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ABSTRACT
Binary descriptors have recently become very popular in vi-
sual recognition tasks. This popularity is largely due to
their low complexity and for presenting similar performances
when compared to non binary descriptors, like SIFT. In lit-
erature, many researchers have applied binary descriptors
in conjunction with mid-level representations (e.g., Bag-of-
Words). However, despite these works have demonstrated
promising results, their main problems are due to use of a
simple mid-level representation and the use of binary de-
scriptors in which rotation and scale invariance are missing.
In order to address those problems, we propose to evaluate
state-of-the-art binary descriptors, namely BRIEF, ORB,
BRISK and FREAK, in a recent mid-level representation,
namely BossaNova, which enriches the Bag-of-Words model,
while preserving the binary descriptor information. Our
experiments carried out in the challenging PASCAL VOC
2007 dataset revealed outstanding performances. Also, our
approach shows good results in the challenging real-world
application of pornography detection.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fe-
ature Measurement—Feature representation; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—
Object recognition

General Terms
Algorithms, Experimentation, Performance

Keywords
Visual recognition, local binary descriptors, feature extrac-
tion, mid-level representation, BossaNova representation

1. INTRODUCTION
The typical visual recognition pipeline is composed of the

three steps: (i) extraction of local image descriptors; (ii)
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encoding the local features in a mid-level representation;
and (iii) classification of the image descriptor. Usually, the
image descriptors must be invariant to object translation,
rotation, illumination, scale, among others. To cope with
these properties, the most common local descriptors are
SIFT [17] and SURF [4]. However, they are represented
by high-dimensional real-valued vectors, which cause some
performance problems in the encoding of the descriptors into
a mid-level representation.

Regarding mid-level image representations, the Bag-of-
Words (BoW) [23] is the most common approach for en-
coding the image descriptors. BoW models can be under-
stood as the application of two critical steps [5]: coding and
pooling. The coding step quantizes the image local features
according to a codebook1. The pooling step summarizes the
codes obtained into a single feature vector. In the classical
BoW, the coding step associates the image local descriptors
to the closest element in the codebook, and the pooling takes
the average of those codes over the entire image.

Despite the fact that local image descriptors present good
accuracy when used by classical BoW approaches, they have
a high computational cost in computing the feature vectors,
making it impossible extremely hard to use them in some
real time applications.

To deal with these issues, the state-of-the-art takes into
account binary descriptors, such as BRIEF [7] and ORB
[21], instead of SIFT and SURF. According to [8], the meth-
ods for extracting these binary descriptors are faster than
the methods for computing the SIFT. Moreover, thanks to
their representation (i.e., sequence of zeros and ones), the
distance between two descriptors can be calculated by the
Hamming distance instead of Euclidean distance, which is
used for SIFT descriptor.

As reported by [10, 12, 13, 14, 24, 25], the use of binary
descriptors in conjunction with mid-level representations is
promising. This combination was first introduced by [12],
using BRIEF as binary descriptor. The BRIEF descriptor
plus FAST keypoint detection [20] are used to extract lo-
cal invariant features for visual place recognition using the
BoW model. They build a vocabulary tree that discretizes a
binary descriptor space and use the tree to speed up corre-
spondences for geometrical verification. Lately, in [13], the
same authors enhanced the direct index technique and ex-
tended the experimental evaluation of their approach. Their
main limitation is the use of features in which the rotation

1The codebook (or dictionary) is usually built by clustering
a set of local descriptors. It can be defined by the set of
visual words, corresponding to the centroids of clusters.
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and scale invariance are missing.
Zhang et al. [25] introduced an approach to use local bi-

nary descriptors for the visual object categorization task.
They proposed a new encoding method to address the high
dimensionality issue of the traditional binary bitstring en-
coding. A comparison between Hamming and Euclidean dis-
tances was made, proving the benefits of using Hamming
distance with binary descriptors. The proposed approach
was validated by applying LBP features [18], however, the
original LBP algorithm presents some limitations such as
noise sensitivity and also, the rotational invariance is miss-
ing. Grana et al. [14], combined the ORB descriptor and
a BoW model for image classification. To deal with the
binary string nature of the ORB descriptors, the authors
suggested a variation of k-means, called k-majority, replac-
ing Euclidean distance by Hamming distance and majority
selected vector as the new cluster center. However, the ORB
descriptor suffers from partial scale-invariance.

Whiten et al. [24] presented an extension of the FREAK
descriptor in conjunction with the BoW model for action
recognition. The first bytes of the descriptor encode the ap-
pearance and some implicit motion and the remaining bytes
strengthen the motion model by building a binary string
through local motion patterns. According to Whiten et al.,
throughout the construction of this descriptor, emphasis is
placed on ensuring the entire descriptor remains binary, gift-
ing it with highly optimized processing and feature match-
ing. The authors yield significant computational gains in
approaches such as standard BoW models, where thousands
of matches must often be made at each frame.

On a mobile environment, Chatzilari et al. [10] attempted
to examine the visual recognition by simultaneously evaluat-
ing the performance and the computational cost of state-of-
the-art keypoint detection, feature extraction and encoding
algorithms. They seek to balance the system so as to select a
configuration that is able to run in an acceptable time frame
and, at the same time, can provide satisfactory results for
the specific application.

In the face of the good results for the combination of bi-
nary descriptors with a classical BoW for visual recognition,
we propose in this paper to replace the classical BoW by a
recent mid-level representation, named BossaNova [1], which
enriches the BoW representation by keeping a histogram of
distances between the descriptors found in the image and
each codebook element. As shown in the experiments, our
approach outperforms previous methods that apply binary
descriptors on PASCAL VOC 2007 dataset [11]. Moreover,
we explore our method in the challenging real-world appli-
cation of pornography detection. We evaluate our approach
on Pornography dataset [1]. Our result is comparable to the
best one published, which is obtained by using HueSIFT
descriptors (SIFT + color information) and BossaNova rep-
resentation.

The remainder of this paper is organized as follows. In
Section 2, we survey some binary descriptors and their prop-
erties. In Section 3, we provide a brief description of the
BossaNova image representation. In Section 4, we introduce
our approach for visual recognition. In Section 5, we an-
alyze our experimental results on two challenging datasets.
Finally, in Section 6, we present our concluding remarks and
discuss future work directions.

2. BINARY DESCRIPTORS

Binary descriptors have received considerable attention
having a similar or better recognition performance when
compared the BRIEF descriptor [7] to the SURF descriptor
[4], for example. The main feature of this kind of descriptor
is the time required for extracting it. Even being faster than
non binary descriptors, their recognition performance may
be comparable to more complex descriptors. In this section,
we explore some binary descriptors and their properties.

2.1 BRIEF
The BRIEF descriptor [7] (Binary Robust Independent

Elementary Features) describes features using simple binary
tests among pixels from a smoothed image (e.g., using a
Gaussian kernel with variance equal to 2 and size equal to
9 × 9 pixels). By itself BRIEF is neither scale nor rotation
invariant. Nevertheless, its performance is similar to a more
complex local descriptor, the SURF, when compared to its
robustness to illumination, blur, and perspective distortion.

The BRIEF descriptor is represented by a binary string
in which each bit represents a simple comparison between
two elements inside a patch. The keypoint is the center
of this patch. The bit is set to ‘1’ if the first point is more
intense than the other one, otherwise it is set to ‘0’. Despite
the several ways, presented in [7], to perform the selection of
points that will be compared, the most common strategy for
choosing these points is based on a randomly way according
to a Gaussian distribution with respect to the keypoint of
the patch. An important observation is that the number of
selected points leads to the descriptor size (e.g., 128, 256
and 512).

2.2 ORB
The ORB descriptor [21] (Oriented FAST and Rotated

BRIEF) can be considered as an alternative for SIFT and
SURF being two times faster than SIFT and one time faster
than SURF. The ORB descriptor is robust to noise and in-
variant to rotation, solving the invariance problem of BRIEF.
Despite this improvement, the ORB descriptor is partially
invariant to scale.

According to [8], the invariance to rotation is done by
estimating the patch rotation using the intensity centroid.
Patch moments are used to compute the intensity centroid
and outperform gradient-based approaches.

The sampling pattern is steered estimating the orienta-
tion, and usual binary tests are used for computing the
descriptor. Furthermore, for selecting a couple of points,
a k-nearest neighborhood strategy based on error-prone is
done. The random sampling has been replaced to a sam-
pling scheme that uses machine learning for de-correlating
BRIEF features under rotational invariance. Unlike BRIEF,
ORB’s descriptor size is fixed to a 256 bitstring.

2.3 BRISK
The BRISK descriptor [16] (Binary Robust Invariant Scal-

able Keypoints) provides scale and rotation invariance, how-
ever it is very sensitive to light intensity variations. As il-
lustrated in Figure 1(a), the BRISK descriptor computes a
weighted Gaussian average over a selected pattern of points
that are close to the keypoint. For comparing the points,
Gaussian windows are used to set the bit to ‘1’ or ‘0’. Due
to its size, the BRISK descriptor is represented by a 512
bits, which is more greater that BRIEF and ORB, and con-
sequently, more computation and storage are required.

50



30

-30

-20

-20 200

0

20

10

-10

30

-30

-20

-20 200

0

20

10

-10

(a) BRISK [16] (b) FREAK [19]

Figure 1: Sampling patterns of two local binary descriptor. In (a) it is illustrated the sampling pattern of
BRISK descriptor which is based on 60 points: the small blue circles denote the sampling locations; the
bigger red dashed circles are drawn at a radius, which corresponds to the standard deviation of the Gaussian
kernel used to smooth the intensity values at the sampling points. In (b) it is illustrated the sampling pattern
of FREAK descriptor in which each circle represents a receptive field where the image is smoothed with its
corresponding Gaussian kernel.

2.4 FREAK
The FREAK descriptor [19] (Fast Retina Keypoint) also

provides scale and rotation invariance, however its pattern
is based on Gaussians and it is biologically-inspired on the
retinal pattern of the human eye.

In practice, FREAK improves upon the sampling pattern
and method of pair selection that BRISK uses. Thus, for
computing this descriptor, 43 weighted Gaussians at loca-
tions around the keypoint are evaluated. As can be see in
Figure 1(b), overlappings are considered in order to com-
pute average values related to some points. Moreover, the
patterns are much more concentrated near the keypoint that
leads to a more accurate description of the keypoint.

To speed up the matching process, the actual FREAK
algorithm also uses a cascade for comparing these pairs, and
puts the 64 most important bits in the beginning of the
descriptor. Just like BRISK, FREAK leads to a 512 bit
binary descriptor.

3. BOSSANOVA REPRESENTATION
In this section, we only provide a brief introduction to

the BossaNova mid-level image representation, which of-
fers more information-preserving pooling operation based
on a distance-to-codeword distribution. More details can
be found in [1, 2].

Let X be an unordered set of binary descriptors extracted
from an image. X = {xj}, j ∈ {1, . . . , N}, where xj ∈ RD
is a binary descriptor vector and N is the number of bi-
nary descriptors in the image. Let C be a visual codebook
obtained by an unsupervised learning algorithm (e.g., k-
medians clustering algorithm). C = {cm}, m ∈ {1, . . . ,M},
where cm ∈ RD is a codeword and M is the number of vi-
sual codewords. The BossaNova representation of the image
z that is used for classification is defined as follows.

The BossaNova approach follows the BoW formalism (cod-
ing/pooling), but proposes an image representation which
keeps more information than BoW during the pooling step.
Thus, in BossaNova coding, [1] proposed a soft-assignment

strategy considering only the k-nearest codewords for coding
a local descriptor. Mathematically speaking, the BossaNova
coding step can be modeled by a function f as follows:

f : RD −→ R
M ,

xj −→ f(xj) = αj = {αm,j} ,

αm,j =
exp−βmd2(xj ,cm)∑K

m′=1 exp
−βmd2(xj ,cm′ )

where d2(xj , cm) is the distance between cm and xj . The
parameter βm regulates the softness of the soft-assignment
(the bigger it is, the hardest the assignment).

The BossaNova pooling function g estimates the probabil-
ity density function of αm: g(αm) = pdf(αm), by computing
the following histogram of distances zm,b:

g : RN −→ R
B ,

αm −→ g(αm) = zm,

zm,b = card
(
xj | αm,j ∈

[ b
B

;
b+ 1

B

])
,

b

B
≥ αminm and

b+ 1

B
≤ αmaxm ,

where B denotes the number of bins of each histogram zm,
and [αminm ;αmaxm ] limits the range of distances for the de-
scriptors considered in the histogram computation.

After computing the local histograms zm for all the cm
centers, the BossaNova vector z [1] can be written as:

z = [[zm,b] , stm]T , (m, b) ∈ {1, . . . ,M} × {1, . . . , B} ,

where z is a vector of size M × (B + 1), s is a nonnegative
constant and tm is a scalar value for each codeword, counting
the number of binary descriptors xj close to that codeword.

In brief, the BossaNova representation is defined by three
parameters: the number of codewordsM , the number of bins
B in each histogram, and the range of distances [αminm , αmaxm ]
– the minimum distance αminm and the maximum distance
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Figure 2: Overview of our approach using local binary descriptors and BossaNova representation.

αmaxm in the RD descriptor space that define the bounds of
the histogram. As in [1], we set up the bounds as αminm =
λmin · σm and αmaxm = λmax · σm, where σm is the standard
deviation of each cluster cm obtained by k-medians cluster-
ing algorithm.

Avila et al. [1] applied their representation in the context
of visual recognition. In comparison to the BoW represen-
tation, BossaNova significantly outperforms it. Besides, the
BossaNova approach were ranked at the second place, con-
sidering only visual-based approaches, in the ImageCLEF
2012 challenge [3]. Furthermore, by using a simple his-
togram of distances to capture the relevant information,
the method remains very flexible and keeps the represen-
tation compact. For those reasons, we choose to apply the
BossaNova approach for mid-level features.

4. VISUAL RECOGNITION USING LOCAL
BINARY DESCRIPTORS

Recognizing categories of objects and scenes is a funda-
mental human ability and an important, yet elusive, goal
for computer vision research. Images consist of pixels that
have no semantic information by themselves, making the
task very challenging.

Over the last decade, progress in visual recognition tasks
has been quantifiable thanks to (i) the design of discrimi-
native low-level local descriptors, such as SIFT, and (ii) the
emergence of mid-level representations based on the Bag-of-
Words (BoW) model.

On the subject of low-level features, binary descriptors
have recently emerged as low-complexity alternatives to sta-
te-of-the-art descriptors. Despite the promising results ob-
tained in visual recognition tasks, the previous methods have
employed binary descriptors, in which the invariance of rota-
tion and scale are missing, as well as simple mid-level image
representations.

In order to address those problems, we propose combin-
ing more robust binary descriptors, such as BRISK [16], with
a recent mid-level image representation, namely BossaNova
[1], which enriches the BoW representation, while preserv-
ing the local descriptor information. As shown in the ex-
periments, our approach outperforms previous methods in
literature that use binary descriptors as low-level features.

In Figure 2, we illustrate the overview of our approach
pipeline, which involves two phases: training and testing.
In training phase, we first extract binary image descriptors
on a dense spatial grid. As discussed in [10], that setup for
binary descriptors extraction proves to give very good per-
formances in standard image datasets. Next, following the
visual recognition strategy, the local descriptors must be en-
coded into a mid-level representation to be used for the clas-
sification task. However, a visual codebook must be created
before the encoding. Thus, we apply a k-medians cluster-
ing algorithm instead of the classical k-means method. The
main reason is the type of descriptors employed there, i.e., as
the binary descriptors are represented by binary values, the
k-medians clustering performs better. Additionally, the Eu-
clidean distance is replaced by Hamming distance in order to
compute distance between the descriptors and the centroids.
After, for each image, we extract the BossaNova mid-level
feature vector. Finally, once we obtained the BossaNova
vectors, one-versus-all classification is performed by non-
linear SVM classifiers. The kernel matrices are computed
as exp(−γd(x, x′)) with d being the distance and γ being
fixed to the inverse of the pairwise mean distances.

In testing phase, a new/test image is classified by apply-
ing the trained classifier obtained during the training phase.
Thus, for the test image, the binary descriptors are extracted
on a dense spatial grid. Next, the BossaNova mid-level fea-
ture vector is generated using the visual codebook previously
created. After, that feature vector is given as input to the
trained classifier to predict the class label of the test image.

5. EXPERIMENTAL RESULTS
In this section, we present some experimental results for

visual recognition task. We assess our approach on two chal-
lenging datasets: (i) PASCAL VOC 2007 [11] (visual object
categorization); and (ii) Pornography [1] (video classifica-
tion). Each dataset is described at the moment of its use.

In order to study the behavior of binary descriptors and
their mid-level representation, for both datasets, four binary
descriptors (BRIEF, ORB, BRISK, FREAK) are densely
extracted (every 6 pixels). We obtained the code of binary
descriptors from OpenCV’s repository [6], one of the most
popular libraries for computer vision. All binary descriptors
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are extracted with their default parameters. Also, we used
the BossaNova code made available at http://www.npdi.

dcc.ufmg.br/bossanova.
All experiments were conducted on a 64-bit Linux machine

(Ubuntu 12.04) powered by Intelr Xeonr CPU X5670 @
2.93 GHz CPUs with 24 cores and 70 GB RAM. Despite the
large computational power available, we do not require that
power to process our experimental results.

5.1 Results for PASCAL VOC 2007 dataset
The PASCAL VOC 2007 dataset [11] consists of 9,963 im-

ages collected from Flickr photo-sharing website. The goal
of this challenge is to recognize 20 visual object classes in
realistic scenes (aeroplane, bicycle, bird, boat, bottle, bus, car,
cat, chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, sofa, train, tv/monitor). Those images
are split into three subsets: train (2,501 images), val (2,510
images) and test (4,952 images). Our experimental results
are obtained on train+val/test sets.

In order to learn the codebook, we apply the k-medians
clustering algorithm with Hamming distance over five hun-
dred thousand descriptors randomly sampled. For the Bossa-
Nova representation, we also incorporate spatial information
using the standard spatial pyramidal matching scheme [15].
In total, four spatial cells are extracted (1 × 1; 3 × 1).

As described in Section 3, the BossaNova representation
has three parameters. Here, we kept the BossaNova parame-
ter values the same as in [1] (B = 2, λmin = 0.4 and λmax =
2, s = 10−3), except for the number of visual codewords, we
set M = 1024.

The classification performance is measured by the mean
Average Precision (mAP) across all classes.

Table 1 shows the results of our experiments over PAS-
CAL VOC 2007 dataset. We can notice that our approach
(binary descriptor and BossaNova representation) outper-
forms the previous methods, which used the classical BoW
representation. In our results, it should be noted that BRISK
gives the best result (mAP = 38.00%), while FREAK gives
the lowest result (mAP = 33.32%) on PASCAL VOC 2007.

Table 1 also shows the comparison with published results.
In comparison to Zhang et al. [25], all our results outperform
the Zhang’s result (mAP = 33.24%) using LBP + BoW (one
scale) with a codebook of 1,200 words. Their best published
result is 35.17% for LBP + BoW (multi-scale). Regarding
this result, we can see that, even without using multi-scale
descriptors, our results outperform the Zhang’s result, ex-

Table 1: Image classification mAP (%) results of our
approach and published results on PASCAL VOC
2007 dataset [11].

Approach mAP (%)

BoW (LBP, one scale) [25] 33.24
Published BoW (LBP, multi-scale) [25] 35.17

results BoW (BRIEF) [10] 21.54
BoW (ORB) [10] 21.62

BossaNova (BRIEF) 36.22
Our BossaNova (ORB) 37.14

results BossaNova (BRISK) 38.00
BossaNova (FREAK) 33.32

cept for FREAK descriptor.
The comparison to Chatzilari et al. [10] is particularly

relevant, because we employ the same binary extraction as
them (BRIEF and ORB descriptors with default parame-
ters). We can observe that our results, BRIEF + BossaNova
(mAP = 36.22%) and ORB + BossaNova (mAP = 37.14%),
are much better than Chatzilari’s results, BRIEF + BoW
(mAP = 21.54%) and ORB + BoW (mAP = 21.62%). Fur-
thermore, they used a codebook size of 2,000 visuals words,
while we only used 1,024 visual words. In view of that,
our results are remarkably good, since it is well known that
larger codebooks lead to higher accuracy [9].

5.2 Results for Pornography dataset
Pornography consumption has increased in recent years,

which is due in large part to the availability and anonymity
provided by the Internet [22]. Pornographic material, how-
ever, is often unwelcome is certain environments (e.g., scho-
ols, workplaces), channels (e.g., general-purpose social net-
works), or for certain publics (e.g., children). That raises
the need to detect and filter such content.

In this section, we explore our approach in the real-world
application of pornography detection. We evaluate our ap-
proach on Pornography dataset [1], which contains nearly
80 hours of 400 pornographic and 400 non-pornographic vi-
deos. The pornographic class consists of several genres of
pornography and depicts actors of many ethnicities, includ-
ing multi-ethnic ones. The non-pornographic class is divided
in two subsets: easy, with 200 videos randomly selected from
the Internet; and difficult, with 200 videos selected from tex-
tual search queries like“beach”, “wrestling”and“swimming”,
which is particularly challenging for the detector.

The dataset comes already separated into 16,727 video
shots. As in [1], we select the middle frame of each video
shot. The experimental evaluation is a 5-fold cross-validati-
on. The video classification performance is reported by accu-
racy rate, where the final video label is obtained by majority
voting over the images.

In our experiments, we apply the same experimental setup
proposed by [1]. Our goal is to compare our approach to
previous methods that employed this dataset in conjunction
with BossaNova representation. In order to learn the vi-
sual codebook, we create a vocabulary by using a k-medians
clustering algorithm with Hamming distance over one mil-
lion randomly sampled descriptors. For the BossaNova rep-
resentation, we kept the parameter values the same as in [1]:
M = 256, B = 10, λmin = 0, λmax = 3 and s = 10−3. Also,
in the interest of a fair comparison, we do not incorporate

Table 2: Video classification (%) results (and stan-
dard deviations) of our approach and published re-
sults on Pornography dataset [1].

Approach Acc. (%)

Published BoW (HueSIFT) [1] 83.0 ± 3
results BossaNova (HueSIFT) [1] 89.5 ± 1

BossaNova (BRIEF) 86.3 ± 3
Our BossaNova (ORB) 86.5 ± 3

results BossaNova (BRISK) 88.6 ± 2
BossaNova (FREAK) 86.9 ± 3

53

http://www.npdi.dcc.ufmg.br/bossanova
http://www.npdi.dcc.ufmg.br/bossanova


spatial information to BossaNova representation.
Table 2 shows our results and the ones reported on the

literature over the Pornography dataset. Again, we note
that, in our results, BRISK descriptor gives the best result
(88.6%). Also, we can observe that our best result is close to
the best one reported. Here, it is important to notice that,
the best published result is obtained by using HueSIFT de-
scriptors, a SIFT variant including color information, which
is particularly relevant for this dataset. Furthermore, we can
show the advantage of our approach (BossaNova + binary
descriptors) when compared to the classical BoW approach,
which also employed HueSIFT descriptors.

6. CONCLUSION
In this paper, we proposed an approach for the visual

recognition tasks, which employs local binary image descrip-
tors in conjunction with the recent mid-level image represen-
tation, namely BossaNova.

We experimentally compared the performances of our ap-
proach with the published results on PASCAL VOC 2007
dataset, a benchmark in visual object category recognition,
as well as on a real-world application of pornography detec-
tion. As shown in our experimental results, our approach
surpassed the previous methods (up to nearly 16.5%) on
PASCAL VOC 2007. For pornography video classification,
our approach yielded results comparable to the state-of-the-
art result, which employs HueSIFT descriptors.

From evaluation results obtained, BRISK is recommended
as the best binary descriptor for visual recognition tasks. In
both datasets, it gives the best results.

Possible directions for future works include to evaluate
the most recent binary descriptors, regarding the accuracy
and processing time. Also, we hope to improve our results
by exploiting further parameters, as in our experiments we
used default parameter values.
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