scheme to determine the image’s skin

chroma distribution. Zuo et al. [2010] introduced a patch-based skin color detection

that verifies whether all the pixels in a small patch correspond to human skin tone.

Hu et al. [2011] also proposed to model skin patches rather than skin pixels.

Few methods have explored other possibilities. Bag-of-Words models (see Sec-

tion 2.2) have been employed for many complex visual classification tasks, including

pornography detection in images and videos. Deselaers et al. [2008] first proposed a

BoW model to filter pornographic images, which greatly improved the efficiency of the

identification of pornographic images. Lopes et al. developed a BoW-based approach,

which used the HueSIFT color descriptor, to classify images [Lopes et al., 2009b] and

videos [Lopes et al., 2009a] of pornography. Ulges and Stahl [2011] introduced a color-

enhanced visual word features in YUV color space to classify child pornography. Steel

[2012] proposed a pornographic images recognition method based on visual words, by

using mask-SIFT in a cascading classification system.

Those previous works have explored only bags of static features. Very few works

have been applied spatiotemporal features or other motion information (such as op-

tical flow, feature trajectories) for detection of pornography. Tong et al. [2005] pro-

posed a method to estimate the period of a signal to classify periodic motion patterns.

Endeshaw et al. [2008] developed a fast method for detection of indecent video content
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using repetitive motion analysis. Jansohn et al. [2009] introduced a framework that

combines keyframe-based methods with a statistical analysis of MPEG-4 motion vec-

tors. Valle et al. [2012] compared the use of several features, including spatiotemporal

local descriptors for video (such as STIP descriptor [Laptev, 2005]), in a BoW-based

approach for pornography detection.

Also, other approaches have been employed audio analysis as an additional feature

for the identification of pornographic videos. Rea et al. [2006] combined skin color

estimation with the detection of periodic patterns in a video’s audio signal. Liu et al.

[2011b] demonstrated improvements by fusion visual features (color moments and edge

histograms) with “audio words”. In a similar fashion, Ulges et al. [2012] proposed an

approach of late fusing motion histograms with “audio words”.

The importance of pornography detection is attested by the large literature on

the subject. Web filtering is essential to avoid adult or pornographic material where

it is not welcome. There are commercial softwares that block Web sites with this kind

of content (e.g., CyberPatrol, NetNanny, K9 Web Protection). Also, there is software

which scan a computer for pornographic content (e.g., SurfRecon, Porn Detection Stick,

PornSeer Pro). The latter pornography-detection software, the PornSeer Pro, is readily

available for evaluation purposes.

6.2 The Pornography Dataset

There are no standardized datasets for pornography detection, primarily due to copy-

right issues and the potential legal limitations on distributions of large quantities of

pornographic material. As such, a representative dataset of internet videos, both porno-

graphic and nonpornographic, was created for this experiment.

The Pornography dataset contains nearly 80 hours of 400 pornographic and

400 nonpornographic videos. For the pornography class, we have browsed websites

which only host that kind of material1 (solving, in a way, the matter of purpose). The

dataset consists of several genres of pornography and depicts actors of many ethnicities,

including multi-ethnic ones (see Table 6.1).

For the nonpornography class, we have browsed general-public purpose video

network (e.g., YouTube) and selected two samples: 200 videos chosen at random (we

called “easy”) and 200 videos selected from textual search queries like “beach”, “wrestli-

ng”, “swimming”, which we knew would be particularly challenging for the detector

(“difficult”) – the exposure of skin imposes a challenge to the system.

1For example, www.{RedTube, XTube, PornTube, Xvideos}.com
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Table 6.1: Ethnic diversity on the pornographic videos.

Ethnicity % of Videos

Asians 16%
Blacks 14%
Whites 46%
Multi-ethnic 24%

In order to download the videos, we benefited from batch downloader softwares,

for example: we use the YouTube Robot2 to download the “easy” nonpornographic

videos; for “difficult” nonpornographic videos we employ the VDownloader3, which

allows us to manually select the videos; and to download the pornographic videos we

make use of RedTube Grabber4.

Figure 6.1 shows selected frames from a small sample of the dataset, illus-

trating the diversity of the pornographic videos and the challenges of the “diffi-

cult” nonpornographic ones. The Pornography dataset is not generally available

to the community at large, due to copyright problems, but access to it can be

granted after a case-by-case analysis, and the acceptance of an agreement available

at http://www.npdi.dcc.ufmg.br/pornography.

Figure 6.1: Illustration of the diversity of the pornographic videos (top row) and the
challenges of the “difficult” nonpornographic ones (middle row). The easy cases are
shown at bottom row. The huge diversity of cases in both pornographic and nonporno-
graphic videos makes that task very challenging.

2http://www.youtuberobot.com/
3http://vdownloader.com/
4http://www.redtube-grabber.com/
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6.3 Our Scheme

The scheme we propose works by extracting elements from the video, extracting low-

level features from those elements, generating mid-level representations and training the

classifier. In the classification phase, the classifier opinion is asked for each individual

video element, and the final decision is reached by majority voting. The whole scheme

is illustrated on Figure 6.2 and explained in the following.

Video Shot
Extraction

Middle-Frame
Extraction

Frames

Local Features
Extraction

BossaNova
Extraction

BossaNova

Kernel
Map

SVM
Video
Label

Vote
CountVideos

(to train)

Video
(to test)

Figure 6.2: Our scheme for pornography video classification. The data flow for training
is represented by the dashed lines, while the data flow for classification is shown on
solid lines.

Preprocessing: We preprocess the dataset by segmenting videos into shots. An

industry-standard segmentation software5 has been used. On average there are

20 shots per video.

As it is often done in video analysis, a keyframe is selected to summarize the

content of the shot into a static image. Although there are sophisticated ways

to choose the keyframe, in this proof-of-concept application, we opted to simply

selected the middle-frame of each video shot. In total, there are 16,727 shots.

Table 6.2 summarizes the Pornography dataset.

Feature extraction: In the low-level feature extraction, we have extracted local de-

scriptors for each frame, in particular, HueSIFT descriptors [van de Sande et al.,

2010]. In the mid-level feature extraction, we apply our proposed BossaNova

representation (see Chapter 4).

Training: The training step is performed by the SVM classifier. Here, care is taken

to balance the classes (porn and nonporn) so each is given roughly the same

5http://www.stoik.com/products/svc/
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number of training videos at this step. We apply a classical 5-fold cross-validation,

generating nearly 640 videos for training and 160 for testing on each fold (see

Table 6.3).

Classification: The SVM classifier casts a vote over each frame: positive (porn) or

negative (nonporn). The majority label is given to the video.

Table 6.2: Summary of the Pornography dataset.

Class Videos Hours
Shots

per video

Porn 400 57 15.6
Nonporn (“Easy”) 200 11.5 33.8
Nonporn (“Difficult”) 200 8.5 17.5

All videos 800 77 20.6

Table 6.3: Number of frames (shots) for each training and testing sets in the Pornography
dataset. In total, each run contains nearly 640 videos for training and 160 for testing.

Runs
#train #test

nonporn porn nonporn porn

run1 8,194 4,909 2,146 1,478
run2 8,488 4,933 1,852 1,454
run3 8,470 5,144 1,870 1,243
run4 8,351 5,262 1,989 1,125
run5 7,857 5,300 2,483 1,087

6.4 Experiments

In the experiments, we investigated the power of the BossaNova representation for

pornography detection. Our main goal is to compare the performance of BossaNova

[Avila et al., 2013] with BOSSA [Avila et al., 2011].

Also, obtaining a baseline to compare with our method was a major challenge

since, in general, the numbers reported on the literature are not comparable from one

work to another. Often, the datasets are given only very cursory description, making

next to impossible to make a fair assessment of the actual experimental conditions.
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Therefore, we have opted to compare ourselves to PornSeer Pro6, an industry standard

video pornography detection system. It is based on the detection of specific features

(like breast, genitals or the act of intercourse) on individual frames. It examines each

individual frame of the video.

In this section, we first describe our experimental setup and we then show and

discuss our results.

6.4.1 Experimental Setup

As a low-level local descriptor, we employ the 165-dimensional HueSIFT descriptor

[van de Sande et al., 2010], a SIFT variant including color information, which is par-

ticularly relevant for our dataset. The HueSIFT descriptors are extracted densely every

6 pixels and a sampling scale of 1.2. As a result, 3,500 local descriptors, on average,

are extracted from each image of Pornography dataset.

In order to learn the codebooks, we apply the k-means clustering algorithm with

Euclidean distance over one million randomly sampled descriptors. For classification,

we use a nonlinear Gauss-ℓ2 kernel. Kernel matrices are computed as exp(−γd(x, x′))

with d being the distance and γ being set to the inverse of the pairwise mean distances.

We report the image classification performance by using the mean Average Preci-

sion (mAP), and the video classification by accuracy rate, where the final video label is

obtained by majority voting over the images. We also use a confusion table to illustrate

the results.

6.4.2 Results

Table 6.4 shows the results of our experiments over Pornography dataset, and details

the parameter settings for each method.

Once again, as we observed in the Chapter 5, BossaNova outperforms both BoW

and BOSSA representations. Comparing BOSSA with BoW, we already notice a con-

siderable improvement of 3.2% and 4.1% for image and video classification, respectively.

If we now compare BossaNova with BOSSA, we also observe a considerable increase

of 1.8% and 2.4% for image and video classification, respectively. That confirms the

advantages introduced by BossaNova representation.

We also compare our results with the PornSeer Pro, a pornography-detection

software, which uses two parameters “threshold” and “decision” to tune the relation

between hit rate and false alarm rate. Usually, a small “threshold” is used together

6http://www.yangsky.com/products/dshowseer/porndetection/PornSeePro.htm
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Table 6.4: Comparison of the BossaNova, BOSSA and BoW representations on the Porno-
graphy dataset. mAP (%) is computed at image classification level, and Accuracy rate is
reported for video classification. For each method, we use their tested configuration para-
meters, namely BN: M = 256, B = 10, λmin = 0, λmax = 3, s = 10−3; BOSSA: M = 256,
B = 10, λmin = 0, λmax = 3; BoW: M = 256.

mAP Acc. rate
(frames) (videos)

Our methods
BN [Avila et al., 2013] 96.4 ± 1 89.5 ± 1
BOSSA [Avila et al., 2011] 94.6 ± 1 87.1 ± 2

Implemented methods
BoW [Sivic and Zisserman, 2003] 91.4 ± 1 83.0 ± 3

Table 6.5: The average confusion matrix for BossaNova.

Video was labeled as
nipornni nonporn

Video was
porn 88.2% 11.8%
nonporn 9.2% 90.8%

Table 6.6: The average confusion matrix for PornSeer Pro.

Video was labeled as
nipornni nonporn

Video was
porn 65.1% 34.9%
nonporn 12.5% 87.5%

with a small “decision” to keep the same false alarm rate and the hit rate. We employed

the PornSeer Pro default values. Tables 6.5 and 6.6 show the confusion matrices for

our BossaNova and the PornSeer Pro.

6.4.3 Discussion

Our scheme is able to correctly identify 9 out of 10 of the pornographic videos, with

few false positives. This is very important, since the cost of false alarms is high on

the social network context, for it tends to overwhelm the human operators. The false

positive rate attained may appear high at first, but it must be taken in the context of

a very challenging dataset. Considering that half of the nonpornographic test videos

were difficult cases, the rates are, actually, low.
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Figure 6.3: Frames examples corresponding to very challenging nonpornographic
videos: breastfeeding frames (top row), frames of children being bathed (middle row),
and beach frames (bottom row).

Figure 6.4: Frames examples corresponding to very challenging pornographic videos:
frames with very poor quality and with few explicit elements.

It is instructive to study the cases where our method fails. The stubborn false

positives correspond to very challenging nonpornographic videos: breastfeeding se-

quences, sequences of children being bathed, and beach scenes (see Figure 6.3). The

method succeeds for many videos with those subjects, but those particular ones have

the additional difficulty of having very few shots (typically 1 or 2), giving no allowance

for classification errors. PornSeer Pro gave a wrong classification for all those clips.

The analysis of the most hard false negatives revealed that the method has diffi-

culty when the videos are of very poor quality (typical of amateur porn, often uploaded

from webcams) or when the clip is only borderline pornographic, with few explicit ele-

ments (see Figure 6.4). PornSeer also had difficulty with those clips, misclassifying

many of them.

6.5 Conclusion

Internet pornography use has increased over the past 10 years [Short et al., 2012].

The example given by Xvideos, the biggest porn site on the web, is illustrative, with
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4.4 billion page views and 350 million unique visitors per month7. Also, a report by

New York-based technology site, the ExtremeTech8, suggests that a staggering 30% of

all internet traffic is pornography. The increasing prevalence of pornographic content

poses a challenge, because such content is not welcome in some environments or for

some kinds of public (e.g., children), generating the need to detect and filter it.

In this chapter, we have explored our BossaNova approach in the challenging real-

world application of pornography detection. Our scheme has as its advantage the fact

that it does not depend on any skin detector or shape models to classify pornography;

besides, it shows good results.

Additionally, our results can be improved even further by considering recent local

descriptors. For example, Wang et al. [2011] introduced a novel local descriptor, based

on motion boundary histograms, to encode the trajectory information. In the con-

text of action classification, their descriptor with a BoW-based approach consistently

outperforms other state-of-the-art descriptors. Ullah and Laptev [2012] proposed a su-

pervised approach to learn local motion descriptors from a large pool of annotated video

data. The authors have shown in their experiments that the proposed representation

is discriminative as well as complementary to BoW representation.

7http://digitaljournal.com/article/322668#ixzz2E2OCBk80
8http://www.extremetech.com/computing/123929-just-how-big-are-porn-sites
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Conclusion

In this chapter, we provide a summary of the major contributions and findings of this

dissertation. In addition, we discuss some interesting issues that we could not address

due to our limitation of time and scope, and that we left as future work directions.

7.1 Contributions

The main objective of this dissertation was studying and advancing the state-of-the-

art in mid-level image representations for tasks of classification. The BossaNova image

representation [Avila et al., 2012, 2013] is the corollary of those efforts. Among the

contributions of our work, we emphasize:

• Definition and implementation of a novel image representation for classification

tasks. After analyzing the BoW model, we have pointed out the weakness of the

standard pooling operation and, therefore, we have proposed the BossaNova ima-

ge representation [Avila et al., 2013], which offers a more information-preserving

pooling operation based on a distance-to-codeword distribution. Our scheme has

the advantage of being conceptually simple, and easily adaptable. A prelimi-

nary version of the BossaNova, called BOSSA [Avila et al., 2011], has allowed

us to gain several insights into the benefits of the density-based choice of the

representation and to explore the compromises between the opposite goals of

discrimination versus generalization, representativeness versus compactness.

• Statistical evaluation of the impact of the three proposed improvements (the

semi-soft coding scheme, the normalization strategy, and the weighting scheme)

of BossaNova over BOSSA. By analyzing the isolated and joint impact of each en-

hancement on the BossaNova representation, we have validated through a t-test

117
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the relevance of the three modifications. Also, we have analyzed the significance

of each improvement (and combinations) using the statistical test ANOVA. We

have observed that the semi-soft assignment explains almost 48% of the improve-

ments, while the normalization explains about 31%. Those results confirm the

importance of the normalization step, which was in the past often neglected.

• Experimental evaluation of state-of-the-art representations based on the BoW

model for classification tasks, including representations we reimplemented our-

selves, and also results reported in literature from standard datasets/protocols.

We have observed the importance of controlling carefully all conditions when com-

paring different representations. The empirical comparisons on challenge bench-

marks (MIRFLICKR, ImageCLEF 2011/2012 Photo Annotation, VOC 2007 and

15-Scenes) have shown the advantage of BossaNova when compared to traditional

techniques. Moreover, our participation at ImageCLEF 2012 Photo Annotation

challenge achieved the 2nd rank among all submissions using only visual infor-

mation [Avila et al., 2012], with the absolute difference between the first and

our result was 0.4%. Hence, the BossaNova representation has the potential to

advance the state of the art in image representations for concept detection.

• Proposal and evaluation of a novel image representation based on complementa-

rity of BossaNova and Fisher Vector representation. The latter representation

models the distribution of local descriptors in each codeword with a single Gaus-

sian. However, when that Gaussian assumption does not hold, the pooled repre-

sentation may be unrepresentative of the local descriptor statistics. In contrast

to that, BossaNova representation uses additional locality constraints during the

pooling. We have confirmed empirically on many benchmarks that combining

BossaNova with Fisher Vector indeed boosts the classification performances.

• Empirical evaluation of BossaNova representation in the challenging real-

world application of pornography detection, and the development of a novel

dataset to support this challenge. Our pornography dataset is not freely

available, due to copyright issues and the potential legal limitations on dis-

tributions of large quantities of pornographic material. However, the data

is available to researchers, on provision that a user agreement is signed

http://www.npdi.dcc.ufmg.br/pornography.

• Publication of the BossaNova source code, which can be downloaded from

http://www.npdi.dcc.ufmg.br/bossanova/. We hope that it would provide com-

mon ground for future comparisons.
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7.2 Future Work

In addition to the contributions presented in this dissertation, a number of open ques-

tions were raised that suggest further investigation.

BossaNova Parameters Study

In Chapter 5, we have experimentally evaluated the BossaNova parameters. Regarding

the bin quantization (Section 5.2.2), we have observed that increasing the number of

bins yields a slight amelioration in average performance. However, the growth depends

on the visual concept (in this case, a concept of MIRFLICKR dataset). On that

account, we aim to validate the behavior of bin quantization in other datasets. Hence,

we believe that we can improve our results by setting the number of bins per concept.

Considering now the effects of the minimum distance on BossaNova classification

performance (Section 5.2.3), we have noticed that setting the minimum distance ac-

cording to Figure 5.2 (i.e., λmin = 0.4 and λmax = 2, which corresponds to 95% of the

total SIFT descriptors on the whole dataset), leads to considerable improvements for

the most of the concepts and also a decrease for some ones. Therefore, we propose

setting a λmin and even a λmax per codeword, aiming at enhancing our representation.

By fixing a minimum distance per codeword, we avoid the empty regions that appear

around each codeword, and consequently wasting space in the final descriptor.

Multiple Combinations of Descriptors and Classifiers

A trend in the top-performing BoW systems is to have multiple combinations of patch

detectors, descriptors and spatial pyramids, to train one classifier per channel and then

to combine the output of the classifiers [Binder et al., 2011; Liu et al., 2012a]. Systems

following this paradigm have consistently performed among the best in the successive

ImageCLEF evaluations [Nowak et al., 2011; Thomee and Popescu, 2012], for example.

By contrast, in Chapter 5, we have shown our empirical results using only SIFT

descriptors and nonlinear SVM classifiers. Considering that very simple experimental

setup, our BossaNova scheme obtained remarkable results on several benchmarks.

Now equipped with that representation, we want to evaluate the use of multiple

descriptors (both local and global features) and a multiple kernel learning (MKL)

algorithm [Vedaldi et al., 2009], in order to learn a combination of different kernel

functions, obtaining a similarity measure that better matches the underlying problem.

In this way, we hope to significantly increase the performance.



120 Chapter 7. Conclusion

We also hope to improve our results by exploiting further late fusion strategies

to combine BossaNova and Fisher Vector representations. Late fusions schemes have

shown notable results on various benchmarks, e.g., ImageCLEF 2012 Photo Annotation

[Liu et al., 2012a] and PASCAL VOC 2007 [Sánchez et al., 2012].

Large-Scale Experiments

In a classification context, the proposed BossaNova representation is used in conjunc-

tion to Gauss-ℓ2 nonlinear kernels, because linear SVMs have been repeatedly reported

to be inferior to nonlinear SVMs on BoW-based representation [Perronnin et al., 2010b;

Vedaldi and Zisserman, 2012].

The learning of nonlinear SVMs scales somewhere between O(N2) and O(N3)

(where N is the number of training images) and becomes impractical for large-scale

problems, i.e. databases with more than one million images, such as ImageNet Large

Scale Visual Recognition 2012 dataset1 (1000 categories and 1,2 million training im-

ages). This is in contrast with linear SVMs whose training cost is in O(N) [Joachims,

2006] and which can therefore be efficiently learned with large quantities of images.

Note that for the datasets we evaluated (MIRFLICKR, ImageCLEF 2011, ImageCLEF

2012, PASCAL VOC 2007, 15-Scenes, Oxford Flowers), nonlinear SVMs are suited for

training and testing.

Recent works have focused on approximating nonlinear kernels by linear

ones, by providing approximated features maps [Vedaldi and Zisserman, 2012;

Williams and Seeger, 2001]. In most cases, the approximated representations reach

performances comparable to those of the exact kernels. Therefore, we aim to apply

those strategies upon BossaNova to handle large-scale visual recognition tasks.

7.3 Publications

Journal

• S. Avila, N. Thome, M. Cord, E. Valle and A. Araújo. Pooling in image repre-

sentation: the visual codeword point of view. Computer Vision and Image Un-

derstanding (CVIU): Special Issue on Visual Concept Detection, 117(5), pages

453–465, 2013.

1http://www.image-net.org/challenges/LSVRC/2012/
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detectors. In: International Conference on Image Processing (ICIP), Melbourne,

Australia, September 2013.

• S. Avila, N. Thome, M. Cord, E. Valle and A. de A. Araújo. BossaNova at

ImageCLEF 2012 Flickr Photo Annotation task. In: Working Notes of the Con-

ference and Labs of the Evaluation Forum (CLEF), Rome, Italy, 2012.

• S. Avila, N. Thome, M. Cord, E. Valle and A. de A. Araújo. BOSSA: extended

BoW formalism for image classification. In International Conference on Image

Processing (ICIP), pages 2966–2969, Brussels, Belgium, September 2011.

• A. Lopes, S. Avila, A. Peixoto, R. Oliveira, A. de A. Araújo. A bag-of-features

approach based on hue-SIFT descriptor for nude detection. In: 17th European

Signal Processing Conference (EUSIPCO), pages 1552–1556, Glasgow, 2009.

Brazilian Conferences

• S. Avila, N. Thome, M. Cord, E. Valle and A. de A. Araújo. Extended bag-of-

words formalism for image classification. In: 26th Conference on Graphics, Pat-

terns, and Images (SIBGRAPI) – Workshop of Theses and Dissertations (WTD),

Arequipa, Peru, 2013.

• A. Lopes, S. Avila, A. Peixoto, R. Oliveira, M. Coelho, A. de A. Araújo. Nude

detection in video using bag-of-visual-features. In: 22th Conference on Graphics,
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• E. Valle, S. Avila, F. Souza, M. Coelho, and A. de A. Araújo. Content-based fil-

tering for video sharing social networks. In Brazilian Symposium on Information

and Computer System Security (SBSeg), Curitiba, Brazil, 2012.

Others

• EMC2 Summer School on Big Data. Rio de Janeiro, RJ, Brazil, 04–07 February

2013.

• Workshop for Women in Machine Learning (WiML): Theory, Applications, Ex-
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France, 25–29 July 2011. Poster presentation – BOSSA: extended BoW formalism

for image classification.



Appendix A

BossaNova Fisher Derivation

In this appendix, we detail the computation of the gradient g introduced in Section 4.8

as a Fisher score. Therefore, recall that the gradient g is given by:

g(θ,X) =

(

∂ 1
T
logLθ(X)

∂θi

)N

i=1

, (A.1)

where θ represents here all the parameters αi and β(q,i), X = {xt, t = 1 . . . T} the

image, and L the likelihood. We parameterize the multinomial laws by using:

wi =
exp(αi)

∑

j exp(αj)
, (A.2)

w(q,i) =
exp(β(q,i))
∑

j exp(β(j,i))
. (A.3)

As Krapac et al. [2011], we consider the average log-likelihood of the T local

features in an image. When reporting the likelihood from Lθ(X) =
∏T

t=1 pθ(xt), we

obtain:

∂ 1
T
logLθ(X)

∂θi
=

∂

∂θi

1

T

T
∑

t=1

log(pθ(xt)),

=
1

T

T
∑

t=1

∂

∂θi
log(pθ(xt)),

=
1

T

T
∑

t=1

1

pθ(xt)

∂

∂θi
(pθ(xt)). (A.4)
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As p(x|θ) = pθ(x) =
∑K

k=1wkpk(x), we have:

∂

∂αi

(pθ(xt)) =
K
∑

k=1

pk(xt)
∂

∂αi

wk. (A.5)

Knowing that, it is easy to show:

∂

∂αi

wk =
∂

∂αi

(

exp(αk)
∑

j exp(αj)

)

= wk(1Ik=i − wi). (A.6)

Then, we have:

∂ 1
T
logLθ(X)

∂αi

=
1

T

T
∑

t=1

1

pθ(xt)

K
∑

k=1

pk(xt)wk(1Ik=i − wi),

=
1

T

T
∑

t=1

1

pθ(xt)

(

pi(xt)wi −
K
∑

k=1

pk(xt)wkwi

)

,

=

(

1

T

T
∑

t=1

pi(xt)wi

pθ(xt)

)

− wi. (A.7)

Using γi(xt) = pi(xt)wi/pθ(xt) the probability for observation xt to have been

generated by th i-th mixture term introduced in Section 4.8, we get the final result:

∂ 1
T
logLθ(X)

∂αi

=
1

T

T
∑

t=1

γi(xt)− wi. (A.8)

For the β(q,i) parameters, we apply the same derivation scheme on the second

mixture expression, considering each sub-mixture independently:

∂

∂β(q,i)

(pθ(xt)) =
∂

∂β(q,i)

(

K
∑

k=1

wkpk(xt)

)

,

=
∂

∂β(q,i)

(

K
∑

k=1

wk

[

B
∑

b=1

w(b,k)pb(xt|k)
])

. (A.9)

Since the derivative is null, except for k = i, we get:

∂

∂β(q,i)

(pθ(xt)) = wi

B
∑

b=1

∂

∂β(q,i)

(

w(b,i)

)

pb(xt|i). (A.10)
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As for αi, we have:

∂

∂β(q,i)

(w(b,i)) = w(b,i)(1Ib=q − w(q,i)). (A.11)

Substituting Equation A.11 into Equation A.10, we get:

∂

∂β(q,i)

(pθ(xt)) = wi

B
∑

b=1

w(b,i)(1Ib=q − w(q,i))pb(xt|i),

= wi

(

w(q,i)pq(xt|i)− w(q,i)

B
∑

b=1

w(b,i)pb(xt|i)
)

,

= wi

(

w(q,i)pq(xt|i)− w(q,i)pi(xt)
)

. (A.12)

Consequently, we have:

∂ 1
T
logLθ(X)

∂β(q,i)

=
1

T

T
∑

t=1

wi

pθ(xt)
× w(q,i) (pq(xt|i)− pi(xt)) ,

=
1

T

T
∑

t=1

(

wi

pθ(xt)
pi(xt)γ(q,i)(xt)−

w(q,i)

pθ(xt)
wipi(xt)

)

,

=
1

T

T
∑

t=1

(

γ(q,i)(xt)γi(xt)− w(q,i)γi(xt)
)

,

=
1

T

T
∑

t=1

(

γ(q,i)(xt)− w(q,i)

)

γi(xt). (A.13)

Finally, we obtain a vector with the scores A.8 and A.13 for all the parameters

as the image representation.
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