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Abstract— The biomedical community has shown a continued
interest in automated detection of Diabetic Retinopathy (DR),
with new imaging techniques, evolving diagnostic criteria,
and advancing computing methods. Existing state of the art
for detecting DR-related lesions tends to emphasize different,
specific approaches for each type of lesion. However, recent
research has aimed at general frameworks adaptable for large
classes of lesions. In this paper, we follow this latter trend
by exploring a very flexible framework, based upon two-tiered
feature extraction (low-level and mid-level) from images and
Support Vector Machines. The main contribution of this work
is the evaluation of BossaNova, a recent and powerful mid-
level image characterization technique, which we contrast with
previous art based upon classical Bag of Visual Words (BoVW).
The new technique using BossaNova achieves a detection
performance (measured by area under the curve — AUC) of
96.4% for hard exudates, and 93.5% for red lesions using a
cross-dataset training/testing protocol.

I. INTRODUCTION

Diabetic Retinopathy (DR) is the most common eye dis-
ease in American adults. It is estimated that 4.1 million
persons age 40 and older in the US general population have
DR and approximately 25,000 people go blind every year due
to diabetic retinopathy [1], [2]. The accelerated increase of
the number of people with diabetes complications creates the
need for systems that screen larger sections of the community
effectively for early signs of diabetic retinopathy.

Over the last three decades, several computer-aided image
processing methods, computer vision and machine learning
tools have been proposed in order to diagnose fundus images,
increasing the efficiency of DR detection in clinical environ-
ments and also to reach remote and rural communities [3]–
[8]. In general, the approaches based restrictively on classical
image processing methods explore the characteristics of
individual DR lesions in order to develop a detection method
for the lesion of interest [3], [4]. This practice results in
effective highly accurate outcomes, but is in general limited
to the detection of single lesions only.

More recently, some techniques which do not require
any pre- or post-processing of retinal images have been
proposed [7], [8], and provided algorithms that are able to
automatically detect individual DR lesions. These algorithms
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also have the advantage of being able to be easily adjusted
to multiple DR anomalies and they rely on a characterization
scheme known as Bags of Visual Words (BoVW). Methods
for diabetic retinopathy progression analysis, which try not
only to examine the presence/absence of DR lesions, but
also to indicate the stage of retinopathy (mild, moderate or
severe non-proliferative, or proliferative retinopathy), have
also been proposed [9], [10]. Another useful and interesting
topic related to automated DR detection and classification is
the referral assessment [11].

This paper explores a new form of characterizing retinal
images in order to obtain powerful lesion classifiers without
the requirement of additional pre- or post-processing opera-
tions. We evaluate BossaNova, a powerful tool for mid-level
feature characterization and image representation that allows
us to create a highly discriminative two-tiered feature extrac-
tion (low- and mid-level) approach amenable for designing
different lesion detectors with a unified technique.

II. METHODS

This section provides a description of the extraction of
low-level local features from retinal images, the aggregation
of those local features into mid-level BossaNova features,
and then the classification of those BossaNova features by a
Support Vector Machine (SVM) classifier [12].

A. Low-level Local Feature Extraction

Typically, local feature extraction includes two steps:
feature detection and feature description. The former aims
at finding a set of interest points, or salient regions in the
image that are invariant to a range of image transformations.
The latter step aims at obtaining robust local descriptors from
the detected features. In this work, we extract Speeded-Up
Robust Features (SURF) local descriptors [13].

Two types of local feature extraction can be distinguished
[14]: (i) sparse, based upon the detection of salient regions
or interest points, or (ii) dense, where patches of fixed size
are placed on a regular grid over multiple scales. For sparse
feature detection, the SURF [13] is used. SURF sensitivity
parameters are pre-tuned to detect, on average, 400 interest
points per retinal image.

For dense features, patches are selected on a dense grid
using radii of 12, 19, 31, 50, 80, 128 pixels. These radii are
used both as scale and as the vertical/horizontal sampling
steps of the grid.

SURF is used to create a feature vector for each de-
tected point of interest. The algorithm is parameterized to



operate on twice the image resolution and to extract 128-
dimensional extended feature vectors instead of the default
64-dimensional feature vectors.

Once extracted, these points need to be analyzed and
filtered so as to select the ones most appropriate for detecting
DR lesions. For that, we transform the low level features into
mid-level ones creating a two-tiered representation scheme.

B. Mid-level Feature Extraction: BossaNova Representation

BossaNova is a recent mid-level representation for multi-
tier ensemble data mining for image classification [15], [16].

Let X be an unordered set of local descriptors extracted
from an image. X =

{
x j
}

, j ∈ {1, . . . ,N}, where x j ∈RD is
a local descriptor vector and N is the number of local descrip-
tors of the image. Let C be a visual codebook obtained by
the k-means algorithm (the codebook can be defined by the
set of codewords corresponding to the centroids of clusters).
C = {cm}, m ∈ {1, . . . ,M}, where cm ∈ RD is a codeword
and M is the number of visual codewords. z is the final
vectorial BossaNova representation of the image used for
classification.

The BossaNova approach follows the BoVW formal-
ism [17], but proposes an image representation which keeps
more information than BoVW during the pooling step, by
computing a histogram of distances between the descriptors
found in the image and each codeword. Recall that in a
BoVW model, pooling is the step responsible for aggregating
different features activating the same visual word onto a final
summarized feature vector.

The BossaNova pooling function g estimates the probabil-
ity density function of αm: g(αm) = pdf(αm), by computing
the following histogram of distances zm,b:

g :RN −→ RB,

αm −→ g(αm) = zm,

zm,b = card
(

x j | αm, j ∈
[ b

B
;

b+1
B

])
,

b
B
≥ α

min
m and

b+1
B
≤ α

max
m , (1)

where B denotes the number of bins of each histogram zm,
αm, j represents a dissimilarity (i.e., a distance) between cm
and x j, and [αmin

m ;αmax
m ] limits the range of distances for the

descriptors considered in the histogram computation.
After computing the local histograms zm for all the cm

centers, the BossaNova vector z [16] can be written as:

z =
[[

zm,b
]
,stm

]T
, (m,b) ∈ {1, ...,M}×{1, ...,B}, (2)

where z is a vector of size M× (B+ 1), s is a nonnegative
constant and tm is a scalar value for each codeword, counting
the number of local descriptors x j close to that codeword.

In summary, by using a histogram of distances to capture
the relevant information, the BossaNova approach remains
very flexible and keeps the representation compact. In com-
parison to the BoVW representation, BossaNova significantly
outperforms BoVW on many challenging image classifica-
tion benchmarks [16]. Considering those results, we chose
the BossaNova approach for mid-level features given that it

takes into account some spatial relationship between features
which we believe would be important for DR lesions.

In our experiments, we kept the default BossaNova pa-
rameter values the same as in [16] (B = 2, αmin

m = 0.4σm,
αmax

m = 2.0σm, s = 10−3), except for the number of visual
codewords M, where we considered {1,000, 4,000}.

C. Class-based Scheme vs. Global Dictionary

In our previous work, we have used the class-based
scheme for image representation, which performs well for
retinal images. The class-based scheme, proposed by Rocha
et al. [7], creates two independent codebooks, one from
descriptors extracted from retinal images with the lesion
present, and one from descriptors extracted from images of
healthy retinas. Then, two independent k-means clustering
methods are performed, each with k corresponding to half the
size of the desired codebook. After the clustering process,
the two sets of centroids are concatenated, generating a
codebook of the desired size.

This class-based scheme is compared to the global dic-
tionary scheme when applying the BossaNova approach in
which the clustering is performed only once with the desired
codebook size.

III. RESULTS

All the experiments were performed using a cross-dataset
protocol, which consists of distinct training and test datasets
preferably collected in very different settings with different
cameras. The cross-dataset protocol is an important precau-
tion of the design, since in clinical practice the images that
need to be classified have rarely the same image specification
(camera, resolution, FOV) than the images used for training.

To quantify performance as a single scalar, all the re-
sults are reported as the area under the receiver operating
characteristic curve (AUC-ROC). The AUC gives a better
overall performance measure than any particular point of the
specificity-sensitivity metrics.

A. Datasets

The experiments were performed using two different and
freely-available1 retinal image datasets:
• DR1 dataset, provided by the Federal University of São

Paulo. Each image was manually annotated by three
medical specialists. The images were captured using a
TRC-50X (Topcon Inc., Tokyo, Japan) mydriatic camera
with maximum resolution of one megapixel (640 ×
480 pixels) and a field of view (FOV) of 45◦. The
DR1 dataset comprises 1,077 images, of which 595 are
normal (no lesions) and 482 contain lesions (234 contain
hard exudates, and 180 contain red lesions)2.

• DR2 dataset, also provided by the Federal University
of São Paulo (Unifesp). Each image was manually an-
notated by two medical specialists, who did not work on

1Available at http://dx.doi.org/10.6084/m9.figshare.953671.
2The number of images with lesions do not match the total because, in

this paper, we considered only two types of lesions.



the DR1 dataset. The dataset was captured using a TRC-
NW8 retinograph with a Nikon D90 camera, creating
12.2 megapixel images, which were then reduced to 867
× 575 pixels for accelerating computation. The DR2
dataset comprises 520 images, of which 300 are normal
and 220 contain lesions (79 contain hard exudates, and
98 contain red lesions)2.

The DR1 dataset was used as training set, whilst the DR2
dataset was used as the test set in our experiments.

B. Diabetic Retinopathy Lesion Detection

In this paper, we demonstrate the methodology described
in Sec. II for the detection of hard exudates and red lesions.
The experiments were performed with two distinct codebook
sizes: 1,000 and 4,000. Note that, in this paper, we use
larger codebooks than in previous work. That is why, for
BossaNova, larger codebooks lead to higher accuracy [16].
For BoVW, however, small codebooks have provided more
satisfactory results for DR detection [7].

Fig. 1 shows the ROC curves with their respective AUCs
for the detection of hard exudates employing the class-
based and the global dictionary approaches. For comparison
purposes, Fig. 1 presents also the results reached in [11]
using the same datasets but describing the retinal images
with BoVW. Initial results using the sparse low-level feature
extraction but employing larger codebooks, showed that the
BossaNova provides a better representation and a better
accuracy. The proposed new method provides an AUC of
96.0% with a global dictionary and 95.9% with the class-
based approach, compared to an AUC of 95.6% obtained by
the BoVW with soft-max coding/pooling. When the dense
extraction step is used, the difference between BossaNova
and BoVW increases: the best result was obtained using
class-based scheme with 4,000 codewords, with an AUC
of 96.4% compared to the BoVW with an AUC of 95.6%,
which represents an error reduction of over 18%.

For the detection of red lesions, we present the ROC
curves and their respective AUCs in Fig. 1. BossaNova
with the sparse low-level feature extraction technique did
not provide a significant advantage over the Bag of Visual
Words approach based on the hard-sum coding/pooling.
AUCs of 91.9% and 92.4% were achieved using the class-
based scheme and a global dictionary, respectively, against
92.3% obtained with BoVW [11]. However, once again, the
dense extraction shows its superiority when applied with the
BossaNova mid-level feature extraction, presenting an AUC
of 93.5% using a codebook of size 4,000 in the class-based
scheme, compared to the BoVW with an AUC of 92.3%,
which represents an error reduction of over 15%.

IV. CONCLUSIONS

The increasing prevalence of diabetes and the subsequent
rise in the number of diabetes-related complications are a
considerable challenge for health care. The lack of specialists
for classification of diabetic retinopathy has stimulated the
scientific community to investigate and develop more effec-
tive solutions to the screening of diabetic retinopathy.

In previous work, we have explored machine learning
and computer vision methods for the development of a
framework that examines retinal image quality [18], detects
DR-related lesions [8], [11], and assesses the need for referral
within one year of screening [11]. For diabetic retinopathy
detection, we have shown that Bag of Visual Words method-
ology has performed very well, providing results comparable
to the literature and achieving promising outcomes for some
hard-to-detect lesions such as drusen and cotton-wool spots
(see [11] for more details). One important strategy of our
current design is the use of the class-based scheme, that
consists of creating not only a unique codebook, but one
codebook per class as this methodology performs well for
two-class problems (e.g., normal/abnormal).

In the current paper, we explored the BossaNova [15], a
new mid-level feature extraction technique that consists of
an improvement in the pooling stage. Due to the use of a
new representation method, we considered again the global
dictionary scheme for comparison purposes.

Both for hard exudates and for red lesions detection, the
results outperformed previous methods showing the impor-
tance of preserving some relationship between the detected
features in retinal images instead of just throwing them away
as previous BoVW-based solutions have done.

As the proposed two-tier BossaNova mid-level represen-
tation presented interesting results for both white and red
lesions with a unified framework, as future work we will
investigate this methodology for detecting other lesions such
as drusen and cotton-wool spots. We also propose a deeper
analysis on key aspects of the parametric space of BossaNova
(e.g., number of bins B and range of distances [αmin

m ;αmax
m ])

in the visual recognition task. Another future work we are
interested in consists of combining a coding technique that
has shown to be more suitable for DR detection (semi-
soft) [19] with the BossaNova pooling approach.
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Fig. 1. ROC results for hard exudates and red lesions detection using in the global codebooks (a) (c) and class-based sampling (b) (d), for codebooks of
sizes 1,000 and 4,000. The results are contrasted with those obtained in [11] using the BoVW approach with 500 codewords for sparse low-level technique
and class-based scheme (the mismatch in codebook size is due to the fact the previous art performed better with smaller codebooks [7]). As the work [11]
already comprises the best results reported in [7], we opted for not repeating them here. The best configuration is the new technique, using BossaNova,
dense low-level features, and large codebooks (4,000) with class-based sampling. For hard exudates and red lesions, the error reduction compared to the
prior art is over 15% and 18%, respectively, for the best proposed method.
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