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HISTORY

Our team has worked on melanoma classification since
early 2014 [1], and has employed deep learning with transfer
learning for that task since 2015 [2]. Recently, the community
has started to move from traditional techniques towards deep
learning, following the general trend of computer vision [3].
Deep learning poses a challenge for medical applications, due
to the need of very large training sets. Thus, transfer learning
becomes crucial for success in those applications, motivating
our paper for ISBI 2017 [4].

Our team participated in Parts 1 and 3 of the ISIC Challenge
2017, described below in that order. Although our team has
a long experience with skin-lesion classification (Part 3), this
Challenge was the very first time we worked on skin-lesion
segmentation (Part 1).

I. PART 1: LESION SEGMENTATION

A. Baseline

From the start, we based our network on the U-net of
Ronneberger et al. [5], a convolutional network intended for
accurate segmentation of biomedical images. We used a public
implementation inspired on U-net1 as a baseline.

B. Data and Framework

For training, we employed the ISIC 2017 Challenge official
dataset, with 2,000 dermoscopic images. We made some
tentative trials with extra data, but those resulted in worse
validation scores reported at the validation leaderboard of the
challenge website (official validation scores, hereafter) so we
decided to use only the official data.

Segmentation is a very subjective activity: studies show that
inter-human agreement for the task is far from perfect. Thus,
external data, segmented by subjects or criteria different from
ISIC’s could indeed lead to worse scores. Another explanation
just as good is that we did not train our models long enough
to profit from the extra data (see the end of Section I-D).

For the models we coded ourselves, we used Keras2, with
a Theano backend3. All experiments ran on a single NVIDIA
GeForce GTX 1070, in the personal computer of the second
author.
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The code needed to reproduce our results is at our code
repository4.

C. Data Augmentation

We used online image augmentation, with up to 10%
horizontal and vertical shifts, up to 20% zoom, and up to
270° degrees rotation. Images were first resized — we tried
256�256 and 128�128, ultimately keeping the latter, which
was faster and resulted in similar performance. Transforming
the images before resizing them was slower and did not
improve the results.

D. Experiments

Our first attempt was a model based on the VGG network
[6]. The first part of the model consisted of the VGG-16 layers
up to the last convolutional layer, but without the last max-
pooling layer and the fully-connected layers. We initialized
the retained layers with the weights of a VGG-16 model pre-
trained on the ImageNet dataset. We completed the model
following the U-shape recipe, with convolutional and up-
sampling layers, but without any fully-connected layer. We
added dropout layers after each of the five layers with copied
features. Training began by freezing the original layers from
VGG-16, and updating the weights of the other layers for
100 epochs; and then, by unfreezing and updating all weights
for another 100 epochs. We used the Dice coefficient as loss
function. That first model achieved an official validation score
of 0.753.

We got our best results with a network based on the work
of Codella et al. [7] for segmentation. The main changes we
applied include:
1) Dice coefficient as the loss function.
2) ADAM as the optimizer.
3) ReLU activations everywhere except in the last layer, where

we used the sigmoid activation.
4) Ground-truth masks rescaled simply by dividing by 255.
5) Subtracting the mean RGB value of ImageNet training set

from input RGB values.
We attempted to reduce the first fully-connected layer from

8192 to 4092 or 2048 neurons but results became worse. The
best individual network used 8192 neurons and 0.5 dropout
everywhere, reaching an official validation score of 0.783
after training for 220 epochs. We were also able to achieve
somewhat similar results by removing the fully-connected
network altogether (as is the case in the original U-net paper)
and adding batch normalization layers. That achieved an
official validation score of 0.774, after training for 220 epochs.
Although it performed worse than the previous model, it had
the advantage of being faster to train and occupying much less

4Available soon at: https://github.com/learningtitans/isbi2017-part1
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disk space due to the lack of a fully-connected layer, but we
ultimately did not use it.

Our final submission used four of our models: two trained
with all 2000 samples, without a validation split, for 250
and for 500 epochs respectively; and other two trained and
validated with two different 1600/400 splits, for 220 epochs.
Those four models, individually, achieved between 0.780 and
0.783 official validation scores. Our final submission averaged
the output of those four models achieved a score of 0.793.

Alongside the choices that composed the final submission,
there were many dead ends, ideas that seemed good, but did
not improve our scores:
1) Adding 3 HSV channels to the 3 RGB channels in the

input.
2) Other loss functions, such as the Jaccard index, binary cross

entropy, and mean squared error.
3) Normalizing the input using the mean of each sample, or

the mean and standard deviation of all the training dataset,
instead of using the global average of all ImageNet training
set pixels.

4) Training with all images with available masks in the ISIC
Archive5 for 500 epochs — maybe because the ground-
truth masks are not as carefully done in the archive as
a whole as they were done for the challenge subset, but
maybe simply because the model needed much more time
than 500 epochs to converge.

While it might have been better to train all models for more
epochs, due to time constraints, we chose to try new ideas over
training the same models longer.

As mentioned, the participation in the challenge was the first
contact of our research team with skin-lesion segmentation.
We would like to explore the interaction between lesion
classification and lesion segmentation, and how those tasks
can jointly help each other.

II. PART 3: LESION CLASSIFICATION

A. Strategy

We aimed, from start, at a deep learning solution. Our
previous experience with the technique taught us that three big
bottlenecks would limit performance: amount of training data,
depth of the learning model, and availability of computational
horsepower. Thus, we started by attempting to secure as much
data and computational power as possible, in order to use
models as deep as possible.

After those three big issues are solved, there remains the
fine craftsmanship of optimizing the models. From start, our
aim was to get the highest possible rank at the challenge. If
in [4] we honestly stated that our aim was not pushing the
envelope on model accuracy, here we can — also for the sake
of honesty — state that our aim was to squeeze the last ounce
of AUC from the models. Still, such AUC-squeezing goal
was tempered by aesthetic considerations: we did not want an
overly complex, ugly solution, held together with shoestring
and chewing gum. Added complexity had to bring proportional
improvements in AUC, or we would prefer the simpler model.

5http://isdis.net/isic-project/

B. Training data
The freedom to use external sources makes the number of

training samples a critical factor: deep models crave for data.
We were prompted, in particular, by the much-publicized work
of Esteva et al. [8], which employed no less than 129,000
images, most of which unavailable to other researchers.

We collected several datasets to increase our training set.
We restricted ourselves to publicly available (for free, or for
a fee) reputable sources:
ISIC 2017 Challenge the official challenge dataset, with

2,000 dermoscopic images (374 melanomas, 254 seborrheic
keratoses, and 1,372 benign nevi).

ISIC Archive6 with over 13,000 dermoscopic images.
Interactive Atlas of Dermoscopy [9] with 1,000+ clinical
cases (270 melanomas, 49 seborrheic keratoses), each with
at least two images: dermoscopic, and close-up clinical.

Dermofit Image Library [10] with 1,300 images (76
melanomas, 257 seborrheic keratoses).

IRMA Skin Lesion Dataset7 with 747 dermoscopic images
(187 melanomas). This dataset is unlisted, but available under
special request, and the signing of a license agreement.

PH2 Dataset [11] with 200 dermoscopic images (40
melanomas).
1) Data debiasing (or rebiasing?): Our first strategy, fol-

lowing our experience with deep learning, was to compose a
training set as large as possible. Thus, we took all available im-
ages from all datasets, except those that could cause annotation
clashes with the challenge (we excluded the images without
diagnosis from the ISIC Archive, the ‘miscellaneous’ class
from the Atlas, the images marked as ‘benign’ from IRMA,
and the images marked as ‘atypical nevi’ from PH2).

We found, to our surprise, that such strategy was not optimal
for melanoma, at least if measured by the validation AUC
reported by the challenge website (official validation AUCs,
hereafter). We found out a suspiciously large cluster of benign-
lesion images at the ISIC Archive, all for 15-year old patients.
Our validation numbers slightly improved after eliminating
that cluster.

We also found a distressing number of (near-)duplicates
both inside and between the ISIC Challenge and the ISIC
Archive datasets. The number was large enough to bias our
internal validation AUCs — i.e., the AUCs we got by
evaluating in our internal validation dataset splits. Thus, we
created a procedure to avoid train–test contamination, ensuring
that all (near-)duplicates stayed in the same (training or
validation) split.

We called deploy the dataset assembling all six sources,
with the exclusions and deduplications explained above, re-
sulting in 9,640 images.

Nevertheless, best performance for melanoma on the official
validation AUCs was, to our surprise, obtained with a dataset
that assembled just ISIC Challenge, ISIC Archive, and Inter-
active Atlas (with the restrictions explained above, and some
additional exclusions). We called semi this subset of deploy
with 7544 images. For keratosis, the full dataset presented
better results on the official validation AUCs.

The results for melanoma raised difficult questions, since
for the internal validation AUCs, the larger dataset was sys-
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tematically better. Was the semi dataset just reflecting the
official validation biases’ (and if so, would those same biases
be present in the official test set?) Or was semi actually better
for melanoma? The Dermofit dataset — present in deploy, but
not in semi — has a lot of carcinomas, which may confound
the classification when added to the negative class. In the end
we decided to keep the results from models trained both in
deploy and in semi for the aggregate decision (Section II-H).

Both deploy and semi datasets are precisely listed, image
by image, in our code repository8.

C. Candidate Models

Our previous experience [4] showed that taking a model
pre-trained on ImageNet, and fine-tuning it for skin lesion
classification is a sound strategy to get good results. It also
showed that better models for ImageNet (usually deeper and
more expensive) tend to be also better for the newly fine-
tuned task.

We decided to concentrate our efforts in two models:
ResNet-101 [12] and Inception-v4 [13]. Both are state of
the art, and are available in multiple frameworks, pre-trained
for ImageNet with good results. The latter is important,
because training from scratch on ImageNet can take weeks.
We considered even larger models, like the gargantuan hybrid
Inception–ResNet, but decided that its relative improvement on
ImageNet was too small in comparison to its huge increase in
memory footprint.

Part of the team conducted the experiments in Keras/Theano
and part in Slim/Tensorflow, but at the end we merged all
experiments into a single codebase in Slim/Tensorflow.

We initially trained independent models for melanoma and
for seborrheic keratosis, reflecting the structure of the chal-
lenge. However we switched to a single 3-class model as we
realized it would be prohibitive to carry twice the training and
evaluation for the entire experimental plan.

D. Computational Resources

In order to perform a large number of trials, we attempted
to secure as much computational horsepower as possible. For
deep learning, that means large-memory CUDA-compatible
GPUs.

We intended to boost our installed capacity — currently
RECOD has only half a dozen large-memory GPUs shared by
over 60 students — with rented servers. We found, however, no
cloud service with the combination of affordability, availability
to the public, and computing/memory capability (Amazon
AWS: cheap and available; IBM SoftLayer: available and
capable; Google Cloud: cheap and capable).

In the end we were saved by two fortuitous factors: (1) the
LIP6/UPMC/Paris hosted Prof. Valle during most of the com-
petition, and generously offered part of the needed resources;
(2) it is Summer in the Southern Hemisphere, reducing com-
petition for RECOD GPUs during the big vacations.

8Available soon at: https://github.com/learningtitans/isbi2017-part3

E. Experimental Design Tactics

We attempted to conciliate our inherent scientific drive,
with the sportive — but non-scientific — ambition to win the
challenge, or at least to maximize our chances of doing so. We
decided to proceed with a mix of pragmatism and rigor. On one
hand, there simply would not be enough time for significance
tests or ANOVAs; we would have to postpone those. On the
other hand, we still wanted to make sound decisions along the
way, and to be able to reproduce any results later on.

The team used Slack (a chat service for professionals) as
main channel for communication. We coordinated the tasks
with Google Docs, and shared the results of each intermediate
experiment with Google Sheets. We used code version control
(with git) to facilitate future reproduction of intermediate steps.

We established an initial agenda of hypotheses to validate.
Omitting a few speculative ideas we did not have time to touch,
those were:

1) Compare the baseline VGG-16 network to the deeper
ResNet-101 or Inception-v4;

2) Compare standard-resolution images (224 for VGG and
ResNet) to double-resolution images;

3) Contrast different strategies of class- and sample- weight-
ing during training;

4) Compare normal training schedule with some form of
curriculum-learning;

5) Contrast different regimens of training and test augmenta-
tion;

6) Measure the impact of adding SVM as a final deci-
sion layer;

7) Attempt to use the patient data (age and sex) on classifi-
cation;

8) Attempt different model optimizers;
9) Add different types of per-sample normalization;

10) Add a final meta-decision based upon multiple models
(ensemble, stacking, etc.)

Our normal procedure would be to attempt an (incomplete)
factorial design, at least for the factors where we expected
cross-effects (e.g., depth � resolution � weighting � schedul-
ing � augmentation). For the competition, however, there was
no time for such level of rigor. We tested the hypotheses
more or less sequentially, revisiting only those that seemed
too surprising, and crossing only the effects for which we had
a very strong expectation for interactions.
Serendipity: The tests with the semi-dataset (Section II-B)
were not programmed from the beginning, they were a hap-
penstance due to the delay in obtaining the complete dataset.
When extra data became available, we noticed a sharp drop
in the official validation AUC for melanoma (but not for
keratosis), and decided to investigate.

F. Failures to Thrive

Most of our attempts resulted in little to none improvement.
We were not very diligent, however, in pursuing any factor
whose effect size seemed small, and we performed no signifi-
cance nor equivalence tests. Caveat lector before any definitive
conclusion about the “uselessness” of the factors below.
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We sort the list placing first the biggest disappoint-
ments/surprises — the factors we most expected to improve
the results but did not:
1) Image resolution: we tried both amending VGG-16 to

accept larger inputs, and amending the augmentation proce-
dure of Inception-v4 to accept larger images pre-cropping
(but keeping the network input itself unchanged). Neither
attempt improved the results.

2) We attempted several class- and sample- weighting
schemes, both to compensate the unbalancing of the
classes, and the reliability of the annotations. In one
case we attributed weights inversely proportional to the
frequency of the classes; in another case we combined
those with weights that went from 1 to 3 ranging from
“unknown follow-up”/“no follow-up” until “confirmed by
histopathology” (we attributed 5 to the official dataset to
give it extra weight). The more complex the weighting
scheme, the worse the AUCs — no weighting was the best
weighting.

3) Validation and early stopping: we tried two ways to per-
form early stopping: first, when our internal validation
AUC started to decrease, and second (more aggressive)
when it refused to increase. With a single exception, there
was no impact in the results. We could not afford the
very long fine-tunings (several weeks) recommended for
Inception in some applications9. It is possible that in those
super-long training scenarios early stopping with validation
becomes important.

4) Patient data: we attempted different encodings for incor-
porating the patient data (age and sex) into the features,
inserting them in the transition between the deep model
and the SVM decision layer. The results were inconsistent,
sometimes improving and sometimes worsening the results.

5) Curriculum learning: curriculum learning consists in care-
ful scheduling of the training samples in order to present
a “curriculum” of learning steps to the algorithm, instead
of learning the samples at random (e.g., learning the easy
cases first). The Interactive Atlas’ samples are annotated
with a level of diagnosis difficulty (from a human point
of view), allowing such scheme. We attempted a three-step
schedule (starting with Atlas’ easy images, proceeding to
Atlas’ easy and moderate images, and finalizing with all
images). The results were worse than simply training with
all images at once.

6) Segmentation information: we intended to incorporate the
segmentation model learned in Part 1 in our classifier,
and designed several more-or-less complex ways to do
it. Unfortunately, due to the time limitations, the only
experiments we performed were too quick-n-dirty to work.
We still believe that properly encoded segmentation infor-
mation could help.

G. Success Factors

If most attempts disappointed, some definitely were valu-
able, as measured by both the internal and official validation

9https://github.com/tensorflow/models/tree/3be9ece9574d7bac07704eê
43705741d9af1de1e6/im2txt#fine-tune-the-inception-v3-model

AUCs. We have not, for the moment, a factorial analysis to
quantify the contributions, but we sort the list placing first the
factors we believe helped the most:
1) Models + data: the mere transition to deeper models helped,

but not by very much. It was the combination of deeper
models and larger datasets that boosted the numbers. Our
smaller semi dataset is already several times over the size
of the official challenge training set.

2) Data augmentation: from experience, we knew that training
with data augmentation is critical (i.e., applying random
transformations: croppings, flippings, etc. on the images
before using them in the network) and made all attempts
with it. Train augmentation is not set to a fixed number of
transformations: as long as the training persists, images are
sampled from the training set, and random transformations
are applied to them. We found out that test augmentation
is critical as well: applying random transformations to the
test sample, submitting those transformed samples to the
network, and then pooling the results. When we employed
an SVM decision layer after the network, augmentation
was again fruitful, and when we stacked several models
with a meta-learning SVM, augmentation was yet again
important. We attempted several schemes for pooling, but
a simple average pooling worked best in all cases.

3) Per-image normalization: on Inception, normalizing the in-
puts to the network by subtracting the average image pixel
improved results considerably. Surprisingly, going one step
further and dividing the pixels by the standard deviation
gave worse results than no per-image normalization at all.
We did not have time to test this factor on ResNet.

4) Stacking models and meta-learning: fusing the decision
of several models gave, almost always, better results than
just using the single best model, even when using simple
schemes, like averaging the probabilities among the models
for a given sample. However, a meta-learning scheme,
using an additional SVM layer to learn the decision from
the probabilities output by the models, gave the best results
on the official validation AUC.

H. Assembling the Final Submission

Figure 1 shows a subset of 48 out of more than a hundred
models we evaluated (most experiments were too quick-and-
dirty to allow inclusion in the plot). From the beginning we
noticed that the correlation between our internal validation
AUCs and the official validation AUCs was far from perfect. In
the plots shown, from left to right, the correlations are R=0.58,
R=0.77, and R=0.79. The correlation was particularly bad for
melanoma. That posed a challenge of choosing who to trust:
the official or the internal validation AUC. In the end we chose
to trust both (or neither), and included models that showed
good performance in the two axes.

Another difficulty was that the best models for melanoma
were not necessarily those for keratosis and vice-versa. We
considered selecting different models for the different tasks,
but in the end we decided to pick the same set of models
for both tasks and hope the meta-learning layer would do the
adjustments.
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Fig. 1. A visual panorama of our experiments. The circles are ResNet-101 Models, the triangles and squares are Inception-101 models (without and with
per-image normalization respectively). Black and red indicates training in the deploy and semi datasets respectively. Large symbols indicate the models chosen
to compose the stacking in the final submission. The dashed line is the regression between the internal and the official AUCs. The models are the same
in the three graphs, but the metrics change from Melanoma, Average, and Seborrheic Keratosis AUC from left tor right. Those were only a subset of the
experiments, 48 out of more than a hundred models we attempted.

The meta-learning consisted in, for each sample, concate-
nating the decisions of each chosen model and using this
as feature vector for two binary SVMs (melanoma-vs-all,
keratosis-vs-all). Those SVMs were trained using our internal
validation set — thus we were prevented from evaluating
them using the internal validation AUC. However this scheme
attained the best official validation AUC.

We attempted several small variations for the meta-learning;
the most successful employed an aggressive augmentation
scheme: each training sample (from our internal validation
set) was evaluated thrice by each model, allowing to create
a large number of combined replicas for training. The same
procedure was applied for testing (on the samples from the
official validation and official test sets). In both cases, we
employed average pooling to combine the replicas.

The submitted test run as well as our last official validation
run were, thus, the result from a meta-model that assembled
seven base models: three based on Inception trained on deploy;
three based on Inception trained on semi; and one based
on ResNet trained on semi. The results of those component
models were stacked in a meta-learning layer based on an
SVM trained on the validation set of deploy.
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