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SVMs are among the best “off-the-shelf”
supervised learning algorithm.

Andrew Ng



“An Introduction to Support Vector Machines: And Other
Kernel-based Learning Methods”, Cristianini & Shawe-Taylor, 2000.

Kernel Methods
for Pattern Analysis

“Kernel Methods for Pattern Analysis”,
Shawe-Taylor & Cristianini, 2004.

“Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond”, Scholkopf & Smola, 2001.
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Transfer Learning
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What is Support Vector
Machine?



Support Vector Machine (SVM)

[Vapnik and ChervonenRis, 1964; VapniR, 1982; Vapnik, 1995]
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Support Vector Machine (SVM)

[Vapnik and ChervonenRis, 1964; VapniR, 1982; Vapnik, 1995]

Examples closest to the hyperplane are support vectors.

support vectors




Support Vector Machine (SVM)

[Vapnik and ChervonenRis, 1964; VapniR, 1982; Vapnik, 1995]

Margin p of the separator is the distance between support vectors.

Large margin classifier




How does SVM worR?



How can we identify the right hyperplane?
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How can we identify the right hyperplane?

Scenario 4

SVM is robust to outliers




How can we identify the right hyperplane?
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SVM: Notation

We will be considering a linear classifier for a binary
classification problem with labels y and features x.
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SVM: Notation

We will be considering a linear classifier for a binary
classification problem with labels y and features x.

e (lass labels:y & {—1,1} (instead of {0,1})

e Parameters: w, b (instead of vector 6)
o Classifier: _,(x) = g(w'x + b)
o g(z)=11fz>0, and g(z) =—1 otherwise



SVM: The Optimal Hyperplane

Given a training example (x”, V), we define the margin of
(w, b) with respect to the training example:

y(i)(WTx + b) >1,i= {1, ooy WZ}



SVM: The Optimal Hyperplane

Let P(x'V, 1) be a point and / be a line defined by
ax + by + ¢ =0. The distance d from P to [/ is defined by:

d(lP) = |axV+ byM) + |




SVM: The Optimal Hyperplane

Let P(x'V, 1) be a point and / be a line defined by
ax + by + ¢ =0. The distance d from P to [/ is defined by:
d(lP) = |axV+ byM) + |
\ 4
dow,b,x) = |wlx + b

[lwl]




SVM: The Optimal Hyperplane

d(w,b,x) = |wlx + b|

$

[[wl]

min_, AR
s.t. YOwlx +b)>1,i={1, ..., m}



SVM: The Optimal Hyperplane

d(w,b,x) = |wlx + b|

[[wl]

http://cs229.stanford.edu/notes/cs229-notes3.pdf

min_, AR
s.t. YOwlx +b)>1,i={1, ..., m}

Need to optimize a quadratic function subject to linear constraints.



Soft Margin Classification

W hat if the training set is not linearly separable?



Soft Margin Classification

Slack variables & can be added to allow misclassification of difficult
or noisy examples, resulting margin called soft.




Soft Margin Classification

Modified formulation incorporates slack variables:

minw,b,é ol |wl|? + CXE,
S.t. yi(wa tbh)=>21-8,820,i={1, .., m}

Parameter C can be viewed as a way to control overfitting:

It “trades off” the relative importance of maximizing the margin and
fitting the training data.
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e Linear SVM: X, X,
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Kernel TricR

Linear SVM: X, X,

Nonlinear SVM: K(x , xj) =¢(x) - gb(xj), feature mapping ¢
Kernel matrix Kl.j = K{(x, xj) =¢(x) - qb(xj) = qb(xj) “P(x) = Kﬁ
Radial Basis Function (RBF) kernel: exp(— )L||xl.—xj||2)
Gaussian kernel: K(x,, x,) = exp(— ||, xj||2/(20'2))
Polynomial kernel: K(x, xj) = (x, X+ 1), d degree

Chi-square kernel, histogram intersection kernel, string kernel, ....



Y Label

Data projected to R™2 (nonseparable)
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Important Parameters

Important parameters having higher impact on model
performance, “kernel”, “gamma” and “C".
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C: Penalty parameter C of the error term. It also controls the
trade off between smooth decision boundary and classifying
the training points correctly.



Important Parameters

Important parameters having higher impact on model
performance, “kernel”, “gamma” and “C".

C: Penalty parameter C of the error term. It also controls the
trade off between smooth decision boundary and classifying

the training points correctly.

The parameters can be tuned using grid-search. «



Grid Search

Grid Layout Random Layout
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“Random Search for Hyper-Parameter Optimization”: http://www.jmlr.org/papers/volume13/bergstral2a/bergstral2a.pdf



Libraries

e Scikit-learn: https://scikit-learn.org/stable/modules/svm.html

e LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm

e LIBLINEAR: https://www.csie.ntu.edu.tw/~cjlin/liblinear

e PmSVM: https://sites.google.com/site/wuijx2001/home/power-mean-svm



https://scikit-learn.org/stable/modules/svm.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/liblinear
https://sites.google.com/site/wujx2001/home/power-mean-svm

References

Machine Learning Books

e Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 5
e Pattern Recognition and Machine Learning, Chap. 6 & 7

Machine Learning Courses

e https://www.coursera.org/learn/machine-learning, Week 7

e http://cs229.stanford.edu/syllabus.html,
http://cs229.stanford.edu/notes/cs229-notes3.pdf



https://www.coursera.org/learn/machine-learning
http://cs229.stanford.edu/syllabus.html
http://cs229.stanford.edu/notes/cs229-notes3.pdf
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Decision Tree



Decision Tree & Random Forest

e Decision Trees are versatile Machine Learning algorithms
that can perform both classification and regression tasks,
and even multi-output tasks.



Decision Tree & Random Forest

e Decision Trees are versatile Machine Learning algorithms
that can perform both classification and regression tasks,
and even multi-output tasks.

e Random Forest is an ensemble of Decision Trees,
generally trained using the Bagging method (or
sometimes Pasting).



Decision Tree: Iris Dataset

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)

2. lris-versicolor (n=50)

3. lris-virginica (n=50)

The four features of the Iris dataset:
1. sepallengthincm
2. sepal width in cm
3. petallengthin cm
4. petal width incm

http://sebastianraschka.com/Articles/2014_python_Ida.html
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_class = versicolor
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This node asks
whether the
flower’s petal

length is smaller
than 2.45 cm
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[petal length (cm) <= 2.45
gini = 0.6667
samples = 150
value =[50, 50, 50]
N class = setosa

True

\:alse

€ petal width (cm) <= 1.75
gini=0.5
samples = 100
value = [0, 50, 50]

N class = versicolor

/

gini=0.168
samples = 54

value = [0, 49, 5]
‘class = versicolor |

A node’s value
attribute tells you
how many
training instances
of each class this
node applies to.



[petal length (cm) <= 2.4
gini = 0.6667
samples = 150
value =[50, 50, 50]
class = setosa

True ‘\:‘alse
€ petal width (cm) <= 1.7
gini=0.5
samples = 100
value = [0, 50, 50]
class = versicolor

\_ /
gini=0.168
samples = 54
value = [0, 49, 5]
_class = versicolor

A node’s gini
attribute measures
its impurity.

“pure” (gini=0): all
training instances
belong to the
same class.



petal length (cm) <= 2.4

For example, the depth 2 left node has a gini score equal to
- (0/54)% - (49/54)% - (5/54)?% ~ 0.168.

G, =1 _Zpikz

Py is the ratio of class k instances among the training
mstances in the i node

same class.
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For example, the depth 2 left node has a gini score equal to
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/petal length (cm) <= 2.45)
gini = 0.6667
samples = 150
value =[50, 50, 50]

N class = setosa

True \:alse

S

€ petal width (cm) <= 1.75)
gini=0.5
samples = 100
value = [0, 50, 50]

class = versicolor

/

gini=0.168
samples = 54
value = [0, 49, 5]
_class = versicolor

A node’s gini
attribute measures
its impurity.

“pure” (gini=0): all
training instances
belong to the
same class.



Petal width
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The CART Algorithm

e C(lassification And Regression Tree (CART) algorithm.
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The CART Algorithm

e C(lassification And Regression Tree (CART) algorithm.

e Theidea is really quite simple: the algorithm first splits the
training set in two subsets using a single feature £ and a
threshold ¢, (e.g. "petal length < 2.45 cm”).

e How does it choose k£ and tk?

It searches for the pair (£ ,¢,) that produces the purest
subsets (weighted by their size).



The CART Algorithm

M eft M ight
ki) = ——Giat——Chmi

Gleft/right measures the impurity of the left/right subset,
where

Mef/right 19 the number of instances in the left/right subset.

CART cost function for classification

It stops recursing once it reaches the maximum depth
(hyperparameter), or if it cannot find a split that will reduce impurity.



Regularization
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Regularization

Decision Tree
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Random Forest



Random Forest Simplified

Instance

Random Forest L

Class-A Class-B Class-B

: l
I Majority-Voting } I

Final-Class

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d



Random Forest [Ho, 1995]

e Random Forestis an ensemble of Decision Trees,
generally trained using the Bagging method.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zZVOGQ1



Random Forest [Ho, 1995]

e Random Forestis an ensemble of Decision Trees,
generally trained using the Bagging method.

e Extra randomness when growing trees:

o Instead of searching for the very best feature when
splitting a node, it searches for the best feature
among a random subset of features.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zZVOGQ1



Random Forest [Ho, 1995]

1. Assume number of cases in the training set is N. Then,
sample of these N cases is taken at random but with
replacement.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zZVOGQ1



Random Forest [Ho, 1995]

2. If there are M input variables, a number m<M is specified
such that at each node, m variables are selected at

random out of the M.

The best split on these m is used to split the node. The
value of m is held constant while we grow the forest.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zZVOGQ1



Random Forest [Ho, 1995]

3. Each tree is grown to the largest extent possible and
there is no pruning.

4. Predict new data by aggregating the predictions of the
ntree trees (i.e., majority votes for classification, average
for regression).

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zZVOGQ1



Random Forest: Feature Importance

from sklearn.datasets import load_diris

from sklearn.ensemble +import RandomForestClassifier

iris = load_iris()

rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
rnd_clf.fit(iris["data"], iris["target"])

for name, score 1in zip(iris["feature_names"], rnd_clf.feature_importances_):

print(name, score)

sepal length (cm) 0.112492250999
sepal width (cm) 0.0231192882825
petal length (cm) 0.441030464364
petal width (cm) 0.423357996355




Random Forest: Feature Importance

— Very important

Not important




Forward Thinking: Building Deep Random Forests

Kevin Miller, Chris Hettinger, Jeffrey Humpherys, Tyler Jarvis, and David
Department of Mathematics
Brigham Young University

Provo, Utah 84602

Distributed Deep Forest and its Application to Automatic
Detection of Cash-out Fraud

Ya-Lin Zhang!, Jun Zhou!, Wenhao Zheng', Ji Feng!, Longfei Li?, Ziqi Liu, Ming Lif, Zhigiang

18 Feb 2018

= millerk5@byu.edu, hettinger@math.byu.edu, jeffh@math.byu.
jarvis@math.byu.edu, david.kartchner@math.byu.edu
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< Abstract
e
Training Big Random Forests with Little Resources
Fabian Gieseke Christi
Department of Computer Science Department of C
University of Copenhagen University of
Copenhagen, Denmark Copenhager
fabian.gieseke@di.ku.dk igel@di
ABSTRACT ensembles in a parallel or distr

Without access to large compute clusters, building random forests
on large datasets is still a challenging problem. This is, in particular,
the case if fully-grown trees are desired. We propose a simple yet
effective framework that allows to efficiently construct ensembles
of huge trees for hundreds of millions or even billions of training in-
stances using a cheap desktop computer with commodity hardware.
The basic idea is to consider a multi-level construction scheme,
which builds top trees for small random subsets of the available
data and which subsequently distributes all training instances to the
top trees’ leaves for further processing. While being conceptually
simple, the overall efficiency crucially depends on the particular
implementation of the different phases The vractical merits of our

Zhang?, Chaochao Chen?, Xiaolong Lif, Zhi-Hua Zhou'
TNational Key Lab for Novel Software Technology, Nanjing University, China
T{zhangyl, zhengwh, fengj, lim, zhouzh}@lamda.nju.edu.cn
fAnt Financial Services Group, China
i{juu.zhoujun. longyao.llf, ziqiliu, lingyao.zzq. chaochao.ccc, xl.li}‘illlautﬂu,com

Tay 2018

dividual compute nodes (e.g., by
node). While this can significg
such frameworks naturally req|
ing environments. Further, the
might cause problems in case
large to fit into the main memd
In this work, we propose 2
scheme for building random fo!
scale. The main idea is to build|
phases: Starting with a top tree
the data, one subsequently dist
leaves of that tree. For each leal

2017

Deep Forest: Towards an Alternative to Deep Neural Networks*

Zhi-Hua Zhou and JiFeng
National Key Lab for Novel Software Technology, Nanjing University, Nanjing 210023, China
{zhouzh, fengj} @lamda.nju.edu.cn

Abstract ample, even when several authors all use convolutional neu-
ral networks [LeCun et al., 1998; Krizhenvsky et al., 2012;

In this paper, we propose gcForest, a decision tree Simonyan and Zisserman, 2014], they are actually using dif-
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