

Nude Detection in Video using Bag-of-Visual-Features

Ana P. B. Lopes (UESC/UFMG), Sandra E. F. de Avila (UFMG), Anderson N. A. Peixoto (UFMG), Rodrigo S. Oliveira (UFMG), Marcelo de M. Coelho (EPCAR/UFMG), Arnaldo de A. Araújo (UFMG)

Introduction (1/2)

 There is a vast amount of multimedia data nowadays

Filtering improper multimedia material by its visual content is needed

Introduction (2/2)

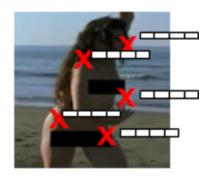
- Skin detectors
 - Precise skin detection is not a trivial task
 - Generic geometrical model X Various body poses
- BoVF representation...
 - ...has great success in object recognition tasks and...
 - ...is robust to several variations and occlusion

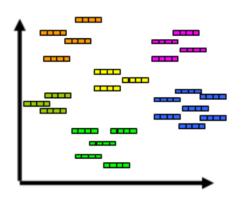
Goals

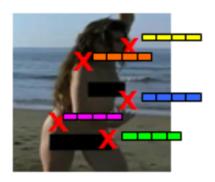
- A method for detection nudity in videos
 - Bag-of-Visual-Features
 - Voting scheme

Related Work

- Color, texture and geometric constraints
- Gaussian Mixtures Models
- Expectation-Maximization
- Suport Vectors Machines (linear and non-linear)
- Different color models (YIQ, YUV, and HSV)
- Bag-of-Visual-Features (First time!)



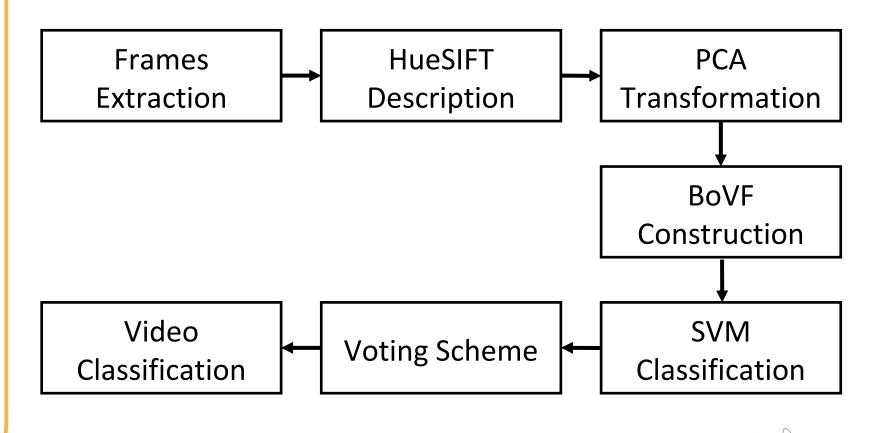

Representing Images as BoVF


1) Point selection

2) Point description

3) Vocabulary discovery

4) Cluster association


5) Histogram computation

Detecting Nudity from Videos

Our approach

Experimental Results (1/4)

- Database
 - 179 segments
 - Nude sequences
 - From 43 to 308 frames long
 - Non-nude sequences
 - From 50 to 278 frames long
 - http://www.npdi.dcc.ufmg.br/nudeDetection

Experimental Results (2/4)

- Experimental Setup
 - Frames selection:
 - samples rates
 - 1/15, 1/30
 - BoVF creation
 - 10,000 random HueSIFT points
 - Vocabulary size: 60, 120 and 180
 - Linear SVM classifier
 - $10^{-5} \le C \le 10^5$
 - 30 5-folds cross-validation runs

Experimental Results (3/4)

Table I: Comparing recognition rates for keyframe and voting based classification.

Voc. Size	Keyframe (%)	Voting (%)	Increase
60	76.4 ± 0.2	77.1 ± 0.4	0.7
120	80.2 ± 0.3	80.9 ± 0.4	0.7
180	83.9 ± 0.2	88.4 ± 0.6	4.5

(a) 1/30 frames

Voc. Size	Keyframe (%)	Voting (%)	Increase
60	79.1 ± 0.1	80.5 ± 0.4	1.4
120	83.7 ± 0.2	87.3 ± 0.4	3.6
180	85.9 ± 0.1	93.2 ± 0.4	7.3

(b) 1/15 frames

Experimental Results (4/4)

Table II: False-negative rates for keyframe and voting based classification.

Voc. Size	Keyframe (%)	Voting (%)	Decrease
60	12.2 ± 0.2	10.4 ± 0.3	1.8
120	11.0 ± 0.2	9.1 ± 0.2	1.9
180	8.0 ± 0.2	4.2 ± 0.3	3.3

(a) 1/30 frames

Voc. Size	Keyframe (%)	Voting (%)	Decrease
60	10.7 ± 0.1	10.7 ± 0.3	0.0
120	10.0 ± 0.1	8.5 ± 0.2	1.5
180	7.5 ± 0.1	4.2 ± 0.2	3.3

(b) 1/15 frames

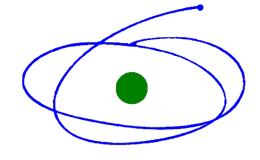
Conclusion (1/2)

- The FIRST usage of BoVF for nude detection in VIDEOS.
- A voting scheme to extend the technique for videos
- A test database:
 - Collected
 - Segmented
 - Annotated
 - made available

Conclusion (2/2)

- 93.2% of correct classification
- Identified misclassification causes:
 - Background colors near to skin tones
 - Presence of large skin areas
 - Illumination variations

Future Work


- To validate the proposed scheme using:
 - A large database
 - Low-resolution videos
- To study the vocabulary formation process in BoVF
- To modify the method to distinguish among more than two classes

Acknowledgements

FAPEMIG

Thanks you for your attention!!! Questions? Ideas?

