

Support Vector Machine (SVM) Machine Learning

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, November 25, 2019

SVMs are among the best "off-the-shelf" supervised learning algorithm.

Andrew Ng

Kernel-based Learning Methods", Cristianini & Shawe-Taylor, 2000.

"An Introduction to Support Vector Machines: And Other

"Kernel Methods for Pattern Analysis",

Shawe-Taylor & Cristianini, 2004.

"Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond", Scholkopf & Smola, 2001.

Traditional Recognition

Traditional Recognition

Deep Learning

Deep Learning

Deep Learning

Transfer Learning

Transfer Learning

Transfer Learning

What is Support Vector

Machine?

Idea of separating data with a large "gap".

Idea of separating data with a large "gap".

Examples closest to the hyperplane are support vectors.

Margin ρ of the separator is the distance between support vectors.

How does SVM work?

How can we identify the right hyperplane? Scenario 4 x_{2} Margin (distance) \mathcal{X}

SVM: Notation

We will be considering a **linear classifier for a binary classification** problem with labels *y* and features *x*.

SVM: Notation

We will be considering a **linear classifier for a binary classification** problem with labels *y* and features *x*.

- Class labels: $y \in \{-1,1\}$ (instead of $\{0,1\}$)
- Parameters: w, b (instead of vector θ)

SVM: Notation

We will be considering a **linear classifier for a binary classification** problem with labels *y* and features *x*.

- Class labels: $y \in \{-1,1\}$ (instead of $\{0,1\}$)
- Parameters: w, b (instead of vector θ)

• Classifier:
$$h_{w,b}(x) = g(w^T x + b)$$

•
$$g(z) = 1$$
 if $z \ge 0$, and $g(z) = -1$ otherwise

Given a training example $(x^{(i)}, y^{(i)})$, we define the margin of (w, b) with respect to the training example:

$$y^{(i)}(w^T x + b) \ge 1, i = \{1, ..., m\}.$$

Let $P(x^{(1)}, y^{(1)})$ be a point and *l* be a line defined by ax + by + c = 0. The distance *d* from *P* to *l* is defined by:

$$d(l,P) = |ax^{(1)} + by^{(1)} + c|$$
$$\sqrt{a^2 + b^2}$$

Let $P(x^{(1)}, y^{(1)})$ be a point and *l* be a line defined by ax + by + c = 0. The distance *d* from *P* to *l* is defined by:

$$d(l,P) = |ax^{(1)} + by^{(1)} + c|$$

$$\sqrt{a^2 + b^2}$$

$$d(w,b,x) = \frac{|w^T x + b|}{||w||}$$

$$d(w,b,x) = \frac{|w^T x + b|}{||w||}$$

http://cs229.stanford.edu/notes/cs229-notes3.pdf

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x + b) \ge 1, i = \{1, ..., m\}$

Need to optimize a quadratic function subject to linear constraints.

Soft Margin Classification

What if the training set is not linearly separable?

Soft Margin Classification

Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called **soft**.

Soft Margin Classification

Modified formulation incorporates slack variables:

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C\Sigma\xi_i$$

s.t. $y_i(w^T x + b) \ge 1 - \xi_i, \xi_i \ge 0, i = \{1, ..., m\}$

Parameter *C* can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

How can we identify the right hyperplane?

Scenario 5

• Linear SVM: $x_i \cdot x_j$

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ
- Kernel matrix $K_{ij} = K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = \phi(x_j) \cdot \phi(x_i) = K_{ji}$

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ
- Kernel matrix $K_{ij} = K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = \phi(x_j) \cdot \phi(x_i) = K_{ji}$
- Radial Basis Function (RBF) kernel: $exp(-\lambda ||x_i x_j||^2)$
- Gaussian kernel: $K(x_i, x_j) = \exp(-||x_i x_j||^2/(2\sigma^2))$
- Polynomial kernel: $K(x_i, x_j) = (x_i \cdot x_j + 1)^d$, d degree
- Chi-square kernel, histogram intersection kernel, string kernel,

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

C: Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

C: Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.

The parameters can be tuned using grid-search.

Grid Search

"Random Search for Hyper-Parameter Optimization": http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Libraries

- Scikit-learn: <u>https://scikit-learn.org/stable/modules/svm.html</u>
- LIBSVM: <u>https://www.csie.ntu.edu.tw/~cjlin/libsvm</u>
- LIBLINEAR: <u>https://www.csie.ntu.edu.tw/~cjlin/liblinear</u>
- PmSVM: <u>https://sites.google.com/site/wujx2001/home/power-mean-svm</u>

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 5
- Pattern Recognition and Machine Learning, Chap. 6 & 7

Machine Learning Courses

- <u>https://www.coursera.org/learn/machine-learning</u>, Week 7
- <u>http://cs229.stanford.edu/syllabus.html</u>,

http://cs229.stanford.edu/notes/cs229-notes3.pdf

Random Forests Machine Learning

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, November 25, 2019

Decision Tree

Decision Tree & Random Forest

• **Decision Trees** are versatile Machine Learning algorithms that can perform both classification and regression tasks, and even multi-output tasks.

Decision Tree & Random Forest

- Decision Trees are versatile Machine Learning algorithms that can perform both classification and regression tasks, and even multi-output tasks.
- Random Forest is an ensemble of Decision Trees, generally trained using the Bagging method (or sometimes Pasting).

Decision Tree: Iris Dataset

http://sebastianraschka.com/Articles/2014_python_lda.html

150 iris flowers from three different species.

The three classes in the Iris dataset:

- 1. Iris-setosa (n=50)
- 2. Iris-versicolor (n=50)
- 3. Iris-virginica (*n*=50)

The four features of the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

This node asks whether the flower's petal length is smaller than 2.45 cm

A **node's samples** attribute counts how many training instances it applies to.

A **node's value** attribute tells you how many training instances of each class this node applies to.

A **node's gini** attribute measures its impurity.

"pure" (gini=0): all training instances belong to the same class.

petal length (cm) <= 2.45

For example, the depth 2 left node has a gini score equal to $1 - (0/54)^2 - (49/54)^2 - (5/54)^2 \approx 0.168$.

 $|\mathbf{G}_i = 1 - \Sigma p_{i,k}|^2$

 $p_{i,k}$ is the ratio of class k instances among the training instances in the i^{th} node

(petal length (cm) <= 2.45)

For example, the depth 2 left node has a gini score equal to $1 - (0/54)^2 - (49/54)^2 - (5/54)^2 \approx 0.168$.

 $G_i = 1 - \sum p_{i,k}^2$

 $p_{i,k}$ is the ratio of class k instances among the training instances in the i^{th} node

A **node's gini** attribute measures its impurity.

"pure" (gini=0): all training instances belong to the same class.

• Classification And Regression Tree (CART) algorithm.

- Classification And Regression Tree (CART) algorithm.
- The idea is really quite simple: the algorithm first splits the training set in two subsets using a single feature k and a threshold t_k (e.g. "petal length ≤ 2.45 cm").

- Classification And Regression Tree (CART) algorithm.
- The idea is really quite simple: the algorithm first splits the training set in two subsets using a single feature k and a threshold t_k (e.g. "petal length ≤ 2.45 cm").
- How does it choose k and t_k ?

- Classification And Regression Tree (CART) algorithm.
- The idea is really quite simple: the algorithm first splits the training set in two subsets using a single feature k and a threshold t_k (e.g. "petal length ≤ 2.45 cm").
- How does it choose k and t_k?
 It searches for the pair (k, t_k) that produces the purest subsets (weighted by their size).

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$

where
$$\begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases}$$

CART cost function for classification

It stops recursing once it reaches the maximum depth (hyperparameter), or if it cannot find a split that will reduce impurity.

Regularization

Regularization

Random Forest

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

• Random Forest is an ensemble of Decision Trees, generally trained using the Bagging method.

- Random Forest is an ensemble of Decision Trees, generally trained using the Bagging method.
- Extra randomness when growing trees:

 Instead of searching for the very best feature when splitting a node, it searches for the best feature among a random subset of features.

 Assume number of cases in the training set is N. Then, sample of these N cases is taken at random but with replacement.

 If there are M input variables, a number m<M is specified such that at each node, m variables are selected at random out of the M.

The best split on these m is used to split the node. The value of m is held constant while we grow the forest.

- **3.** Each tree is grown to the largest extent possible and there is no pruning.
- 4. Predict new data by aggregating the predictions of the ntree trees (i.e., majority votes for classification, average for regression).

Random Forest: Feature Importance

```
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
iris = load_iris()
rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
rnd_clf.fit(iris["data"], iris["target"])
for name, score in zip(iris["feature_names"], rnd_clf.feature_importances_):
    print(name, score)
```

sepal length (cm) 0.112492250999
sepal width (cm) 0.0231192882825
petal length (cm) 0.441030464364
petal width (cm) 0.423357996355

Random Forest: Feature Importance

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 6 & 7
- Pattern Recognition and Machine Learning, Chap. 14
- Pattern Classification, Chap 8 & 9 (Sec. 9.5)

• https://towardsdatascience.com/random-forest-in-python-24d0893d51c0