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Abstract—Diabetic retinopathy (DR) is the leading cause of
blindness in adults, but can be managed if detected early.
Automated DR screening helps by indicating which patients
should be referred to the doctor. However, current techniques
of automated screening still depend too much on the detection of
individual lesions. In this work we bypass lesion detection, and
directly train a classifier for DR referral. Additional novelties
are the use of state-of-the-art mid-level features for the retinal
images: BossaNova and Fisher Vector. Those features extend the
classical Bags of Visual Words and greatly improve the accuracy
of complex classification tasks. The proposed technique for direct
referral is promising, achieving an area under the curve (AUC)
of 96.4%, thus reducing the classification error by almost 40%
over the current state of the art, held by lesion-based techniques.

Index Terms—Diabetic Retinopathy, Referral, Referability,
Direct Referral, Bag of Visual Words, BossaNova, Fisher Vector.

I. INTRODUCTION

D IABETIC Retinopathy (DR) is the leading cause of
blindness in adults worldwide, with 93 million people

affected in 2010 [1]. Just considering 40+ year-old Ame-
ricans, we have 7.7 million people with DR [2], most of
which in counties with a shortage of ophthalmologists and
optometrists [3].

Optimal treatment of DR requires early diagnostic and,
thus, regular eye examinations. In practice, however, many
communities cannot offer the frequent consultations and
continuous follow-up required for screening [4]. Therefore,
DR management requires reaching underserviced populations.
Recent research addresses the issue with Computer-Aided
Diagnosis [5]–[14]. Most existing art focuses on the detection
of DR lesions using visual characteristics specific to each type
of lesion [5]–[10]. More recently, a few unified DR-lesion
detectors have been proposed [14]–[20].

It is much harder (and polemic) to decide automatically to
refer or not the patient to the ophthalmologist [18], [20]–[22].
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Automated referral is a hot topic, because DR risk assessment
is complex, based not only on the presence of lesions and their
evolution, but also on subtle hints revealed during examination
and anamnesis. We argue, however, that automated or semi-
automated decision of referable cases can have a huge impact
on the management of care, reducing the specialist’s workload
while still attending to the patients in need. While agreeing that
face-to-face consultations with a specialist are always ideal,
we stress that many communities simply lack the luxury of
offering them to every suspect case. For poor, isolated, or rural
communities, it is critical to prioritize the high-risk cases, in
order to better serve the patients [23].

Currently, automated referral decisions combine separate
DR-lesion classifiers into a final decision. Those models are
complex, cumbersome to implement, and often have limited
accuracy. We take a different approach, with an effective
method for directly assessing the referability of patients. That
method is based upon the Bags of Visual Words (BoVW)
model [24] and maximum-margin support vector machine
(SVM) classifiers. We also improve the referral assessment
with advanced mid-level features (BossaNova [25] and Fisher
Vector [26]) that considerably extend the BoVW model.
Because image classification is very sensitive to the choice
of parameters, we employ a rigorous experimental design to
investigate the significance of our choices.

We have organized the remainder of this paper into six
sections. In Section II, we describe related work. In Section III,
we overview the lesion-based referable methodology, while
in Section IV we explain our methodology for direct auto-
mated referral decision. In Sections V and VI, we present,
respectively, the experimental protocol and the results for
the proposed method, using the 5×2-fold cross-validation
protocol. Finally, in Section VII, we conclude the paper and
discuss future possibilities.

II. STATE OF THE ART

The simple presence of DR lesions is insufficient to warrant
referral. For instance, a small number of microaneurysms
in a safe region of the retina might be considered mild
nonproliferative DR, without need of referral. Much existing
art addresses that problem [18], [20]–[22], [27], but still those
approaches depend strongly on lesion detection, which is often
very specific to each type of lesion. More recently, unified
models for detecting any kind of DR lesion appeared [15]–
[19], but even those require an extra fusion step to combine
the lesion scores into a single referability decision.
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Fleming et al. [27] compared automatic and human grading
of DR, to assess the effectiveness of the former in a screening
program. Their procedure started with quality assessment,
to ensure that the retina images had the recommended field
definition [28]. If the image had the required quality, it was
then assessed by detecting microaneurysms and hemorrhages.
The screening classified an image as positive if it was low-
quality or if it had lesions. The discrepancies among the
automatic and the manual grading were evaluated by seven
senior ophthalmologists. The authors showed that, in most
conflicting cases, the grading software result was correct. The
study indicated that for 45.7% of patients, manual grading
could be avoided.

Soto-Pedre et al. [22] investigated the advantages of using
DR detectors to reduce specialists’ workload. Their auto-
mated grading system assessed image quality, and counted
microaneurysms [27], [28]. For comparison, the retinal ima-
ges were graded by a specialist who classified the gradable
(with enough quality) images using the International Clinical
Diabetic Retinopathy (ICDR)1 severity scale [29]. When an
image reached the threshold level of DR (e.g., a few mi-
croaneurysms), the patient was referred to an ophthalmologist.
The method achieved 94.5% sensitivity, and 68.8% specificity.
The automated system had a classification accuracy of 72.3%
and was able to reduce human workload by 44%. However,
the work focused only on microaneurysms, ignoring exudates,
deep hemorrhages, and cotton-wool spots from the analysis.
It is worth mentioning that the simple presence of a few mi-
croaneurysms in one quadrant of the retina only characterizes
a mild nonproliferative DR.

Abràmoff et al. [21] combined individual DR-lesion detec-
tors into a referability decision. The Iowa Detection Program
incorporated image quality assessment and detectors of exu-
dates, microaneurysms, hemorrhages, cotton-wool spots, and
neovascularization. After analyzing the retinal images, a fusion
algorithm combined the extracted information and generated
a score that expressed the likelihood for referral [30]. Iowa
Detection Program’s AUC was 93.7% after adjudication and
consensus by three experts.

Existing DR-lesion detectors tend to be specific for each
type of lesion. However, recent research has stressed general
frameworks adaptable for large classes of lesions [15]–[17],
[19]. Pires et al. [18], [20] employed this methodology for
detecting the commonest DR lesions: hard exudates, red
lesions, superficial hemorrhages, deep hemorrhages, cotton-
wool spots, and drusen. The authors employed a general model
composed of BoVW mid-level features, and SVM classifiers.
They created a high-level feature vector with the decision
scores of all lesion classifiers, and used that vector as input
for the referral classifier. Their referability decision had an
AUC of 93.4% [20], which was then improved to 94.2% by
enhancing the lesion detectors with better mid-level image
features [18].

1ICDR is a simplification of the Early Treatment Diabetic Retinopathy
Study (ETDRS), formulated by a consensus of international experts.

III. LESION-BASED REFERABLE

We now overview the classical approach for detecting refe-
rable DR, which, in general, follows three steps: (1) detection
of individual DR lesions; (2) fusion of the lesion responses;
and (3) referability decision. We will, in particular, follow how
that methodology was implemented by Pires et al. [18], [20],
based on the responses of six distinct lesion detectors. We will
refer to that particular work, in the remainder of this paper,
simply as “the lesion-based approach” (Figure 1).

For low-level feature extraction, the lesion-based approach
used the Speeded-Up Robust Features (SURF) algorithm [31]
pre-tuned to detect and describe a pre-determined number of
points of interest (PoIs), e.g., 400. The PoIs were described by
a 128-dimensional SURF which had previously proved more
effective than the 64-orientation versions [15].

Codebook learning was performed by a k-means clustering
over features randomly chosen from a training set of images.
The codebooks were learned using a class-aware policy, avoi-
ding a domination by codewords representing healthy regions.
The class-aware scheme worked by creating two independent
codebooks: one from descriptors outside the regions with
lesions (including images from healthy patients), and one from
descriptors sampled from regions marked by the specialist as
having lesions.

The lesion-based approach employed BoVW with semi-soft
coding as mid-level features. For comparison purposes, we will
also use those same mid-level features in this work. Because
they turn out to be so important, we will discuss mid-level
features in detail in this section, and revisit them in Section IV.

The lesion-based approach had two distinct classifiers (and
thus, two training phases): one for the lesion detectors, and
one for the referability decision.

Mid-Level Feature Extraction: Bags of Visual Words

Mid-level feature extraction aims at transforming low-level
local descriptors (e.g., SURF [31]) into a global and richer
image representation of intermediate complexity [32].

BoVW [24], the most popular mid-level representation
in Computer Vision, describes an image as a histogram of
quantized local descriptors. It can be understood as the appli-
cation of two steps [32]: coding, which transforms the local
descriptors into a code adapted to the task, and pooling, which
summarizes the codes obtained into a single feature vector.

In the standard BoVW, the coding step associates the
low-level local descriptors to the closest codeword in the
codebook2 (hard-assignment coding), and the pooling step
averages those codes over the entire image (average pooling).

Many alternatives to this standard scheme have been de-
veloped. For instance, to attenuate the effect of coding errors
introduced by quantization, hard-assignment can be replaced
by soft-assignment coding [33], [34]. On the other hand, soft
assignment results in dense code-vectors, which is undesir-
able as it leads to ambiguities in the pooling of all codes
present in the image. Therefore, a semi-soft scheme is often
more appropriate. Pires et al. designed a semi-soft for retinal

2The codebook is usually obtained by clustering a sample of local descrip-
tors from the training data.
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images analysis that makes a partial (soft) assignment only to
the codeword closest to the local descriptor, attaining, thus,
sparsity [18].

Also, to overcome the “blurring” effect due to the averaging
of the codes of all elements in the image, average pooling can
be replaced by max pooling [35].

IV. DIRECT REFERRAL ANALYSIS

The automated referral assessment proposed in this paper
dispenses with the intermediate stage of detecting DR lesions.
That direct approach has both theoretical and practical moti-
vations.

Lesion-based referral decisions loses critical information on
the interface between the lesion-specific classifiers and the
referability classifier. Often, the referral classifier receives just
a vector of classification scores, one per lesion classifiers.
This is unfortunate, because cogent information is lost, like
the number, intensity, and even position of the lesions in
the retina. One can create ad hoc schemes to transfer those
data between the classifiers, but, it may be simpler to forgo
the lesion classifiers altogether, and just provide the retinal
images, with all cogent information, directly to the referability
classifier.

Giving the whole image to the referability classifier has
also practical advantages. The classical scheme involves im-
plementing, debugging, training, and testing several lesion
classifiers, and then one additional layer to combine the results
and make the referral decision. Although using a unified
approach for the lesion detectors [18]–[20] simplifies the task,
it remains much more complex than implementing, training,
and testing a single model. The streamlined technique for
direct decision on referability is illustrated in Figure 2.

For low-level feature extraction, the method selects patches
on a dense grid using diameters of 12, 19, 31, 50, 80, 128
pixels. The selected patches are described with SURF [31]
in 128 dimensions. The low-level features are then integrated
into a single feature vector using mid-level features.

For the mid-level features, we employ simple BoVW as a
baseline and explore two recent alternatives: BossaNova [25]
and Fisher Vector [26] (Section IV-A).

In the codebook learning step, while the lesion-based
approach uses pre-computed codebooks for each individual
lesion detector [18], the direct methodology uses k-means with
Euclidean distance over a sample of low-level features. For
BoVW or BossaNova [25], the codewords are the centroids
of k-means, keeping the class-aware scheme proposed in [18]
(half of the codebook from descriptors sampled from refe-
rable images, and half from nonreferable images). In Fisher
Vector [26], the codebook learning, using (class-agnostic)
Gaussian Mixture Models, is intrinsic to the representation.

The method trains just one decision model for referability.

A. Alternative Mid-Level Representations

In the following, we overview two recent mid-level repre-
sentation methods: BossaNova and Fisher Vector.

1) BossaNova: In order to keep more information than the
BoVW during the pooling step, BossaNova [25] introduces a
density-based pooling strategy, which computes the histogram
of distances between the local descriptors and the codewords.
More formally, BossaNova pooling function g estimates the
probability density function of αm: g(αm) = pdf(αm), by
computing the following histogram of distances zm,b:

g : R
N −→RB,

αm −→ g(αm) = zm,

zm,b = card
(

x j | αm, j ∈
[ b

B
;

b+1
B

])
,

b
B
≥ α

min
m and

b+1
B
≤ α

max
m , (1)

where N denotes number of local descriptors in the image,
B indicates the number of bins of each histogram zm, αm, j re-
presents a dissimilarity (i.e., a distance) between codeword cm
and descriptor x j, and [αmin

m ;αmax
m ] limits the range of distances

for the descriptors considered in the histogram computation.
In addition to that pooling strategy, Avila et al. [25] also

proposed a localized soft-assignment coding that considers
only the k-nearest codewords for coding a local descriptor,
and keeps the representation compact.

Pires et al. [19] have shown that the BossaNova approach
performed very well for detecting DR-related lesions. For
white and red lesions detection, the results improved the
hitherto best in literature (see [19] for more details).

In the current paper, we evaluated BossaNova representation
in a direct approach for referable DR detection.

2) Fisher Vector: Fisher Vector [26] is the mid-level image
representations with consistently best results in computer
vision literature [36], [37]. Based upon the idea of Fisher
information vectors [38] in the parametric space of Gaussian
Mixture Models (GMM) estimated over the whole set of
images, it extends the BoVW paradigm by encoding first-
and second-order average differences between the descriptors
and codewords. Furthermore, Fisher Vector is a compact
representation, since much smaller codebooks are required in
order to achieve a good classification performance in general
vision problems.

Formally, given a GMM with N Gaussians, let us denote
its parameters by λ = {wi,µi,σi, i = 1 . . .N}, where wi, µi
and σi are respectively the mixture weight, mean vector and
diagonal covariance matrix of Gaussian i. In the Fisher Vector
framework, the D-dimensional descriptor x j is encoding with a
function Φ(x j) = [ϕ1(x j), . . . ,ϕN(x j)] into a 2ND-dimensional
space where each function ϕi(x j) is defined by:

ϕi(x j) : R
D −→R2D,

ϕi(x j) =

[
γ j(i)√

wi

(
x j−µi

σi

)
,

γ j(i)√
2wi

(
(x j−µi)

2

σi2
−1

)]
, (2)

where γ j(i) denotes the soft assignment of descriptor x j to
Gaussian i.

We evaluate the Fisher Vector mid-level features given that it
offers a more complete representation of the sample set, which
we believe would be important for DR referable assessment.
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Fig. 1. Pipeline of the lesion-based methodology for detection of referable diabetic retinopathy as described in [18].

Fig. 2. Pipeline of the methodology for direct diabetic retinopathy referral assessment proposed in this work.

To the best of our knowledge, it has never been applied to this
problem. More details on Fisher Vector representation can be
found in [26], [37].

V. EXPERIMENTAL PROTOCOL

Here we evaluate whether the proposed direct referal leads
to better decisions than the previous lesion-based schemes.
We also address the limitations of BoVW for retinal images
(specifically the semi-soft coding proposed for eye-fundus
images), and explore sophisticated approaches for mid-level
description, such as Fisher Vector and BossaNova, detailed in
Section IV-A.

In this section, we describe the datasets used in the deve-
lopment of the system for referable diabetic retinopathy, the
validation protocol, and a description of the experiments.

A. Datasets

Two different datasets annotated by medical specialists were
considered in this work: DR2 and MESSIDOR.

The DR2 dataset3, from the Department of Ophthalmology,
Federal University of São Paulo, comprises 520 images cap-
tured using a TRC-NW8 (Topcon Inc., Tokyo, Japan) nonmy-
driatic retinal camera with a Nikon D90 camera. To increase
the processing speed, the images with 12.2 megapixels were
cropped to 867×575 pixels. According to the annotations
related to referable DR, 435 images were manually categorized
by two independent specialists, whose mean intergrader κ is
0.77. Of these, 98 images were graded by at least one expert
as requiring referral (56 images graded as positive by both
experts), while 337 images were annotated by both experts as
not requiring referral within one year. Although all patients
in the DR2 dataset are diabetic, the specialists were asked to
tag an image as referable or nonreferable based on any reason
they considered relevant, not just the severity of a particular
lesion.

3publicly available under accession number 10.6084 and URL http://dx.doi.
org/10.6084/m9.figshare.953671.

http://dx.doi.org/10.6084/m9.figshare.953671
http://dx.doi.org/10.6084/m9.figshare.953671


JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 5

TABLE I
RETINOPATHY GRADE CRITERION USED FOR MESSIDOR ANNOTATION.

Grade Criterion
0 (µA = 0) AND (H = 0)
1 (0 < µA <= 5) AND (H = 0)
2 ((5 < µA < 15) OR (0 < H < 5)) AND (NV = 0)
3 (µA >= 15) OR (H >= 5) OR (NV = 1)

µA: number of microaneurysms
H: number of hemorrhages

NV = 1: neovascularization - NV = 0: no neovascularization

The MESSIDOR dataset4 was acquired in three French
ophthalmologic departments using a color video 3CCD ca-
mera on a Topcon TRC NW6 non-mydriatic retinograph with
a 45 degree field of view. It comprises 1,200 eye-fundus
images captured with three distinct resolutions: 1,440×960,
2,240×1,488 or 2,304×1,536. The images have been cropped
in order to establish that the relevant circular area of the retina
has a radius similar to the DR2 database. Although it has not
been graded for referable diabetic retinopathy, the dataset was
annotated with two significant criteria: retinopathy grade (see
Table I) and risk of macular edema.

The severity of the diabetic retinopathy is largely used
as guideline for the frequency of examinations [21], [39].
Although a frequent consultation is recommended for patients
with moderate or severe nonproliferative DR [39], for those
without DR-related lesion or with just microaneurysms the
annual incidence of progression is low [40]. In these situations,
longer intervals between examinations may be recommended
(one year for diabetics). Hence, based on the original annota-
tions about DR severity, the guidelines of periodic referrals and
the opinion of an expert about the criterion employed in the
MESSIDOR dataset, we switched the grading into referable or
nonreferable. Given that the presence of just microaneurysms
does not suggest a referral in less than one year, the grades 0
and 1 (including also no risk of macular edema) are considered
as nonreferable, while grades 2 and 3 (and also apparent
macular edema) as referable, resulting in 688 negative and
512 positive images.

B. Validation Protocol

We employed a 5×2-fold cross-validation protocol [41], the
same used in previous lesion-based assessment works [18],
[20]. This protocol consists of repeating the process of two-
fold cross validation five times. In each of the five steps, we
randomly separate the samples in two groups, balanced by
class, and use one of the groups for training and the other for
testing. We perform two experiments per step, with the groups
switching roles.

C. Experiments

The experiments were divided into three parts, to answer
the following questions:

1) Question 1: Can we forgo the detection of individual
DR lesions and still have an effective referral decision?

4kindly provided by the MESSIDOR program partners (see http://messidor.
crihan.fr)
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Fig. 3. ROC results for direct assessment for need of referral using BoVW
mid-level characterization approach. The experiments were performed for
hypothesis validation.

In these experiments, we employ the DR2 dataset,
divided in the same configuration used in the work used
as baseline [18].

2) Question 2: Can sophisticated mid-level features —
BossaNova [25] and Fisher Vector [26] — improve
referral decision? The protocol and baseline are the same
as in Question 1, but here we also contrast our different
direct referral techniques (BoVW vs. BossaNova vs.
Fisher).

3) Question 3: Can we confirm the suitability of direct
referral in a second, independent, dataset? These ex-
periments are performed in the reputable MESSIDOR
dataset, using both the direct and the lesion-based ap-
proaches for comparison purposes. As explained in V-A,
the MESSIDOR dataset was obtained in very different
circumstances (time, country, equipment, people) than
the DR2 dataset used in Question 1, reinforcing the
independence of the results.

In our experiments, we extracted visual codebooks of
{1,000, 2,000} visual codewords. Except for the number of
visual codewords, we kept the default BossaNova parameter
values the same as in [25]. For Fisher Vector, we used GMM
with {128, 256} Gaussians after reducing the dimensionality
of the SURF descriptors to 64 by applying Principal Compo-
nent Analysis (PCA), as suggested in [37].

For the binary classification (referable vs. nonreferable),
we used Support Vector Machines (SVM). We searched for
the best parameters during the training with the standard
LIBSVM’s built-in grid search algorithm [42].

VI. RESULTS

In order to investigate the hypothesis that lesion detection is
nonessential for an effective referral assessment and answer
Question #1 in Section V-C, we use exactly the same mid-
level features both for the traditional lesion-based method and
the current approach. Both employ the BoVW with semi-soft
coding explained in [18].

Figure 3 shows the results on the DR2 dataset for both
methodologies: lesion-based [18] (AUC = 94.2%) and the

http://messidor.crihan.fr
http://messidor.crihan.fr
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Fig. 4. ROC results for direct assessment for need of referral using advanced
mid-level characterization approaches. The experiments were performed for
improvement of the method.

best direct-referral. Direct referral performs better with 2,000
codewords, reaching an AUC of 94.7%.

The results obtained with BoVW, shown in Figure 3,
validate our hypothesis that the detection of individual DR-
related lesions is not necessary to provide effective referral
decisions.

The second part of the experiments aims at exploring
advanced mid-level features for answering Question #2 in
Section V-C , where the results obtained in the first part will act
as a baseline. As previously explained, we evaluate two recent
mid-level features: BossaNova [25] and Fisher Vector [26].

Figure 4 shows the best results achieved with each mid-
level feature. While BoVW achieved its best result with
2,000 codewords (AUC = 94.7%), BossaNova reached the
best AUC using 1,000 codewords (AUC = 95.7%). Finally,
Fisher Vector obtained the best result using just 128 Gaussians
(AUC = 96.4%).

The results presented in Figure 4 express how accurate
are the referral decisions by direct assessment, emphasizing
that richer representation approaches yield better results for
referable DR detection. We highlight that the Fisher Vector
approach outperforms the traditional BoVW, reducing the
classification error by over 30% (5.3% to 3.6%).

The third part of the experiments aims at reinforcing, in a
reputable dataset, the direct methodology for referral and an-
swering Question #3 in Section V-C. We use the MESSIDOR
dataset as benchmark.

Once again, we perform this experiment with both the cur-
rent direct referral and the previous lesion-based approaches.
Figure 5 depicts the results reached with the lesion-based
method, as well as the best results achieved with the direct
approach for each mid-level representation. For BoVW, the
best result was obtained with a codebook of size 2,000
(AUC = 79.1%). BossaNova reached its best AUC using 2,000
codewords (AUC = 85.6%). For Fisher Vector, the best result
was achieved using 256 Gaussians (AUC = 86.3%).

While the lesion-based method obtained an AUC of 76.0%,
we achieve the promising result of 86.3% using the current
method that does not depend of lesion detection. The results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 - Specificity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
e
n
si

ti
v
it

y

Need for Referral

Lesion-based Referable ([18])      AUC = 76.0%

Direct Referable (BoVW)              AUC = 79.1%

Direct Referable (BossaNova)      AUC = 85.6%

Direct Referable (Fisher Vector)   AUC = 86.3%

Fig. 5. ROC results for direct assessment for need of referral using advanced
mid-level characterization approaches. The experiments were performed for
emphasizing the fitness of the method in the MESSIDOR dataset.

reveal MESSIDOR as much more challenging dataset than
DR2. Nevertheless, the relative performance of the techniques
confirm the interest of the direct referral choice, which, in this
case, appear prominently better.

To the best of our knowledge, only Sánchez et al. [43] used
MESSIDOR for referral decisions. They reported an AUC of
91.0% using, however, ad hoc pre-processing techniques such
as quality analysis, vessel segmentation, optic disc detection,
and lesion detection.

Additionally, we attempt a new spatial pooling in concentric
circular regions, in order to explore the location of low-
level descriptors in the retinal image. Since the position of
the lesions in the retina is well-known by specialists as one
important factor for identifying referable retinopathy [44], we
propose to divide the image on concentric circular regions
emphasizing the lesions in the macular area. Nonetheless,
the results we obtained so far contradict the expectations.
For a more detailed discussion on this topic, please refer to
supplementary material available along with this paper.

A. Statistical Analysis
In this section we explore the significance of the previous

results.
Each single experiment requires picking a large number of

parameters (mid-level representation, codebook size), that may
have interactions. In order to investigate if the choice of mid-
level feature would still appear significant when considering
the totality of experiments performed, we applied a factorial
analysis of variance (ANOVA) [45, chap. 22], with a block
design using the folds as blocks, on the DR2 dataset. Since the
AUC is a rate and behaves very non-linearly at the extremes
of the [0-1] scale, we employ the more linear “log odds”
scale (logit). We lessened the nuisance effect of the choice
of the training set, by subtracting the global average of each
fold from the results relative to that fold. In Table II, the
statistical results reinforce the importance of the choice mid-
level representation (p-value < 0.001). Note that the mid-level
is responsible for more than 40% of the variation (see the
column ‘Sum of squares’).
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TABLE II
PARTIAL VIEW OF THE ANOVA TABLE. WE OMIT THE SECOND-ORDER INTERACTIONS SINCE NONE OF THEM WERE SIGNIFICANT. THE CHOICE OF

MID-LEVEL REPRESENTATION EXPLAINS THE NON-RANDOM VARIATION, AS SEEN IN THE SUM OF SQUARES COLUMN.

Parameter Degrees of Sum of Mean F value p-valuefreedom squares square
mid-level 2 59.77 29.885 20.787 2.02×10−7 ***

codebook 1 2.57 2.568 1.786 0.187
residuals 54 77.64 1.438

total 59 143.86
Significance codes: *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05

To further investigate the difference between the two com-
peting advanced mid-level features, BossaNova and Fisher
Vector, we perform a t-test [45, chap. 13] on paired sam-
ples obtained by 10 folds on the DR2 dataset (recall that
we employed a 5×2-fold cross-validation protocol). For a
confidence level of 95%, the difference between Fisher Vector
and BossaNova is not significant (p-value = 0.3569), showing
that both Fisher Vector and BossaNova play important roles
in direct referral assessment.

VII. CONCLUSION

We proposed a novel approach to decide, directly from the
retinal images and without preliminary DR-lesion detection,
whether or not a patient will need to be referred to an oph-
thalmic specialist within a year. This decision to forgo specific
DR-lesion detection has both theoretical motivations (making
the referral decision using all information present in the image
instead of just lesion scores) and practical advantages (much
simpler to implement, test, and deploy). We highlight that
direct assessment is new for referable diabetic retinopathy, and
has not been developed before.

The experiments show that direct analysis for referral is
not only feasible, but also advantageous. The direct me-
thodology provided conclusive and promising results that
outperformed the traditional lesion-based methodology in a
strict comparative investigation. Direct referral assessment is
possible because the rich mid-level representations we employ
capture all the cogent information from the image, allowing the
classifier to make complex decisions without losing important
information.

Our experimental results contradicts previous beliefs show-
ing no advantage in using two levels of classification: on the
contrary, our experiments suggest that the loss of informa-
tion in the interface between the classifiers is detrimental to
accurate classification. Direct referral assessment is possible
and effective using appropriate choices of low- and mid-level
representations of the retina images.

We emphasize the novelty of using cutting-edge mid-level
representations (BossaNova and Fisher Vector), over the tra-
ditional BoVW approach. The experiments and statistical ana-
lysis confirm that the choice of the mid-level representation is
critical. The best result for direct referral, reached by the Fisher
Vector approach, clearly outperforms the traditional lesion-
based method by more than two percentage points, reducing
the classification error by almost 40% (from 5.8% to 3.6%).
We also conclude that, the richer the image representations,
the more accurate the diagnosis of need of referral.

As the proposed direct methodology presented interesting
results for referral assessment, in future work we aim to
investigate automated decision with respect to DR progression.
Other future work consists of studying alternative techniques
using very recent approaches such as convolutional neural
networks.

ACKNOWLEDGMENT

The authors would like to thank the medical team for
helping us to collect and tag the ocular-fundus images. This
work was supported in part by Microsoft Research, São
Paulo Research Foundation (Fapesp) under the grants MSR-
Fapesp 2008/54443-2 and Fapesp 2010/05647-4, Amazon Web
Services, and Samsung Electronics of Amazon.

REFERENCES

[1] J. W. Yau, S. L. Rogers, R. Kawasaki, E. L. Lamoureux, J. W. Kowalski,
T. Bek, S.-J. Chen, J. M. Dekker, A. Fletcher, J. Grauslund et al., “Global
prevalence and major risk factors of diabetic retinopathy,” Diabetes care,
vol. 35, no. 3, pp. 556–564, 2012.

[2] Vision Problems in the U.S., “Prevalence of adult vision impairment and
age-related eye disease in America,” accessed: 2015-02-12. [Online].
Available: http://www.visionproblemsus.org/

[3] D. M. Gibson, “The geographic distribution of eye care providers in
the united states: Implications for a national strategy to improve vision
health,” Preventive Medicine, vol. 73, pp. 30–36, 2015.

[4] R. Hazin, M. Colyer, F. Lum, and M. K. Barazi, “Revisiting diabetes
2000: challenges in establishing nationwide diabetic retinopathy preven-
tion programs,” American Journal of Ophthalmology, vol. 152, no. 5,
pp. 723–729, 2011.

[5] A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F. Sharp,
“Automated microaneurysm detection using local contrast normalization
and local vessel detection,” IEEE Transactions Medical Imaging, vol. 25,
pp. 1223–1232, 2006.

[6] A. D. Fleming, S. Philip, K. A. Goatman, G. J. Williams, J. A.
Olson, and P. F. Sharp, “Automated detection of exudates for diabetic
retinopathy screening,” Physics in Medicine and Biology, vol. 52, no. 24,
pp. 7385–7396, 2007.

[7] A. D. Fleming, K. A. Goatman, S. Philip, G. J. Williams, G. J.
Prescott, G. S. Scotland, P. McNamee, G. P. Leese, W. N. Wykes,
P. F. Sharp, and J. A. Olson, “The role of haemorrhage and exudate
detection in automated grading of diabetic retinopathy,” British Journal
of Ophthalmology, vol. 94, no. 6, pp. 706–711, 2010.

[8] L. Giancardo, F. Meriaudeau, T. Karnowski, Y. Li, K. Tobin, and
E. Chaum, “Microaneurysm detection with radon transform-based clas-
sification on retina images,” in Intl. Conference of the IEEE Engineering
in Medicine and Biology Society, 2011, pp. 5939–5942.

[9] M. Niemeijer, B. van Ginneken, M. J. Cree, A. Mizutani, G. Quellec,
C. I. Sanchez, B. Zhang, R. Hornero, M. Lamard, C. Muramatsu, X. Wu,
G. Cazuguel, J. You, A. Mayo, L. Qin, Y. Hatanaka, B. Cochener,
C. Roux, F. Karray, M. Garcia, H. Fujita, and M. D. Abràmoff,
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in image representation: The visual codeword point of view,” Computer
Vision and Image Understanding, vol. 117, no. 5, pp. 453–465, 2013.

[26] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in European Conference on Com-
puter Vision. Springer, 2010, pp. 143–156.

[27] A. D. Fleming, K. A. Goatman, S. Philip, G. J. Prescott, P. F. Sharp,

[27] A. D. Fleming, K. A. Goatman, S. Philip, G. J. Prescott, P. F. Sharp,
and J. A. Olson, “Automated grading for diabetic retinopathy: a large-
scale audit using arbitration by clinical experts,” British Journal of
Ophthalmology, vol. 94, no. 12, pp. 1606–1610, 2010.

[28] A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F. Sharp,
“Automated assessment of diabetic retinal image quality based on clarity
and field definition,” Investigative Ophthalmology & Visual Science,
vol. 47, no. 3, pp. 1120–1125, 2006.

[29] C. Wilkinson, F. L. Ferris III, R. E. Klein, P. P. Lee, C. D. Agardh,
M. Davis, D. Dills, A. Kampik, R. Pararajasegaram, and J. T. Verda-
guer, “Proposed international clinical diabetic retinopathy and diabetic
macular edema disease severity scales,” Ophthalmology, vol. 110, no. 9,
pp. 1677–1682, 2003.

[30] M. Niemeijer, M. D. Abramoff, and B. van Ginneken, “Information
fusion for diabetic retinopathy cad in digital color fundus photographs,”
Medical Imaging, IEEE Transactions on, vol. 28, no. 5, pp. 775–785,
2009.

[31] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[32] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level
features for recognition,” in IEEE Intl. Conference on Computer Vision
and Pattern Recognition, 2010, pp. 2559–2566.

[33] J. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J.-M. Geuse-
broek, “Visual word ambiguity,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 7, pp. 1271–1283, 2010.

[34] L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,”
in IEEE Intl. Conference on Computer Vision, 2011, pp. 2486–2493.

[35] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Computer
Vision and Pattern Recognition, 2009, pp. 1794–1801.

[36] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, “The devil
is in the details: an evaluation of recent feature encoding methods,” in
British Machine Vision Conference (BMVC), 2011, pp. 76.1–76.12.

[37] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-
tion with the fisher vector: Theory and practice,” International Journal
of Computer Vision (IJCV), vol. 105, no. 3, pp. 222–245, 2013.

[38] T. S. Jaakkola and D. Haussler, “Exploiting generative models in
discriminative classifiers,” in Advances in Neural Information Processing
Systems. Cambridge, MA, USA: MIT Press, 1999, pp. 487–493.
[Online]. Available: http://dl.acm.org/citation.cfm?id=340534.340715

[39] D. S. Fong, L. Aiello, T. W. Gardner, G. L. King, G. Blankenship,
J. D. Cavallerano, F. L. Ferris, and R. Klein, “Retinopathy in diabetes,”
Diabetes care, vol. 27, no. suppl 1, pp. s84–s87, 2004.

[40] T. Batchelder and M. Barricks, “The wisconsin epidemiologic study of
diabetic retinopathy,” Archives of ophthalmology, vol. 113, no. 6, pp.
702–703, 1995.

[41] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural Computation, vol. 10, pp.
1895–1923, 1998.

[42] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[43] C. I. Sánchez, M. Niemeijer, A. V. Dumitrescu, M. Suttorp-Schulten,
M. D. Abramoff, and B. v. Ginneken, “Evaluation of a computer-aided
diagnosis system for diabetic retinopathy screening on public data,”
Investigative Ophthalmology & Visual Science, vol. 52, no. 7, pp. 4866–
4871, June 2011.

[44] T. V. Litvin, G. Y. Ozawa, G. H. Bresnick, J. A. Cuadros, M. S. Muller,
A. E. Elsner, and T. J. Gast, “Utility of hard exudates for the screening
of macular edema,” Optometry and Vision Science, vol. 91, no. 4, pp.
370–375, 2014.

[45] R. Jain, The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling., ser.

Wiley professional computing. Wiley, 1991.

http://dl.acm.org/citation.cfm?id=340534.340715
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	State of the Art
	Lesion-based Referable
	Direct Referral Analysis
	Alternative Mid-Level Representations
	BossaNova
	Fisher Vector


	Experimental Protocol
	Datasets
	Validation Protocol
	Experiments

	Results
	Statistical Analysis

	Conclusion
	References

