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Abstract—According to the American Cancer Society, one
person dies of melanoma every 57 minutes, although it is the
most curable type of cancer if detected early. Thus, computer-
aided diagnosis for melanoma screening has been a topic of
active research. Much of the existing art is based on the Bag-of-
Visual-Words (BoVW) model, combined with color and texture
descriptors. However, recent advances in the BoVW model, as
well as the evaluation of the importance of the many different
factors affecting the BoVW model were yet to be explored,
thus motivating our work. We show that a new approach for
melanoma screening, based upon the state-of-the-art BossaNova
descriptors, shows very promising results for screening, reaching
an AUC of up to 93.7%. An important contribution of this work
is an evaluation of the factors that affect the performance of the
two-layered BoVW model. Our results show that the low-level
layer has a major impact on the accuracy of the model, but that
the codebook size on the mid-level layer is also important. Those
results may guide future works on melanoma screening.
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I. INTRODUCTION

Melanoma is the most severe and deadly form of skin
cancer [1], because of its tendency to metastasis [2]. However,
it is almost always curable if detected early enough. The
contrast between the prognosis of melanoma when diagnosed
early and late makes early screening critical [3].

Screening, in medicine, is a strategy to detect a disease
in individuals without obvious signs or symptoms, enabling
earlier intervention in the hope to reduce mortality. Der-
moscopy, in melanoma screening, is an in-vivo noninvasive
imaging method that is useful for the early recognition of
melanoma [4]. Due to the difficulty of human interpreta-
tion, automated or semi-automated analysis of dermoscopic
images has become an important research area. Computer-
aided diagnosis is especially valuable for isolated communities
and remote regions, in which the presence of a full-time
dermatologist is not feasible. Automated screening helps to
select those patients who should be referred for a consultation
with a specialist.

For all reasons exposed, automated or semi-automated
melanoma screening has attracted the attention of both sci-
entists and industry, and is an active research area [5]–[16]. A
variety of features have been explored in literature, like color
and texture descriptors combined with a binary classifier [14],
or a neural network [9], [11]. Other approaches have tried to
encode into the feature vectors the human-friendly ‘ABCD’

rule, used by dermatologists in the diagnosis of melanoma,
and then to employ SVM with those features [15]. Other
methods have combined color and texture features on a Bag-
of-Visual-Words approach [6]–[8], one of the most successful
approaches to describe the visual content of images.

Inspired by the Bag-of-Words model from textual Informa-
tion Retrieval [17], where a document is represented by a
set of words, the Bag-of-Visual-Words (BoVW) [18] model
describes an image as a histogram of the occurrence rate of
“visual words” in a “visual vocabulary” (or visual codebook)
induced by quantizing the space of a low-level local descriptor
(e.g., SIFT [19]). The BoVW approach has important limita-
tions, and several alternatives to that standard scheme have
been recently developed. For instance, to attenuate the effect
of coding errors induced by the descriptor-space quantization,
hard quantization can be replaced by a soft assignment [20]
or by other coding strategies such as sparse coding [21]. To
overcome the loss of spatial information, the most popular
technique is the Spatial Pyramid Matching (SPM) [22]. It
splits an image into hierarchical regions, which generates
independent feature vectors that are concatenated into the
image-level feature vector.

In this paper, we propose a statistical learning approach for
robust melanoma screening. Our solution is centered on the
BossaNova image representation [23], a recent extension of
the BoVW approach that was shown to yield good results in
many classification tasks [23], [24]. BossaNova is a statistical
descriptor that replaces traditional color and texture global des-
criptors, leading to promising results on melanoma screening.
The scheme is robust enough to forgo all ad-hoc preprocessing
frequently found in the literature: there is no need to segment
the image, neither to detect the lesion border, nor to detect
and remove hairs, etc.

In addition to the robust screening of melanoma lesions, we
study the impact of the low-level and the mid-level factors
on the classification accuracy. The study is performed via
a statistically sound design in order to evaluate both the
significance and the relative importance of each factor in
the results. No previous work in the literature perform an
evaluation as broad in scope as ours, neither as rigorous in
terms of statistical design.

The remainder of this paper is organized as follows. In
Section II, we discuss related work on dermoscopic image
analysis, highlighting the main advances on this field. In
Section III, we give a detailed description of the methodology



used on this paper. In Section IV, we analyze our empirical
results, describing the dataset and the experimental setup. Fi-
nally, Section V presents our concluding remarks and discusses
future work directions.

II. RELATED WORK

Melanoma screening is an important matter on medical
community, and it justifies the amount of researches on this
field. This paper focus only on analysis of dermoscopic images
and this section surveys the last researches on the same type
of medical images.

Most of these studies tries to reproduce in computer
machines the steps that dermatologists use to diagnose a
melanoma. To accomplish it, some researches [9], [13], [15],
[16] implement the ABCD rule [4], looking for asymmetry,
border shape, color aspects and structural differences on the
lesion. Others (e.g., Wadhawan et al. [5]) employ the 7-points
rule [25] to classify a melanoma.

Any case have challenges that must be overcome, such as
soft borders, which turn border detection into a hard problem,
and the presence of veins or hair, which can impact the quality
of the classification. Abbas et al. [15] deals with hair removal
using derivative of Gaussian, morphological function, and fast
marching techniques.

According to the literature, the process of analyzing an
image of a skin lesion has three main steps: (i) identify the
lesion borders (border detection), (ii) extract image features
only inside the lesion (feature extraction), and (iii) compare
these features with pre-calculated features of both melanoma
and non-melanoma examples to decide if the skin lesion is a
melanoma or not (classification).

Border detection can be found on [6], which implements
three segmentation algorithms: ISODATA (Iterative Self-
Organizing Data Analysis Technique Algorithm), fuzzy c-
means and active contour without edges.

Feature extraction has been made through color and texture
descriptors. The most used color descriptors are color his-
tograms and color moments (see [5], [7], [8]). The variety for
texture descriptors is vast: wavelet coefficient, Haar Wavelet,
Gabor filter, Gray Level Co-Occurrence Matrix (GLCM), Ac-
tive Shape Model (ASM), for instance. Those descriptors are
applied in several works [5]–[8], [12]. Most studies reported
that better results are reached when they combined color and
texture descriptors [14].

After feature extraction, many approaches use the low-
level descriptors as input for the classifier. On the other
hand, some authors improve their methods by processing the
low-level information before the classification step. Mid-level
feature extraction aims at transforming low-level descriptors
into a global and richer image representation of intermediate
complexity [26]. The most popular mid-level representation
is the Bag-of-Visual-Words approach (BoVW). Examples of
BoVW techniques on the melanoma classification problem can
be found in [6]–[8]. They work with color and texture features
on the low-level and produce the mid-level by aggregating

information via k-means clustering algorithm. The codebook
size is small, ranging from 100 to 500 visual words [7], [8].

Traditionally, classification process have been made with
Suport Vector Machines (SVM) [27], a very popular and
powerful learning technique for data. Many authors applied
the SVM classifier [5]–[7], [12], [13], [15]. In short, what
differs one work from others is the kernel function used on the
SVM and its parameters. Also, some authors employed other
classification methods, such as neural networks [9], [11] or
decision-trees [10], [16]. The experimental validation protocol
depends on the dataset size: usually it is done with 10-fold
cross-validation, but some studies like [9], [11], [14] use a
leave-one-out schema.

Despite the existence of several works for melanoma clas-
sification, they are not directly compared due to the use of
distinct datasets and different validation protocols among the
methods. Also, there is no public melanoma dataset to facili-
tate different methods experimentation on same conditions.

In Section IV, Table III summarizes the main information
described here and compares our results to the state-of-the-art.

III. METHODOLOGY

In this section, we describe our proposed methodology ap-
plied to the melanoma classification problem. We first provide
an introduction to the BossaNova approach, the base of our
framework, and we then present the Spatial Circular Pooling
approach (SCP), our alternative to SPM for classifying skin
lesion images. The main pipeline is shown in Figure 1.

A. BossaNova: the base of the framework

Proposed by Avila et al. [23], BossaNova is a mid-
level image representation which offers a better information-
preserving pooling operation based on a distance-to-codeword
distribution. In this paper, we opt to use the BossaNova as
the starting point of our framework due to its performance,
comparing well with the state-of-the-art for several challenging
datasets of image classification [23], [24].

As we have mentioned before, BossaNova is an extension
of the BoVW model. It can be obtained by a succession of two
steps [26]: coding and pooling. Traditionally, the coding step
simply associates the image local descriptors to the closest
element in the codebook, and the pooling takes the average of
those codes over the entire image. Since the pooling operation
compacts all the information contained in the individually
encoded local descriptors into a single feature vector, that step
is critical for BoW-based representations.

In general terms, the objective of pooling is to summa-
rize the information contained in the individually encoded
descriptors into a single feature vector, preserving important
information while discarding irrelevant detail.

From this perspective, instead of using the classical sum-
or max-pooling strategies, BossaNova introduces a density
function-based pooling strategy, aggregating local spatial in-
formation about the descriptors around each codeword, pre-
serving thus statistical information about the distribution of
the features. It is done by computing a local histogram z of
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Fig. 1. The main pipeline of BossaNova. Low-Level Feature Extraction: RootSIFT descriptors [28], which yields superior performance than SIFT, are
employed. The dimensionality of the RootSIFT is reduced from 128 to 64 by using PCA. The PCA matrix is learned over a sample of low-level features during
the training phase. Visual Codebook Learning: During the training phase, k-means with Euclidean distance is run over a sample of one million low-level
features, the final centroids are used as codewords. Mid-Level Feature Extraction: BossaNova descriptors creates the feature vectors for the images. The
spatial pooling takes into account tone of the pyramid schemes (SPM or SCP), creating one independent feature vector for each hierarchical region of the
pyramid and then concatenating them. Decision Model Training: During the training-phase, the BossaNova feature vectors of annotated images are employed
to train a decision model using SVM (we use LIBSVM [29]). Decision Model Prediction: The trained model employs the BossaNova feature vectors of an
image to predict on the positive (melanoma) or negative classes.

distances between the descriptors found in the image and those
in the codebook. To construct the local histograms, BossaNova
uses the parameters shown in Figure 2.

BossaNova vector is defined by three parameters: the num-
ber of codewords M , the number of bins B in each histogram,
and the range of distances αMIN and αMAX . The former,
αMAX , avoids considering words not close enough from
the center and αMIN avoids the empty regions that appear
around each codeword, saving space in the final descriptor.
The BossaNova Z is a vector of size M × (B+1). For more
details, see [23], [30].

B. The Spatial Circular Pooling Approach

The new Spatial Circular Pooling (SCP) introduced in this
paper is a type of spatial pooling addressed specially for the
skin lesion classification problem. It enriches the BossaNova
representation by adding spatial information about the image
descriptors distribution around the skin lesion. Also, the SCP
can be extended to other BoVW based techniques in a straight-
forward manner.

Typically, dermoscopic images are concentric, that is, the

b = 1

b = 2

center

Fig. 2. Illustration of the range of distances αMIN and αMAX parameters
of the BossaNova model. αMAX avoids considering words not close enough
from the center and αMIN avoids the empty regions that appear around each
codeword, saving space in the final descriptor. The gray area corresponds
to the bounds of the histogram, local descriptors outside those bounds are
ignored. Figure adapted from [23].

lesion is centered on the image and it occupies about 50%
of the image area. Furthermore, many researches segment the



lesion before extracting image features. Here, we propose a
new, fast and easy way to extract the lesion without need to
segment the image. The method is explained in Figure 3 (top
row): we draw a circular region with radius R to capture 50%
of the image area (see Equation 1), we consider five sampling
vectors composed by (a) the whole image, (b) the outer and
(c) the inner regions and (d) the left and (e) the right sides
of the lesion. The schemas (a)-(c) try to evaluate the impact
of lesion segmentation over the classification, and the schemas
(d)-(e) try to identify asymmetrical borders, which is a relevant
criteria according to the ABCD rule of dermoscopy [4].

R = L/
√
2π, (1)

where R is the radius of the circle used on the SCP approach
and L is the size of the square skin lesion image. In our
experiments, the images are resized to 316 × 316 pixels, so
the radius R is 126.1 pixels, starting at the center of the image.

In order to evaluate our new spatial pooling strategy, we
compare it with the most popular spatial pooling approach:
the Spatial Pyramid Matching (SPM) proposed by Lazebnik et
al. [22]. As shown in Figure 3 (bottom row), in this technique
the image is divided on regular grids creating a pyramid of
pooled features. The descriptors are organized into vectors,
one for each grid cell. In the illustration, the image is divided
on a 1×1+2×2 schema, that is, the image is divided into a
1×1 grid (the whole image – (a)), and into a 2×2 grid (four
spatial cells – (b) to (e)).

Spatial Circular Pooling (SCP) approach

(a) (b) (c) (d) (e)

Spatial Pyramid Matching (SPM) approach

(a) (b) (c) (d) (e)

Fig. 3. Comparison between the Spatial Circular Pooling (SCP) (top row) and
the Spatial Pyramid Matching (SPM) approach [22] (bottom row), contrasted
in our evaluation of the factors affecting the model accuracy. While SCP tends
to emphasize the contrast between the center and the border of the image,
SPM tends to emphasize the contrast between the quadrants of the image.
While we expected the center–border contrast to be very important (because
it corresponds to the rules of dermoscopy image analysis), our results show
that SPM and SCP perform equally.

For a fair comparison, we have chosen the 1×1+2×2
schema for the SPM pooling because it has the same dimen-
sionality of our approach, that is, the feature vectors will both
have the same size (five regions). This comparison aims to
identify the informative power of each spatial pooling strategy,
that is, given a feature vector of the same size, we will detect

which approach preserves more information about the image.
It is straightforward to note that the more information the
feature vector has, the better is the classification.

IV. EXPERIMENTS

In this section, we describe the dataset, the experimental
setup, as well as the experimental results.

A. Dataset

The dataset is a third-party development and was created
by the Department of Medical Informatics, RWTH Aachen
University. It is composed of 747 dermoscopic images with
resolution of 512×512 pixels, of which 187 images are
melanomas and 560 images are benign skin lesions. The
dataset is not publicly available, but can be download after
a license agreement is signed1. A few example images are
shown in Figure 4.

Researchers tend to use dermoscopic instead of clinical
images (captured by a common camera under non-controlled
conditions) to detect melanomas automatically due to the
better quality, generally highlighting the lesion and its color
and texture structures.

Fig. 4. Extracts of skin lesions. Melanomas (top row) and benign skin lesions
(bottom row) appear very similar, making the task very challenging.

B. Experimental setup

Our experiments aim to identify the power of statistical
descriptors on the melanoma classification problem, as well
as to clarify the impact of low-level and mid-level over the
classification.

Images are resized to an area of 100K pixels, if larger. In the
low-level feature extraction, we extract RootSIFT descriptors
[28], [31]. The dimensionality of the RootSIFT is reduced
from 128 to 64 by using principal component analysis (PCA).
To learn the codebook, we apply the k-means clustering
algorithm with Euclidean distance over one million randomly
sampled descriptors. In the mid-level feature extraction, we use
the BossaNova representation which has shown good results
in recognition tasks [23]. We incorporate spatial information
using our proposed Spatial Circular Pooling (SCP) scheme or
the Spatial Pyramid Matching (SPM) approach. Classification
is performed by support vector machine (SVM) classifiers
using LIBSVM library [29]. We employ the grid search to
find the best parameters for SVM. The area under the receiver

1IRMA datasets – http://ganymed.imib.rwth-aachen.de/irma/datasets



operating characteristic (ROC) curve, the AUC, is used to
measure the classification performance.

We apply a 5-fold cross-validation, generating nearly 600
images for training and 150 images for testing on each fold.

In order to provide common ground for future comparisons,
the code used in this paper is publicly available2.

Evaluated parameters: We have chosen six attributes of the
framework, analyzing their contribution for the final result.
The low-level attributes are step and size values of the Root-
SIFT extraction. The mid-level attributes are the codebook
size, the number of bins, the maximum and minimum values
for α parameter and the pooling schema. The setup values are
detailed on Table I. We will discuss these impacts on the next
section. Detailed results are provided on our website.

TABLE I
PARAMETERS OF THE FRACTIONAL FACTORIAL EXPERIMENT. EACH LINE
SHOWS A PARAMETER OF THE EXPERIMENTAL SETUP, TESTED WITH HIGH

AND LOW VALUES, IN ORDER TO IDENTIFY ITS IMPACTS ON THE
CLASSIFICATION RESULT.

Parameter Value

Low-level

step small 8
big 24

scale min min 12
max 24

scale max min 64
max 128

#scale few 2
many 4

Mid-level

#bins few 2
many 4

α
tight [0.6, 1.6]
loose [0.2, 2.0]

codebook small 1024
big 2048

pooling SPM [22] 1×1+2×2
SCP (ours) (see Fig.3)

C. Results and discussion

In order to test the significance of the parameters and
their interactions, a fractional factorial ANOVA, with a block
design using the folds as blocks, was employed. To create an
evaluation measure for the ANOVA analysis, we have used
the logit(AUC) since the AUC is a highly non-linear measure,
and the ANOVA method assumes linearity in the data. After
that, we removed the average of each fold, in order to make
comparable the 5 replications between them. The study of
significance is done on this final variable. Due to the aliasing
of the fractional design, we have considered only second-order
interactions, yet none of them came out significative.

The statistical results are shown on Table II, which presents
that the residuals contain most of the information about
variability in the classification. This indicates that the choice
of parameters is not obvious and no parameters combination
improves systematically the results of the folds. We conclude,
therefore, that every researcher should pay particular attention

2https://sites.google.com/site/robustmelanomascreening/

to the random choice of the images to compose the folds
for the experiments. Each fold must be balanced between
melanoma and non-melanoma images and other factors that
can be bypassed without contaminating the results, like hair
presence or not, good and bad illumination and lesion size.

Despite of the residuals, the main effects that came significa-
tive were for step and min scale (p-value < 0.001), as well as
the number of bins and the codebook size. These parameters
have strong influence on the classification, because their p-
values indicate that the occurrence of the same results due to
randomness is practically impossible. We conclude, then, that
these parameters are good clues to be explored when con-
structing a BoVW-based method for melanoma classification.

The statistical analysis still shows that the low-level has
bigger impact over the classification than the mid-level. It
can be proved by the column ‘Sum of squares’: note that the
low-level concentrates higher values for this parameter. This
shows that in order to construct a good melanoma classifier, we
should pay attention on the feature extraction step. Although
less informative than the low-level, the mid-level also plays
an important role on the classification. Remarking that the
effect of the codebook size was very significative (p-value
= 6.6 × 10−4), this shows that the choice of the codebook
size significantly improves the predictive power of the model.
In addition, an analysis of the ANOVA table shows that
the step choice was, arguably, the most influential factor
(largest partition of the mean square variation), reinforcing the
relevance of that factor on improving the classification model.

To conclude this section, we will provide a deeper analysis
of the spatial pooling strategies. The average AUC for both
SPM and SCP approaches is 93.7% and the ANOVA analysis
did not show statistical differences between each approach.
This shows that both approaches offer the same results and
the proposed pooling schema (SCP) is so good as that one
introduced by Lazebnik et al. [22] (SPM) for melanoma
classification problem. It is important to note, and it is possible
to see in Figure 3, bottom row, that the SPM pooling schema
captures information about the asymmetry of the lesion by
grouping the descriptors in 4 regions. The SCP schema, on
the other hand, just captures information about the borders
and the center of the lesion, clustering descriptors in two
groups: one with descriptor belonging to the lesion and other
with descriptors that do not belong to the lesion. We can
also conclude that the segmentation proposed in Figure 3,
top row, frames (d) and (e) are not sufficient to capture the
whole asymmetry of the lesion on the SCP approach. These
evidences suggest that in the melanoma classification problem
the investigation of the lesion asymmetry is so important as
its segmentation.

Comparison with the state-of-the-art: This section aims to
compare our results with that ones presented on the state-of-
the-art. It is extremely important to note that the comparison
is done just in an illustrative way since the results are not
directly comparable due to the use of distinct datasets for val-
idation. Unfortunately, we cannot implement other researchers
methods due to non-disclosure and copyright agreements.



TABLE II
PARTIAL VIEW OF THE ANOVA TABLE. WE OMIT THE SECOND-ORDER INTERACTIONS SINCE NONE OF THEM WERE SIGNIFICANT. ON THE OTHER

HAND, ALL MAIN EFFECTS WERE SIGNIFICANT. THE CHOICES OF STEP AND SCALE FOR THE LOW-LEVEL AND THE CHOICE OF NUMBER OF BINS AND
CODEBOOK SIZE FOR THE MID-LEVEL EXPLAIN MOST OF THE NON-RANDOM VARIATION, AS SEEN IN THE SUM OF SQUARES COLUMN.

Level Parameter Degrees of Sum of Mean F value p-valuefreedom squares square

Low-level
step 1 40.66 40.66 110.76 < 2.00× 10−16 ***

scale min 1 9.64 9.64 26.26 5.45× 10−7 ***
scale max 1 1.60 1.60 4.35 3.79× 10−2 *

Mid-level #bins 1 4.85 4.85 13.21 3.29× 10−4 ***
codebook 1 4.35 4.35 11.85 6.60× 10−4 ***

Significance codes: *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05
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Fig. 5. ROC curves of the best and worst average AUCs for SCP and SPM
pooling approaches. Note that despite our best average AUCs are 93.7% for
both SCP and SPM, SCP has a worst case better than SPM.

Nevertheless, the comparison is important to prove that our
results are promising and aligned to the state-of-the-art.

Figure 5 shows the ROC curves of the best and worst results
for SCP and SPM pooling approaches. Our best average AUCs
are 93.7% for both SCP and SPM, proving that our pooling
schema is suitable for the melanoma classification problem.

Table III resumes the information present on the state-of-
the-art section. It also shows important aspects about each
study, like the dataset size, the proportion between positive
(melanoma) and negative (non-melanoma) images and the
evaluation criteria: the AUC or the accuracy. We will compare
our results only with studies that use AUC as evaluation mea-
sure, since we consider it more informative than the accuracy,
due the aggregation of information about the sensitivity and
the specificity of the methods, while the accuracy favors the
true positive and true negative results, and masks the false
positive and false negative ones.

Our method is directly better than [6], [7], [9], and [15].
Also, it should be mentioned that Iyatomi et al. [9] has
border detection and feature selection, forcing a non-natural

improvement of the method.
In our experiments, we used the whole dataset, without re-

moving difficult cases, like images with poor quality, excessive
presence of hair or if the lesion is not whole fitted on the
image. We also do not detect lesion borders, remove hair,
improve the contrast between melanoma and non-melanoma
skin nor do any other ad-hoc preprocessing to benefit the
classifier, proving the robustness of our method.

It is also important to note that none of the state-of-the-art
works reported standard deviation of their results, preventing
a deeper analysis of the actual behavior of the proposed
methods. We, however, presented our deviations by showing
the residuals of the ANOVA analysis.

V. CONCLUSION

This paper presents a novel approach for the melanoma
classification problem based on the state-of-the-art BossaNova
descriptor, which considerably extends the BoVW model and
has shown good results on several tasks. We were able to
create a robust melanoma screening technique, which forgoes
all ad-hoc preprocessing frequently found in literature like
image segmentation, lesion border detection, or hair and vein
detection and removal. The comparison with the state-of-the-
art is very difficult due to the fact there are no standard
datasets, and the contacted authors refused to share either the
data or code leading to their publications. Nevertheless, our
results are very promising, with an AUC of up to 93.7%.

In addition to proposing a new technique for the robust
screening of melanoma lesions, we have studied the impact
of the low-level and the mid-level factors on the classification
accuracy. The study was performed with statistically sound
design in order to evaluate both the significance and the
relative importance of each factor in the results. No previous
work in the literature perform an evaluation as broad in scope
as ours, neither as rigorous in terms of statistical design. We
were able to show that the scale and the step of the low-level
features are among the most-influential parameters.

Future works include the continued optimization of both
low-level and mid-level layers of the representation, with
special attention to the factors pointed as most influential in
our study. In addition, we want to implement the proposed
method into mobile devices, enabling screening programs on
remote communities.



TABLE III
RESULTS REPORTED IN THE LITERATURE. BECAUSE THERE IS NO STANDARD DATASET NEITHER PROTOCOL TO ALLOW DIRECT COMPARISON, THE

RESULTS REPORTED BY LITERATURE ARE NOT DIRECTLY COMPARABLE, AND ARE SHOWN HERE FOR ILLUSTRATION AND FOR COMPLETENESS SAKE.
NOTE AS WELL, THAT SOME AUTHORS EMPLOY AUC WHILE OTHERS EMPLOY THE ACCURACY (ACC) AS METRIC.

Ref. Authors Method Dataset AUC (%) ACC (%)#pos/#neg

[5] Wadhawan et al. Color histogram; Haar wavelet; SVM 110/237 * 76.4

[6] Wadhawan et al. Haar wavelet; SVM 388/912 91.4 *

[7] Situ et al. Color histogram; Gabor filter; BoVW; SVM 30/70 82.2 *

[8] Barata et al. Color histogram; Gabor filter; BoVW; k-NN 25/151 ** **

[9] Iyatomi et al. Color and texture descriptors; Neural network 198/1060 92.8 *

[11] Mikos et al. GLCM; Neural network 42/88 * 69.5

[12] Doukas et al. ASM; SVM 800/2200 * 85-90

[14] Marques et al. Color and texture descriptors; * 17/146 * 79.1

[15] Abbas et al. ABCD rule-based features; SVM 60/60 88.0 *

– Our proposal RootSIFT; BossaNova & SCP; SVM 187/560 93.7 –

AUC: area under the ROC curve — ACC: accuracy — *It was not reported by the authors in the original paper
**Uses Sensitivity (93%) and Specificity (85%), as evaluation measure
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