
Support Vector Machine (SVM)
Machine Learning

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, November 25, 2019

SVMs are among the best “off-the-shelf”
supervised learning algorithm.

Andrew Ng

“An Introduction to Support Vector Machines: And Other

Kernel-based Learning Methods”, Cristianini & Shawe-Taylor, 2000.

“Kernel Methods for Pattern Analysis”,

Shawe-Taylor & Cristianini, 2004.

“Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond”, Scholkopf & Smola, 2001.

Traditional Recognition

Classifier

Edges

“cat”

“cat”Classifier “cat”

Histogram “cat”Classifier “cat”Edges

Histogram Classifier “cat”Edges K-means
Sparse code

Traditional Recognition

SVM

Edges

“cat”

“cat”SVM “cat”

Histogram “cat”SVM “cat”Edges

Histogram SVM “cat”Edges K-means
Sparse code

Deep Learning

“cat”

Deep Learning

“cat”

Classifier “cat”

Deep Learning

“cat”

Classifier “cat”

SVM “cat”

Transfer Learning

Freeze these

Train this

Transfer Learning

Freeze these

Train this

Freeze these

Transfer Learning

Freeze these

Train this

Freeze these

SVM “cat”

What is Support Vector
Machine?

Support Vector Machine (SVM)

Idea of separating data with a large “gap”.

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

x1

x2

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

x1

x2 hyperplane

Idea of separating data with a large “gap”.

Support Vector Machine (SVM)

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

x1

x2

support vectors

Examples closest to the hyperplane are support vectors.

Support Vector Machine (SVM)

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

x1

x2

Margin ρ of the separator is the distance between support vectors.
ρ

Large margin classifier

Support Vector Machine (SVM)

How does SVM work?

How can we identify the right hyperplane?

Scenario 1

x1

x2

How can we identify the right hyperplane?

Scenario 1

x1

x2

A B

C

How can we identify the right hyperplane?

Scenario 2

x1

x2

A B C

How can we identify the right hyperplane?

Scenario 3

x1

x2

How can we identify the right hyperplane?

Scenario 3

x1

x2 A
B

How can we identify the right hyperplane?

Scenario 4

x1

x2

How can we identify the right hyperplane?

Scenario 4

x1

x2

How can we identify the right hyperplane?

Scenario 4

x1

x2
SVM is robust to outliers

How can we identify the right hyperplane?

Scenario 4

x1

x2

Margin
(distance)

SVM: Notation

We will be considering a linear classifier for a binary
classification problem with labels y and features x.

SVM: Notation

We will be considering a linear classifier for a binary
classification problem with labels y and features x.

● Class labels: y ∈ {−1,1} (instead of {0,1})
● Parameters: w, b (instead of vector θ)

SVM: Notation

We will be considering a linear classifier for a binary
classification problem with labels y and features x.

● Class labels: y ∈ {−1,1} (instead of {0,1})
● Parameters: w, b (instead of vector θ)

● Classifier: hw,b(x) = g(wTx + b)

○ g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise

SVM: The Optimal Hyperplane

Given a training example (x(i), y(i)), we define the margin of
(w, b) with respect to the training example:

y(i)(wTx + b) ≥ 1, i = {1, ..., m}.

SVM: The Optimal Hyperplane

Let P(x(1), y(1)) be a point and l be a line defined by
ax + by + c = 0. The distance d from P to l is defined by:

d(l,P) = |ax(1)+ by(1) + c|
 √a2 + b2

SVM: The Optimal Hyperplane

Let P(x(1), y(1)) be a point and l be a line defined by
ax + by + c = 0. The distance d from P to l is defined by:

d(l,P) = |ax(1)+ by(1) + c|
 √a2 + b2

d(w,b,x) = |wTx + b|
 ||w||

SVM: The Optimal Hyperplane

d(w,b,x) = |wTx + b|
||w||

minw,b ½||w||2

s.t. y(i)(wTx + b) ≥ 1, i = {1, ..., m}

SVM: The Optimal Hyperplane

d(w,b,x) = |wTx + b|
||w||

minw,b ½||w||2

s.t. y(i)(wTx + b) ≥ 1, i = {1, ..., m}

http://cs229.stanford.edu/notes/cs229-notes3.pdf

Need to optimize a quadratic function subject to linear constraints.

Soft Margin Classification

What if the training set is not linearly separable?

Soft Margin Classification

Slack variables ξi can be added to allow misclassification of difficult
or noisy examples, resulting margin called soft.

x1

x2
ξi

ξi

Soft Margin Classification

Modified formulation incorporates slack variables:

minw,b,ξ ½||w||2 + C Σξi

s.t. yi(w
Tx + b) ≥ 1 − ξi, ξi ≥ 0, i = {1, ..., m}

Parameter C can be viewed as a way to control overfitting:
it “trades off” the relative importance of maximizing the margin and
fitting the training data.

How can we identify the right hyperplane?

Scenario 5

x1

x2

Kernel Trick

Kernel Trick

Kernel Trick

● Linear SVM: xi · xj

Kernel Trick

● Linear SVM: xi · xj

● Nonlinear SVM: K(xi, xj) = 𝜙(xi) · 𝜙(xj), feature mapping 𝜙

Kernel Trick

● Linear SVM: xi · xj

● Nonlinear SVM: K(xi, xj) = 𝜙(xi) · 𝜙(xj), feature mapping 𝜙
● Kernel matrix Kij = K(xi, xj) = 𝜙(xi) · 𝜙(xj) = 𝜙(xj) · 𝜙(xi) = Kji

Kernel Trick

● Linear SVM: xi · xj

● Nonlinear SVM: K(xi, xj) = 𝜙(xi) · 𝜙(xj), feature mapping 𝜙
● Kernel matrix Kij = K(xi, xj) = 𝜙(xi) · 𝜙(xj) = 𝜙(xj) · 𝜙(xi) = Kji
● Radial Basis Function (RBF) kernel: exp(− 𝜆||xi − xj||

2)
● Gaussian kernel: K(xi, xj) = exp(− ||xi − xj||

2/(2𝜎2))
● Polynomial kernel: K(xi, xj) = (xi · xj + 1)d, d degree
● Chi-square kernel, histogram intersection kernel, string kernel,

Important Parameters

Important parameters having higher impact on model
performance, “kernel”, “gamma” and “C”.

Important Parameters

Important parameters having higher impact on model
performance, “kernel”, “gamma” and “C”.

C: Penalty parameter C of the error term. It also controls the
trade off between smooth decision boundary and classifying
the training points correctly.

Important Parameters

Important parameters having higher impact on model
performance, “kernel”, “gamma” and “C”.

C: Penalty parameter C of the error term. It also controls the
trade off between smooth decision boundary and classifying
the training points correctly.

The parameters can be tuned using grid-search.

Grid Search

“Random Search for Hyper-Parameter Optimization”: http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Libraries

● Scikit-learn: https://scikit-learn.org/stable/modules/svm.html

● LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm

● LIBLINEAR: https://www.csie.ntu.edu.tw/~cjlin/liblinear

● PmSVM: https://sites.google.com/site/wujx2001/home/power-mean-svm

https://scikit-learn.org/stable/modules/svm.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/liblinear
https://sites.google.com/site/wujx2001/home/power-mean-svm

References

Machine Learning Books

● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 5

● Pattern Recognition and Machine Learning, Chap. 6 & 7

Machine Learning Courses

● https://www.coursera.org/learn/machine-learning, Week 7

● http://cs229.stanford.edu/syllabus.html,

http://cs229.stanford.edu/notes/cs229-notes3.pdf

https://www.coursera.org/learn/machine-learning
http://cs229.stanford.edu/syllabus.html
http://cs229.stanford.edu/notes/cs229-notes3.pdf

Random Forests
Machine Learning

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, November 25, 2019

Decision Tree

Decision Tree & Random Forest

● Decision Trees are versatile Machine Learning algorithms
that can perform both classification and regression tasks,
and even multi-output tasks.

Decision Tree & Random Forest

● Decision Trees are versatile Machine Learning algorithms
that can perform both classification and regression tasks,
and even multi-output tasks.

● Random Forest is an ensemble of Decision Trees,
generally trained using the Bagging method (or
sometimes Pasting).

Decision Tree: Iris Dataset

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)
2. Iris-versicolor (n=50)
3. Iris-virginica (n=50)

The four features of the Iris dataset:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cmhttp://sebastianraschka.com/Articles/2014_python_lda.html

This node asks
whether the
flower’s petal
length is smaller
than 2.45 cm

A node’s samples
attribute counts
how many
training instances
it applies to.

A node’s value
attribute tells you
how many
training instances
of each class this
node applies to.

A node’s gini
attribute measures
its impurity.

“pure” (gini=0): all
training instances
belong to the
same class.

A node’s gini
attribute measures
its impurity.

“pure” (gini=0): all
training instances
belong to the
same class.

For example, the depth 2 left node has a gini score equal to
1 − (0/54)2 − (49/54)2 − (5/54)2 ≈ 0.168.

Gi = 1 - Σ pi,k
2

pi,k is the ratio of class k instances among the training
instances in the ith node

A node’s gini
attribute measures
its impurity.

“pure” (gini=0): all
training instances
belong to the
same class.

For example, the depth 2 left node has a gini score equal to
1 − (0/54)2 − (49/54)2 − (5/54)2 ≈ 0.168.

Gi = 1 - Σ pi,k
2

pi,k is the ratio of class k instances among the training
instances in the ith node

A node’s gini
attribute measures
its impurity.

“pure” (gini=0): all
training instances
belong to the
same class.

The CART Algorithm

● Classification And Regression Tree (CART) algorithm.

The CART Algorithm

● Classification And Regression Tree (CART) algorithm.

● The idea is really quite simple: the algorithm first splits the
training set in two subsets using a single feature k and a
threshold tk (e.g. “petal length ≤ 2.45 cm”).

The CART Algorithm

● Classification And Regression Tree (CART) algorithm.

● The idea is really quite simple: the algorithm first splits the
training set in two subsets using a single feature k and a
threshold tk (e.g. “petal length ≤ 2.45 cm”).

● How does it choose k and tk?

The CART Algorithm

● Classification And Regression Tree (CART) algorithm.

● The idea is really quite simple: the algorithm first splits the
training set in two subsets using a single feature k and a
threshold tk (e.g. “petal length ≤ 2.45 cm”).

● How does it choose k and tk?
It searches for the pair (k ,tk) that produces the purest
subsets (weighted by their size).

The CART Algorithm

CART cost function for classification

It stops recursing once it reaches the maximum depth
(hyperparameter), or if it cannot find a split that will reduce impurity.

Regularization

Regularization

Random Forest

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Random Forest [Ho, 1995]

● Random Forest is an ensemble of Decision Trees,
generally trained using the Bagging method.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1

Random Forest [Ho, 1995]

● Random Forest is an ensemble of Decision Trees,
generally trained using the Bagging method.

● Extra randomness when growing trees:
○ Instead of searching for the very best feature when

splitting a node, it searches for the best feature
among a random subset of features.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1

Random Forest [Ho, 1995]

1. Assume number of cases in the training set is N. Then,
sample of these N cases is taken at random but with
replacement.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1

Random Forest [Ho, 1995]

2. If there are M input variables, a number m<M is specified
such that at each node, m variables are selected at
random out of the M.

The best split on these m is used to split the node. The
value of m is held constant while we grow the forest.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1

Random Forest [Ho, 1995]

3. Each tree is grown to the largest extent possible and
there is no pruning.

4. Predict new data by aggregating the predictions of the
ntree trees (i.e., majority votes for classification, average
for regression).

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1

Random Forest: Feature Importance
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
iris = load_iris()
rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
rnd_clf.fit(iris["data"], iris["target"])
for name, score in zip(iris["feature_names"], rnd_clf.feature_importances_):

print(name, score)

sepal length (cm) 0.112492250999
sepal width (cm) 0.0231192882825
petal length (cm) 0.441030464364
petal width (cm) 0.423357996355

Random Forest: Feature Importance

References

Machine Learning Books

● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 6 & 7

● Pattern Recognition and Machine Learning, Chap. 14

● Pattern Classification, Chap 8 & 9 (Sec. 9.5)

● https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

