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SVMs are among the best “off-the-shelf” 
supervised learning algorithm.

Andrew Ng
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What is Support Vector 
Machine?



Support Vector Machine (SVM) 

Idea of separating data with a large “gap”.

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]
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[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]
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support vectors

Examples closest to the hyperplane are support vectors.

Support Vector Machine (SVM) 



[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]
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Margin ρ of the separator is the distance between support vectors.
ρ

Large margin classifier

Support Vector Machine (SVM) 



How does SVM work?
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How can we identify the right hyperplane?
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SVM: Notation

We will be considering a linear classifier for a binary 
classification problem with labels y and features x.

● Class labels: y ∈ {−1,1} (instead of {0,1}) 
● Parameters: w, b (instead of vector θ)

● Classifier: hw,b(x) = g(wTx + b)

○ g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise



SVM: The Optimal Hyperplane

Given a training example (x(i), y(i)), we define the margin of 
(w, b) with respect to the training example:

y(i)(wTx + b) ≥ 1, i = {1, ..., m}.



SVM: The Optimal Hyperplane

Let P(x(1), y(1)) be a point and l be a line defined by 
ax + by + c = 0. The distance d from P to l is defined by:

d(l,P) = |ax(1)+ by(1) + c|
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Let P(x(1), y(1)) be a point and l be a line defined by 
ax + by + c = 0. The distance d from P to l is defined by:

d(l,P) = |ax(1)+ by(1) + c|
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SVM: The Optimal Hyperplane

d(w,b,x) =  |wTx + b|
||w||

minw,b   ½||w||2

s.t. y(i)(wTx + b) ≥ 1, i = {1, ..., m}

http://cs229.stanford.edu/notes/cs229-notes3.pdf

Need to optimize a quadratic function subject to linear constraints.



Soft Margin Classification

What if the training set is not linearly separable?



Soft Margin Classification

Slack variables ξi can be added to allow misclassification of difficult 
or noisy examples, resulting margin called soft.
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Soft Margin Classification

Modified formulation incorporates slack variables:

minw,b,ξ   ½||w||2   + C Σξi  

s.t. yi(w
Tx + b) ≥ 1 − ξi, ξi ≥ 0, i = {1, ..., m}

Parameter C can be viewed as a way to control overfitting: 
it “trades off” the relative importance of maximizing the margin and 
fitting the training data.



How can we identify the right hyperplane?
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Kernel Trick

● Linear SVM:  xi · xj

● Nonlinear SVM: K(xi, xj) = 𝜙(xi) · 𝜙(xj), feature mapping 𝜙
● Kernel matrix Kij = K(xi, xj) = 𝜙(xi) · 𝜙(xj) = 𝜙(xj) · 𝜙(xi) = Kji 
● Radial Basis Function (RBF) kernel: exp(− 𝜆||xi − xj||

2)
● Gaussian kernel: K(xi, xj) = exp(− ||xi − xj||

2/(2𝜎2))
● Polynomial kernel: K(xi, xj) = (xi · xj + 1)d, d degree
● Chi-square kernel, histogram intersection kernel, string kernel, ....
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Important Parameters

Important parameters having higher impact on model 
performance, “kernel”, “gamma” and “C”.

C: Penalty parameter C of the error term. It also controls the 
trade off between smooth decision boundary and classifying 
the training points correctly.

The parameters can be tuned using grid-search. 



Grid Search

“Random Search for Hyper-Parameter Optimization”: http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf



Libraries

● Scikit-learn: https://scikit-learn.org/stable/modules/svm.html

● LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm

● LIBLINEAR: https://www.csie.ntu.edu.tw/~cjlin/liblinear

● PmSVM: https://sites.google.com/site/wujx2001/home/power-mean-svm

https://scikit-learn.org/stable/modules/svm.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/liblinear
https://sites.google.com/site/wujx2001/home/power-mean-svm
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● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 5
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● https://www.coursera.org/learn/machine-learning, Week 7 

● http://cs229.stanford.edu/syllabus.html, 

http://cs229.stanford.edu/notes/cs229-notes3.pdf

https://www.coursera.org/learn/machine-learning
http://cs229.stanford.edu/syllabus.html
http://cs229.stanford.edu/notes/cs229-notes3.pdf


Random Forests
Machine Learning

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, November 25, 2019



Decision Tree



Decision Tree & Random Forest

● Decision Trees are versatile Machine Learning algorithms 
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Decision Tree & Random Forest

● Decision Trees are versatile Machine Learning algorithms 
that can perform both classification and regression tasks, 
and even multi-output tasks.

● Random Forest is an ensemble of Decision Trees, 
generally trained using the Bagging method (or 
sometimes Pasting).



Decision Tree: Iris Dataset

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)
2. Iris-versicolor (n=50)
3. Iris-virginica (n=50)

The four features of the Iris dataset:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cmhttp://sebastianraschka.com/Articles/2014_python_lda.html





This node asks 
whether the 
flower’s petal 
length is smaller 
than 2.45 cm



A node’s samples 
attribute counts 
how many 
training instances 
it applies to.



A node’s value 
attribute tells you 
how many 
training instances 
of each class this 
node applies to.
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For example, the depth 2 left node has a gini score equal to
1 − (0/54)2 − (49/54)2 − (5/54)2 ≈ 0.168.

Gi = 1 - Σ pi,k
2

pi,k is the ratio of class k instances among the training 
instances in the ith node
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The CART Algorithm

● Classification And Regression Tree (CART) algorithm.

● The idea is really quite simple: the algorithm first splits the  
training set in two subsets using a single feature k and a 
threshold tk (e.g. “petal length ≤ 2.45 cm”). 

● How does it choose k and tk? 
It searches for the pair (k ,tk) that produces the purest 
subsets (weighted by their size).



The CART Algorithm

CART cost function for classification

It stops recursing once it reaches the maximum depth 
(hyperparameter), or if it cannot find a split that will reduce impurity.
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Regularization



Random Forest



https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d



Random Forest [Ho, 1995]

● Random Forest is an ensemble of Decision Trees, 
generally trained using the Bagging method.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1



Random Forest [Ho, 1995]

● Random Forest is an ensemble of Decision Trees, 
generally trained using the Bagging method.

● Extra randomness when growing trees: 
○ Instead of searching for the very best feature when 

splitting a node, it searches for the best feature 
among a random subset of features.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1



Random Forest [Ho, 1995]

1. Assume number of cases in the training set is N. Then, 
sample of these N cases is taken at random but with 
replacement. 

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1



Random Forest [Ho, 1995]

2. If there are M input variables, a number m<M is specified 
such that at each node, m variables are selected at 
random out of the M. 

The best split on these m is used to split the node. The 
value of m is held constant while we grow the forest.

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1



Random Forest [Ho, 1995]

3. Each tree is grown to the largest extent possible and  
there is no pruning.

4. Predict new data by aggregating the predictions of the 
ntree trees (i.e., majority votes for classification, average 
for regression).

“Random Decision Forests”, Tin Kam Ho (1995): http://goo.gl/zVOGQ1



Random Forest: Feature Importance
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
iris = load_iris()
rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)
rnd_clf.fit(iris["data"], iris["target"])
for name, score in zip(iris["feature_names"], rnd_clf.feature_importances_):

print(name, score)

sepal length (cm) 0.112492250999
sepal width (cm) 0.0231192882825
petal length (cm) 0.441030464364
petal width (cm) 0.423357996355



Random Forest: Feature Importance
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