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Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical 
complications have brought much interest in fast and reliable screening methods for ZIKV 
(Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is 
currently the method of choice to detect ZIKV in biological samples. This approach, none-
theless, demands a considerable amount of time and resources such as kits and reagents 
that, in endemic areas, may result in a substantial financial burden over affected individuals 
and health services veering away from RT-PCR analysis. This study presents a powerful 
combination of high-resolution mass spectrometry and a machine-learning prediction 
model for data analysis to assess the existence of ZIKV infection across a series of patients 
that bear similar symptomatic conditions, but not necessarily are infected with the disease. 
By using mass spectrometric data that are inputted with the developed decision-making 
algorithm, we were able to provide a set of features that work as a “fingerprint” for this 
specific pathophysiological condition, even after the acute phase of infection. Since both 
mass spectrometry and machine learning approaches are well-established and have largely 
utilized tools within their respective fields, this combination of methods emerges as a dis-
tinct alternative for clinical applications, providing a diagnostic screening—faster and more 
accurate—with improved cost-effectiveness when compared to existing technologies.

Keywords: Zika virus, Zika diagnosis, diseases diagnosis, high resolution mass spectrometry, machine learning, 
random forest, feature importance, diagnosis classifier
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inTrODUcTiOn

Zika virus (ZIKV) is an emerging pathogen that belongs to 
the Flaviviridae family and, as with other members, ZIKV is 
classified as an arthropod-borne RNA virus (arbovirus). The 
association between ZIKV and microcephaly in newborns from 
the recent outbreak of this viral infection in South America has 
raised much concern in the medical community, especially for 
the significant amount of cases of microcephaly in potentially 
endemic areas (Enfissi et al., 2016; Schuler-Faccini et al., 2016), 
as well as for the demonstrated tropism of ZIKV for neural cells 
medical community, especially for the significant amount of 
cases of microcephaly in potentially endemic areas (Attar, 2016; 
Cao-Lormeau et  al., 2016; Enfissi et  al., 2016). Furthermore, 
increasing evidence on the potential of ZIKV transmissions 
through contaminated blood products for transfusion shines 
an entirely different light over infection routes, broadening 
transmission sources beyond the mosquito bite (Musso et  al., 
2014; Motta et al., 2016).

These cases reinforce the importance of accurate ZIKV identi-
fication in a broad scope, ranging from newborn screening to the 
control of hemoderivatives. Additionally, since ZIKV can easily 
be clinically mistaken by other infections of similar symptomatic 
profile (To et al., 2015), bioanalytical approaches that accurately 
differentiate these conditions are vitally important.

Current laboratory diagnostic tests are still limited in accuracy, 
either because of cross-reactivity, as in the case of serological tests 
(Morizono and Chen, 2014; Fauci and Morens, 2016; Steinhagen 
et al., 2016), or because of the current lack of standardization/
validation and sensitivity/specificity data, as is the case of reverse-
transcriptase polymerase chain reaction (RT-PCR) (Eltzov et al., 
2010). Furthermore, current analysis techniques demand a sub-
stantial amount of time to produce results (Pardee et al., 2016), 
and costs associated with kits, reagents, and specialized personnel 
per sample run are considerably high (Rouet et al., 2005), espe-
cially considering that endemic areas are located in regions of 
low-income and/or poor healthcare support (Fauci and Morens, 
2016). Thus, there is great interest in providing an expeditious 
approach that can produce accurate results in a timely fashion 
and with a cost-effective workflow.

Mass spectrometry-based metabolomics has been widely 
utilized as a relevant alternative for diagnostic purposes in bio-
logical samples (Kind et al., 2016; Takayama et al., 2016; Deng 
et al., 2017), and data processing tools and spectral databases are 
key players in the success of these approaches (Gromski et al., 
2015; Vinaixa et al., 2016), since the mass spectra of a given set 
of complex matrices reveals a multitude of chemical entities/
molecules. This richness of information is the starting point 
for many comparative studies, for example, in the analysis of 
biological samples from individuals with a pathophysiological 
condition versus a control group with healthy individuals (Melo 
et al., 2017). By using data processing tools to drive this com-
parison, it is possible to establish which is the specific spectral 
signature for that particular condition based on their intrinsic 
differences, even if very subtle (Eiras et al., 2014). Such differ-
ences allow us to infer that spectral data of that particular sample 
group will behave, therefore, as a “fingerprint,” where feature 

by feature will compose a unique model of pattern recognition 
(Lima Ede et al., 2015).

Given the large amount of spectral data generated, and the 
requirement of always providing a comparison to obtain spectral 
signatures of the condition under study, bioinformatics approaches 
have been built to solve these problems, so that the classification/
taxonomy of sample groups may be achieved (Johnson et  al., 
2015). In turn, machine learning (ML) approaches have allowed 
the comparison between spectral data of a large number of samples 
and sample groups (N), as opposed to a limited amount of data as 
in the case of multivariate data analysis (Zheng et al., 2014). Since 
ML models can be continuously fed with more information, it 
allows the user to focus only on the chemical species that provide 
actual discrimination between samples/sample groups (Smith 
et al., 2014; Acharjee et al., 2016).

The main objective of using ML in the method presented in 
this paper is to generate a classifier based on mass spectral input 
data from blood serum to predict, with high accuracy and preci-
sion, whether a patient is positive or negative for a disease, in 
this case, for the ZIKV infection. The mass spectral data of each 
sample (m/z value × intensity) is used as the input for all analyses 
and predictions performed herein.

For this purpose, we selected the Random Forest supervised 
ML algorithm (Breiman, 2001), which is nd used in many appli-
cations, e.g., image analysis (Shotton et al., 2013), cancer diag-
nosis (Suna et al., 2017), and genetic assignment (Sylvester et al., 
2017). Random Forest is based on decision trees (Caruana and 
Niculescu-Mizil, 2006; Criminisi et al., 2012) and a probabilistic 
interpretation of its principles can be found in Murphy (2012). 
This ML algorithm has the following advantages when processing 
the data we have at hand:

•	 High-classification performance: Random Forest is one of the 
best classifiers for different problems (Fernández-Delgado 
et al., 2014).

•	 No need of kernel and complex parametrization adjustments: 
Random Forest is known as a non-parametrized method, 
which means it does not require a complex search of param-
eters, kernel transformation, neither is it sensitive to normal-
ization of input data. Only two parameters are subject to adjust 
for performance tuning: number of feature randomly selected 
in each tree building cycle, which is commonly set to the root 
square of the number of input variables, and the number of 
trees in the forest, which is usually subject to simple grid 
search approach.

•	 Execution performance: A trained Random Forest classifier is a 
set of binary trees, which can be seen as a sequence of “if then 
else” statements being extremely fast at prediction time.

•	 Feature importance: Decision tree classifiers provide informa-
tion about the relevance of each feature in the decision trees 
by evaluating how a change or omission of one feature impacts 
classification results. This is referred to as Out-of-Bag (OOB) 
evaluation concept used as a performance measurement in 
Breiman (1996) and further applied to Random Forest feature 
importance determination by the mean decrease of accuracy 
of OOB samples with features randomly permuted (Breiman, 
2001; Altmann et al., 2010; Louppe et al., 2013). Importance 
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TaBle 1 | Summary of the specimens included in the study regarding demographic information, clinical conditions, and results from reverse-transcriptase polymerase 
chain reaction (RT-PCR) performed during the high viremia period.

Zika virus (ZiKV) symptomatic 
and current infected

ZiKV 1 month after 
infection

symptomatic, but not 
ZiKV

symptomatic dengue 
rT-Pcr+

healthy, asymptomatic 
more than 30 days

RT-PCR + + − − −
Positive/Negative Positive Positive Negative Negative Negative

Demographics

Male 27 23 48 25 6
Female 16 16 16 21 5
Total of specimens 43 39 64 46 11
Mean age (median) 33.23 (33) 32.85 (32.2) 32.53 (31) 33.21 (33) 32.76 (30)
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assessment is a key property of the classification algorithm to 
provide explainability and accountability of results achieved by 
the classifier.

In this work, we rely upon feature importance analysis to rank 
and to isolate the most discriminant features generating a high-
performance classifier, which identifies the presence (or not) of 
signatures of ZIKV in the patient’s mass spectral sample. Those 
ranked most discriminant features can also be used to single out 
some physical molecules, which are part of the signature and can 
be found with high presence in the serum positive patient’s blood 
in contrast with negative ones. This fact corroborates with physi-
cal evidence, the power of the method, which is in line with a new 
frontier in ML techniques called accountable or interpretable ML 
(Diakopoulos et al., 2017).

In summary, we propose an innovative methodology based 
on high-resolution mass spectrometry (HRMS), combined with 
the Random Forest algorithm (Breiman, 2001), to provide an 
accurate prediction model for discriminating serum samples 
of individuals with ZIKV. Since supervised methods, such as 
Random Forest induce classifiers (i.e., a set of features that pro-
vide a “fingerprint” for the viral infection), this model is intended 
to be employed as a fast and accurate test for ZIKV infection in 
healthcare institutions. With specificity and sensitivity over 95%, 
in addition to the relatively low cost per sample run, this novel 
platform shows potential for forming a large integrated database 
for further epidemiological studies in infections by ZIKV.

MaTerials anD MeThODs

ethics statement
This study was conducted according to the principles expressed 
in the Declaration of Helsinki and was approved by the Research 
Ethics Committee of the University of Campinas, under the 
number 053407/2016. A written informed consent was obtained 
from all patients prior to enrollment. All samples were obtained 
from the Clinical Hospital of the University of Campinas.

research Participants and specimen 
collection
In total, 203 patients were included in this study, regardless of 
age and gender, in two main groups: ZIKV and control. Group 
division considered patients’ retrospective laboratory results, 
obtained after testing with RT-PCR (Table 1).

The ZIKV group consists of 82 patients split into: (a) 43 adults 
with acute ZIKV infection (i.e., within the high-viremia period) 
confirmed by positive RT-PCR test, in association with clinical 
presentation (symptoms) compatible with ZIKV infection (i.e., 
fever, joint pain, conjunctivitis, and rash); and (b) 39 patients after 
30  days of confirmed ZIKV infection by positive RT-PCR test 
(i.e., after the acute phase).

The control group contains the remaining 121 patients in 
which (a) 64 presented the same clinical symptoms as described 
above for ZIKV infection, but with a negative result for real-time 
RT-PCR test for ZIKV, (b) 46 patients with dengue virus infection 
confirmed by positive immunosorbent (ELISA) test, and (c) 11 
healthy adults, i.e., asymptomatic individuals who did not present 
any signs of infection within 30 days prior to sample collection 
which, therefore, also presented a negative result in RT-PCR for 
ZIKV.

All RT-PCR were performed using RNA extracted from the 
serum of the analyzed patients.

Serum of patients was obtained from 10 mL of peripheral blood 
collected in dry tube after peripheral venipuncture. All samples 
were transported on ice within less than 6 h to the Laboratory 
for Study of Emerging Viruses at the Biology Institute of the 
University of Campinas, where they were processed and tested 
for ZIKV on real-time RT-PCR. Aliquots of serum were kept at 
−80°C until HRMS analysis.

ZiKV Detection by real-Time rT-Pcr
RNA samples were extracted from 140  µL of serum and urine 
using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, 
Germany) following manufacturer’s instructions. Samples were 
tested by One-step TaqMan real-time RT-PCR (Taqman RNA 
to-CT, Applied Biosystems) for the presence of ZIKV genomes.

Zika virus detection was performed with primers and 
probes adapted from the original described by Lanciotti et  al. 
(2008) (ZIKV-F: 5'-CCGCTGCCCAACACAAG-3'; ZIKV-R: 
5'-CCACTAACGTTCTTTTGCAGACAT-3'; ZIKV-P: 5'-FAM—
AGCCTACCTTGACAAGCAGTCAGACACTCAA—BHQ1-3'). 
Briefly, all reactions were performed in a final volume of 12.5 µL 
with 50 ng of RNA, 10 mM forward and reverse primers, 5 mM 
probe, and 6.25 µL of TaqMan master mix (Applied Biosystems, 
Foster City, CA, USA), using the following cycling algorithm: 
48°C for 30 min, 95°C for 10 min, followed by 45 cycles of 95°C 
for 15  s, and 60°C for 1  min. All real-time RT-PCR were per-
formed in duplicate.
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FigUre 1 | Number of trees given by grid search as function of vector length. Cross marks inside the chart denotes values evaluated during the grid search. Lines 
1, 2, and 3 correspond to functions as expressed in Table 2 used to compute the number of trees on the evaluation of discriminant features reduction.
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hrMs Preparation and analysis
10 µL of serum samples were diluted to a final volume of 1 mL in 
a methanol/water solution (1:1) (solution 1). After homogeniza-
tion, the sample was further submitted to a second dilution of 
10  µL into a 0.1% solution of formic acid in methanol/water 
(1:1), to a final volume of 1 mL. All samples from each research 
participant were prepared in duplicates.

Samples submitted to HRMS were directly infused into an 
ESI-LTQ-XL Orbitrap Discovery instrument (Thermo Scientific, 
Bremen, Germany). Metabolic fingerprint data were acquired 
using a sample flow of 10 µL/min, capillary temperature of 280°C, 
5 kV of source voltage, and sheath gas at 10 arbitrary units. In 
addition to the biological duplicates, analytical triplicates were 
performed for each sample. The acquisition was performed in the 
mass-to-charge ratio (m/z) range of 700–1,700, in the positive 
ion mode.

Ml Method
The decision-making method we propose here for ZIKV detec-
tion has the following macro steps:

 1. Data preparation: For our study herein, data samples of 
positive (with ZIKV) and negative’s patients (without ZIKV 
condition) are normalized and randomly divided into two 
main partitions (Ptrain = 80% and Ptest = 20% of the patients). 
The partition with 20% of the data (referred to as Ptest) is left 
untouched for the final blind test to evaluate the designed 
diagnosis classifier. This is done to avoid any kind of overfit-
ting to the available data. The remaining partition with 80% of 
the data (referred to as Ptrain) is then used for training and vali-
dation tests in the process of determining most discriminant 
features for ZIKV detection. For reference, during training, a 
classifier is induced while during validation its performance 
on the validation set is checked.

This process is iterative as we shall detail next. We further 
divide Ptrain into two subsets Pfit, with 80% of the data in Ptrain 
and Pval, with the remaining data in Ptrain. Pfit is then used in 
the induction of the classifier (learning stage) and Pval in its 
evaluation. To account for possible variations in the splitting 
of fitting and validation sets, we repeat this process 10 times 
(here referred to as rounds) and report average performance 
numbers for the validation set with the corresponding SD. A 
small SD means there is no high variation across patients in 
the learning process of the algorithm.

 2. Most discriminant features identification and ranking: Fitting 
and validation cycles of Random Forest classifier are iteratively 
executed, reducing the vector length representing each patient on 
each cycle by discarding the least significant ranked features. The 
feature importance measure is obtained in each cycle using the 
Out-of-Bag (OOB) calculation for the training samples over the 
trained trees. By sorting features in decreasing order of importance, 
we generate the feature ranking, which is updated on each step for 
the remaining ones after discarding part of the features located in 
ranking tail. The best performance achieved in this step determines 
the spectral signature features kept for further processing.

 3. Generate the diagnosis classifier: Upon selecting the most 
discriminative features, we proceed to train the final classifier 
by using only such selected features. This allows us to now 
induce a simplified, yet powerful, classifier with only a subset 
of the original features (in our case a few dozen rather than 
thousands of initial features per patient). To train the final 
classifier, data from all patients in Ptrain is considered. Finally, 
the resulting classifier is tested with the blind-test data Ptest and 
the final performance numbers are reported.

 4. Values distribution analysis of the spectral signature features: 
Although the previous step resulted in a final classifier trained 
with the most important features to detect ZIKV, we take a 
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TaBle 2 | Comparison of the most discriminant 10-round training and validation 
results using the three selected equations for the number of trees in each 
iteration as function of the ranked vector length.

number 
of trees 
equation 
(ν = vector 
length)

Max[40,sqrt(ν)] 230 32 + [log2(ν)/ 
2.sqrt(ν)]

grid chart  
line 1

grid chart  
line 2

grid chart  
line 3

μ σ μ σ μ σ

Best vector 
length

42 59 93

Accuracy 96.54% 3.58% 96.03% 2.61% 96.12% 2.00%

Sensitivity 97.74% 3.66% 97.74% 3.66% 96.99% 3.71%

Specificity 95.34% 5.23% 94.31% 5.81% 95.26% 3.79%
Precision 93.99% 6.29% 92.82% 6.46% 93.66% 4.61%

NPV 98.46% 2.50% 98.55% 2.34% 98.02% 2.31%

F1Score 95.74% 4.23% 95.03% 3.17% 95.18% 2.42%
F1Neg 96.82% 3.38% 96.26% 2.78% 96.55% 1.78%

Green Metric’s best value

Rose Metric’s worst value

FigUre 2 | (a) Iterative process to determine the most discriminant ranked features. (B) Visualization of vectors with spectral signature features (length 42) using 
t-SNE technique. Vectors corresponding to positive Zika virus-infected patients are separated into two categories: acute phase and 1 month after infection.
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step further to determine which of the selected best features 
have higher prevalence in the serum of positive patients. 
For that, we analyze the range of values of spectral signature 
features in positive and negative data samples. We refer to 
such features as marker (outstanding for the positive class) 
features. Probability distribution functions for the positive 
and negative values are compared using equality hypothesis 
test and higher values cumulative probability comparison.

 5. Marker features mapping into molecules: The m/z values for 
the marker features are then mapped into physical molecules 
using the mass spectral techniques to corroborate evidences 
on the spectral mass signature used by the diagnosis classifier.

Data Preparation
In the data preparation step, we normalize the input m/z × inten-
sity vectors of the samples using the relative intensity of each 
vector (we divided all vector elements by their maximum value), 
as defined in the equations given below. The normalization is 
needed to work with a more well-defined range of values for the 
features and is standard procedure in ML.

 
F f f

z
zi j i j
i j

i, j 1 k

= , =
max, ,

,

= :

  ( )  

 L l , l vector labeli i== == {{−− ++ }},, (( ))  1, 1  

 M m , m m/z value feature labelj j== [[ ]] == ( )  

where F comprises the measurements for all patients. Each row 
f ∈ F represents data measurements from one patient. As each 
patient has five different sets of measurements (replicates) to 
account for possible variations F has 1,015 feature vectors. Each 
feature vector of a patient, comprises some 10,000 m/z values, 
many of which are missing upon different measurements.

As previously mentioned, F is divided into Ptrain and Ptest and 
this latter set is left untouched for the final test of the developed 
classifier. It is important to mention that all splitting procedures 
are done so that all replicates of a patient are put in the same 
partition—therefore, the splitting is always performed per patient 
and not per feature vector.

number of Trees Determination Using grid 
search approach
For experiments described in this article, we used the default of 
square root of the total number of input features for the randomly 
selected features in each tree construction cycle, and the number 
of trees was defined by maximum between 40 and the square root 
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FigUre 3 | (a) Ranked features SD range in log scale for Zika virus (ZIKV) positive and control group (negative) vectors. The green highlight identifies the marker 
features for ZIKV, selected using the rationale of Δj > 40%. (B) Example of probability distribution and cumulative distribution charts for the main ranked feature for 
ZIKV, ion m/z 1,295.6 (Ganglioside); the rationale for Δj calculation is given on the right chart.
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of the total number of input variables. It is important to notice 
that during the reduction process, using this formula, the number 
of trees varies in each step according to the vector length.

To select the number of trees used in the experiments, we 
performed a grid search varying the length of the ranked feature 
vectors, ranking them during the grid-search process, and the 
number of trees for each vector length from 1,024 to 16. By divid-
ing two in each step, it generates a logarithmic grid, which could 
be plotted in the form of a contour surface, which colors regions 
delimited by isometric lines built from the grid z-axis values (we 
use accuracy and also f1score), generating the chart shown in 
Figure 1. By analyzing the regions of best achieved accuracy for 
validation, we selected three functions to determine the number 
of trees. The first was to use the initially determined default 
described above nt = max[40, sqrt(len)], second a constant value 
crossing the regions of good accuracy nt = 230, and the third one 
as function that crosses the chart diagonally.

Comparing the validation results of the most discriminant 
features process using each of the options above, as Table 2 shows, 
we opted to use the number of trees as nt = max[40, sqrt(len)], 
because all three final results are statically comparable, and 
although the Eq. 3 provides the smallest SD, the first choice runs 
much faster than the others, providing also the smallest number 
of signature features.

ranking Most Discriminant Features
The objective of this step is to discover which features carry most 
information for the separation of positive and control (negative) 
patients. This is carried out through a ranking approach in which 
less relevant features are eliminated iteratively. By repeating the 
fitting and validation process of the Random Forest with fewer 
features in each step, the rank for the top features is refined, and 
the impact on the overall classification metrics is measured in the 
validation set.
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TaBle 3 | Zika virus (ZIKV) diagnosis classifier’s tests results.

Metric Formula 10 rounds 
Validation tests

Blind 
final 
test

Mean σ

Feature vector length 42 42
Real positives P = TP + FN 15
Real negatives N = TN + FP 24
Predicted positives TP + FP 15
Predicted negatives TN + FN 24
True negatives TN 23
False positives FP 1
False negatives FN 1
True positives TP 14
Accuracy ACC

SEN SPC
=

+( )
2

96.54% 3.58% 94.49%

Sensitivity SEN
TP

TP FN
=

+
97.74% 3.66% 93.33%

Specificity SPC
TN

TN FP
=

+
95.34% 5.23% 95.65%

Precision PRC
TP

TP FP
=

+
93.99% 6.29% 93.33%

Negative Predicted value NPV
TN

TN FN
=

+
98.46% 2.50% 95.65%

F1Score F S
SEN PRC

SEN PRC
1 2= ⋅

+
. 95.74% 4.23% 93.33%
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In each iteration, the rank of remaining ranked features is 
updated using the descending order of the mean of the 10 feature 
importance vectors stored in each training round. Only the portion 
of the rank corresponding to the ranked length processed in the 
iteration is updated, the tail remains with the upper discarded rank.

We evaluate the feature importance for each classifier through 
the out-of-bag calculation, which estimates the impact of a miss-
ing feature in the classification trees. To reduce the number of 
considered features in each step, we multiply the dimensionality 
(number of features) of feature vector f by a factor 0 < γ < 1, 
retaining only the ⌊| f’| × γ⌋ most important features to the next 
step, where |⋅| measures the number of features in vector f. This 
process is repeated until convergence—either by achieving a 
minimum set performance or when there is no feature to discard 
anymore. We determine the most discriminant features by the 
maximization of the classification performance metrics, e.g., 
using F1score as the measure to maximize, and we call them 
spectral signature features. We shall define such measures later 
in this paper.

generate Diagnosis classifier
At this stage, we train the final diagnosis classifier using the most 
important features found in the previous step and all training data 
available in Ptrain. Afterward, we test the classifier using blind-test 
Ptest and report final results for ZIKV detection.

Distribution analysis to Find Marker 
Features
In addition to generating a ZIKV classifier—which can identify 
patients with the disease—we set forth the objective of determin-
ing which metabolites appear with higher intensity on the positive 
patients than in the control group.

By relying on the ranges of values of each selected feature 
using our Random Forest classifier, we can identify dependencies 
between features which results in a good separation for the two 
classes of interest. As we are looking for features with the highest 
values, we are interested only in the ones which can be analyzed 
in isolation without further dependencies on other features. For 
that, values distribution analysis is performed comparing the 
features probability distribution functions, seeking the ones with 
higher values in the positive samples than in the set of negative 
ones. We refer to such features as marker features for the disease, 
or simply marker features.

First, we apply an equality test to determine whether each 
feature has distinguishable distributions; if they are equal, we 
cannot test for the higher value condition. For this purpose, we 
use the two-sample Kolmogorov–Smirnov (KS) test (Massey, 
1951; Miller, 1956) over the two discrete probability functions, 
p y q y( ) ( ), , respectively, for y values of a feature in the spectral 
signature on positive patient’s samples and y� values for same fea-
ture in the control group. After the equality hypothesis of KS test 
could not be confirmed, we apply the rule expressed in Equation 
Δj to identify marker features. It means that for a marker feature, 
the probability to find a value over the median of that feature in 
the set of positive patients is β higher than finding the same order 
of values in the set of negative patients. For instance, by setting β 

to 40% means that over the median of positive samples, we will 
find only 10% of negative samples

 M M is a positive feature to disease ifj  , : 

 
∆∆ j j jmedian y

F
q y p y

j

j= − >∫ ( ) ( )
( )

( )
β

max

 

where yj is a Fj value for a positive patient; y j  is a Fj value for a 
negative patient; p(yj) is the probability distribution function of 
positive patients, and q y j( ) the probability distribution function 
of negative patients; P(yj) is the cumulative distribution function 
(CDF) of y values, and Q y j( ) is the CDF of y j ; 0 < β < 0.5 CDF 
difference over median of the feature j for the positive patients 
(e.g., β = 40%).

resUlTs anD DiscUssiOn

The iteration of reducing feature vector length and ranking most 
discriminant features is summarized in Figure  2A, starting 
with 10,000 features and shrinking by a factor of 0.9, we finally 
identified 42 features, listed in Figure 3A as the spectral features 
signature.

This is a remarkable result, as it allowed us not only to reduce 
the initial noisy 10,000 m/z measurements per patient to just 42 
most discriminant for ZIKV virus, but also because it was the 
first time that the acute phase of ZIKV was accurately evaluated 
with patients 30 days after infection (i.e., non-acute phase). Thus, 
in order to visualize such features, we further projected them 
onto a 2D space through the t-distributed stochastic neighbor 
embedding (t-SNE) (Maaten and Hinton, 2008) visualization 
technique for high dimension data resulting in the chart shown 
on Figure 2B. Although just using 2 dimensions out of the 42 
selected as important for classification, we can see a very good 
separation between ZIKV and control group samples. We also 
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TaBle 4 | Comparison of 10-round training and validation results between classifiers using same datasets for the full-length input vectors and for the signature features 
selected by the reduction method proposed in the article.

sVM Tree

sequential minimal  
optimization

iterative single data 
algorithm

random forest gini’s diversity index Deviance

μ σ μ σ μ σ μ σ μ σ

Vector length 10,000 (full spectra)

Accuracy 90.16% 5.96% 90.84% 6.28% 94.19% 3.59% 89.62% 5.60% 90.07% 5.91%

Sensitivity 87.88% 11.58% 89.25% 9.62% 94.06% 4.81% 87.41% 9.37% 88.83% 8.10%

Specificity 92.44% 7.58% 92.44% 7.58% 94.31% 5.25% 91.83% 5.47% 91.31% 4.23%

Precision 89.74% 10.05% 89.58% 10.34% 92.45% 6.29% 88.32% 7.41% 87.42% 6.22%

NPV 92.54% 6.78% 93.24% 6.05% 95.93% 3.13% 91.59% 5.89% 92.31% 5.42%
F1Score 88.08% 7.50% 89.00% 7.73% 93.11% 4.21% 87.54% 6.49% 88.08% 6.91%
F1Neg 92.17% 4.59% 92.63% 5.14% 95.03% 3.27% 91.59% 4.41% 91.79% 4.63%

Vector length 42 (signature features)

Accuracy 93.13% 2.80% 93.42% 4.05% 96.54% 3.58% 91.22% 3.54% 91.24% 4.60%

Sensitivity 93.93% 5.10% 92.45% 5.20% 97.74% 3.66% 89.60% 3.62% 89.60% 6.28%

Specificity 92.34% 5.02% 94.39% 5.66% 95.34% 5.23% 92.84% 5.01% 92.89% 4.86%

Precision 89.91% 6.34% 92.39% 7.47% 93.99% 6.29% 89.87% 6.56% 89.81% 7.14%

NPV 95.89% 3.07% 94.93% 3.40% 98.46% 2.50% 92.83% 2.68% 92.92% 4.25%

F1Score 91.65% 3.26% 92.24% 4.84% 95.74% 4.23% 89.64% 4.31% 89.57% 5.60%

F1Neg 93.98% 2.62% 94.58% 3.66% 96.82% 3.38% 92.78% 3.32% 92.84% 3.74%

Green Metric’s best value

Rose Metric’s worst value
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split the positive group into the two categories of ZIKV infected 
patients, the acute phase samples and the 1 month after infection 
samples. As we can see, most of the acute phase is grouped into a 
consistent cluster on the left side of the chart while the 1-month 
infected cases are spread into 3 other consistent clusters. The rela-
tion between the positive and negative samples in each region 
can also be addressed by the reduced vector analysis pointing out 
which sample belongs to each group and which ions they have in 
common. Ultimately, we envision the TSNE chart analysis being 
useful to identify which ions are present in each cluster giving a 
physical clue about what those clusters have in common further 
advancing the study toward more accountable models. This can 
be pursued in a future work.

Table  3 presents the average results for the validation set 
over the 10 rounds of training and validation along with the 
correspondent standard deviation, and the final numbers for 
the blind test. As expected, the blind test results are within the 
predicted range determined on the validation tests, and confirm 
the remarkable results achieved by the proposed technique.

The chart on Figure 3A shows the logarithmic SD range for all 
42 selected spectral signature features, identifying 12 markers for 
ZIKV, which are highlighted in green. The distribution analysis for 
the 42 spectral signature features was performed over all feature 
vectors as defined by Equation Δj, using β = 40%. For illustration, 
Figure 3B brings the distribution histogram of the first ranked 
feature (m/z = 1,295.6) and the rationale of Δj calculation.

This group of 12 markers can be grouped by their m/z 
proximity, composing four groups of correlated cations: 
(1,295.6, 1,296.6, 1,297.6), (727.3, 728.3), (1,307.9, 1,308.9, 
1,309.9), (977.4, 977.9), and two other individual cations: 

1,544.2 and 717.2. This grouping occurs due to the chemical 
interpretation of the results; while these values are treated as 
independent variables among themselves, chemically, these 
features show an important correlation. For instance, in the 
group of values 1,295.6, 1,296.6, and 1,297.6, the biomarker is 
actually only 1,295.6, as the other two masses correspond to 
the natural isotopic distribution of carbon (i.e., 13C and 14C in 
the molecule). The same is true with all other groups, where 
the most relevant ion is that with the lowest nominal mass. It 
is noteworthy that this also occurs with divalent cations, as 
in the case of the group composed by 977.4 and 977.9, where 
the 1  Da difference is divided by 2 (m/z, where z  =  2). This 
is an extremely important characteristic of mass spectra that 
provides even more reliability to the results, as this proves that 
the employed model effectively provided features/molecules 
that are discriminant of that particular group; since in the 
dataset these variables are completely independent, our results 
bring an outcome that is coherent chemically. Thus, the group 
of 12 marker features corresponds to 6 actual molecules, i.e., 
biomarker candidates.

After metabolomics database search, all six features were 
elucidated and identified as a pentapeptide (717.2) and a tetra-
peptide (727.3, 728.3), a divalent (977.4, 977.9) and a monovalent 
ganglioside (1,295.6, 1,296.6, 1,297.6), a cardiolipin (1,307.9, 
1,308.9, 1,309.9), and a bisphosphoglycerol (1,544.2500), which 
are the physical evidence of the positive ZIKV samples.

computing Performance Metrics
All experiments were performed using a Samsung 500R5H-
XD3BR, Intel Core i7-5500CPU @ 2.40 GHz, 2 Cores, 4 logical 
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processors, 8 GB of physical memory, 1 TB HD 5400RPM SATA-
III 6GB/s. Programs were written in MATLAB script language 
and ran on MATLAB R2017a 64-bit version 9.2.0.538062. All 
ML algorithms and analyses in the end-to-end process from data 
preparation to distribution analysis take about 15 s per patient 
in the training (considering the five different measurements per 
patient). The time to analyze a feature vector of a patient at testing 
time is less than a second.

comparing random Forest classifier With 
Other classifiers
Table  4 shows Random Forest compared with the well-known 
classification algorithm SVM using two different optimization 
algorithms: SMO (Sequential Minimal Optimization) and ISDA 
(Iterative Single Data Algorithm), and with a decision tree clas-
sifier, also with two different split criteria: GDI (Gini’s diversity 
index) and DEVIANCE (maximum deviance reduction, also 
known as cross entropy). The 10-round training and validation 
tests were executed over the 1,000 features full spectra vectors 
and also for the 42 signature features selected by the feature 
importance supervised reduction method. In short, RF performs 
best not only in the original complete feature space, but also on 
the selected best features thus justifying its use.

cOnclUsiOn

The developed screening strategy using HRMS to assess ZIKV 
infection detects a set of 42 features, which are a spectral signa-
ture identified by a Random Forest classifier. 12 out of 42 features 
have high presence in the blood of patients due to ZIKV infection. 
This set of markers was validated using a powerful combination 
of statistical tools and are further supported by result comparison 
with those obtained with the current method for ZIKV diagnosis, 
RT-PCR. We hereby demonstrated that the combination between 
HRMS and the Random Forest algorithm is a robust platform 
that can be implemented in large-scale routine laboratories for 
rapid and straightforward detection of ZIKV, whether in patient 
screening or, as more recently recommended by the FDA, in 
donated blood and derivatives for transfusion. This approach is 
a work in progress, which will be the basis for the creation of 
a large database on molecules produced during ZIKV infection. 
This may lead to revealing new information on epidemiology, 
immunity, and pathogenesis of the ZIKV infection.

Due to the nature of the method and outstanding results 
achieved with ZIKV experiments, it is possible to envision that 
this method is a breakthrough technique in disease diagnosis 
tests.

Using our proposed platform, we envision that classifiers for 
many diseases can be developed. The only condition is that the 
serum of patients with the disease must contain information 
detected by the mass spectrometer; then, ML algorithms take 
care of extracting discriminative fingerprint for the condition of 
interest. Our aim is that, with one set of biofluids from any given 
patient with an unknown disease, we can submit such samples 
to multiple classifiers simultaneously, with a fast and reliable 
response to potential diagnostics.
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