
MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

1

Introduction to AI
Lecture 16 – Machine
Learning – Reinforcement
Learning
Profa. Dra. Esther Luna Colombini
esther@ic.unicamp.br

Prof. Dr. Alexandre Simoes
alexandre.simoes@unesp.br

LaRoCS – Laboratory of Robotics and Cognitive Systems

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

2

¨ Markov Decision Process
¨ Reinforcement Learning
¨ Q-learning
¨ Examples
¨ Exercise
¨ Deep RL

Summary

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

3

¨ Supervised Learning
¨ Semi-Supervised Learning
¨ Unsupervised Learning
¨ Reinforcement Learning

¤ It’s all “supervised” by a loss function!

¨ Supervised learning is “teach by example”:
¤ Here’s some examples, now learn patterns in these example.

¨ Reinforcement learning is “teach by experience”:
¤ Here’s a world, now learn patterns by exploring it.

Types of Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

4Types of Learning

https://deeplearning.mit.edu

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

5

¨ Often the use of supervised learning is impractical
¤ How to get correct training examples for a given situation? What

if the environment is unknown?
¤ Examples:

n Child acquiring motor coordination
n Robot interacting with an environment to achieve objective(s)

¨ Human appear to learn to walk through “very few
examples” of trial and error. How is an open question...
¤ Possible answers

n Hardware: 230 million years of bipedal movement data.
n Imitation Learning: Observation of other humans walking
n Algorithms: Better than backpropagation and stochastic gradient descent

Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

6Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

7Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

8Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

9Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

10Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

11Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

12Reinforcement Learning: For what?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

13Reinforcement Learning: For what?

The promise of
Deep Learning

The promise of
Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

14

¨ Premise:
¤ At each time instant t, the agent is in a state s
¤ In state s it performs action a and goes to state s'
¤ The state is evaluated and gives a reward to the agent
¤ Thus, the action a in state s has a value for the agent
¤ If you choose correct

n wins a reward (gains value)

¤ if not
n receives a punishment (loses value)

¨ Reinforcement learning:
¤ Choose an action policy that maximizes the total rewards

received by the agent

What is Reinforcement Learning?

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

15

¨ Fully Observable (Chess) vs Partially Observable (Poker)
¨ Single Agent (Atari) vs Multi Agent (DeepTraffic)
¨ Deterministic (Cart Pole) vs Stochastic (DeepTraffic)
¨ Static (Chess) vs Dynamic (DeepTraffic)
¨ Discrete (Chess) vs Continuous (Cart Pole)

¤ Note: Real-world environment might not technically be stochastic
or partially-observable but might as well be treated as such due
to their complexity.

Environment and Actions

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

16

¨ Experiential learning
¤ The world is the best model of itself

¨ RL is characterized by problems involving the concept of
Autonomy
¤ RL links AI concepts and Optimal Control
¤ RL is applicable to real problems

Reinforcement Learning Assumptions

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

17

¨ Specify what to do, not how to do
¤ This is done through the reward function

¨ Usually find the best end solutions
¤ Based on current experiences, there are no assumptions of the

programmer

¨ In short:
¤ Less human time is needed to find a good solution
¤ It is not necessary to define heuristics, techniques to solve the

problem, etc.
¤ Just set the learning system and let the system learn!

Reinforcement Learning Assumptions

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

18

¨ Backgammon Game (1020 states)
¤ Game Modeling:

n Victory: +100
n Defeat: - 100

¤ Zero for other states of the game (delayed reward)
n DELAYED REWARD -> leaves to reward at the end of a process
n After 1 million matches against himself, he plays as well as the best human

player

¨ Robots Football
n Robot Soccer Brainstormers (RoboCup)
n Team whose knowledge is obtained 100% by learning techniques by

reinforcement

¤ Computer Go (10170 states)

Applications

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

19

¨ Formally, an MDP is given by:
¤ A set of states, S = {s1, s2, ..., sn}
¤ A set of actions, A = {a1, a2, ..., am}
¤ A Reward function, R: S:A:S → r

¨ A state transition function, T: S,A → S
¨ We want to learn the policy p: S → A, that is, given

states in S we have the best actions in A to be applied.
¤ Policy: sequence of states and actions

¨ Markov property
¤ Everything you need to make a decision is included in the status
¤ There is no way to consult the past (previous states)

Markov Decision Processes - MDPs

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

20

¨ With the reward set, what we need is to make a decision
in each state:
¤ Multiple actions (A and B)
¤ Each action has a reward associated with it

¨ The goal is to maximize the reward
¨ Just take the action with the highest reward for the current

state

Making decisions

0

1

2

A

B
2

1

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

21

¨ We can generalize the previous example to multi-
sequential decisions
¤ Each decision affects the next decision

¨ This is formally modeled as Markov Decisive Process
(PDM or MDP)

Markov Decision Processes (MDPs)

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

22

¨ There are 3 policies for the MDP below:
¤ 0 → 1 → 3 → 5
¤ 0 → 1 → 4 → 5
¤ 0 → 2 → 4 → 5

¨ Which is better?

Policies

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

23

¨ Sort policies by rewards
¤ 0 → 1 → 3 → 5 = 1 + 1 + 1 = 3
¤ 0 → 1 → 4 → 5 = 1 + 1 + 10 = 12
¤ 0 → 2 → 4 → 5 = 2 - 1000 + 10 = -988

Markov Decision Processes (MDPs)

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

24

¨ We can set a value without specifying the policy
¤ Specify the value of choosing action a from state s

¤ This is the state-of-action quality function, Q

State-Action Value

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Q(0, A) = 12
Q(0, B) = -988

Q(3, A) = 1

Q(4, A) = 10

Q(1, A) = 2
Q(1, B) = 11

Q(2, A) = -990

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

25

¨ Q(s, a) = R(s, a, s’) + maxa’ Q(s’, a’)

¨ Form:
¤ Next reward + the best I can do from the next state, even if the

policy is not followed

¨ If we have the value function, then finding the best policy
is easy:
¤ p(s) = argmax Q(s, a)

¨ argmax f(x) means the argument that makes f(x)
maximum

Value Function

s’ is the next state

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

26

¨ We are looking for the optimal policy: p*(s)
¨ This means that no policy generates a reward greater

than p*

¨ Optimal policy defines optimal value functions:

¨ The easiest way to learn an optimal policy is to learn the
optimal value function first!

Optimal Policy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

27

¨ We can introduce a term into the function to prevent high
values from saturating the system and getting it into looping

¨ Called the temporary discount factor, g
0 ≤ g ≤ 1

¨ Interpretation:
¤ Determines the importance of future rewards

n If 0, the agent is considered "short-sighted" because it only considers current
elements

n If g> = 1 and no final state, it will tend to infinity
n To aim to reduce the influence of future expected reinforcements

Q(s, a) = R(s, a, s’) + gmaxa’ Q(s’, a’)

Action-Value Functions

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

28

¨ If we have the model, an iterative algorithm by value or
by policy can find the best policy
¤ Dynamic Programming (applicable to problems in which the

optimal solution can be computed from the optimum solution
previously calculated and stored)

¤ Value Iteration: uses dynamic programming to determine the
value V* (s), or argmax, of each state s ∈ S of the MDP, at each
decision time.

¤ In the case of infinite horizon (and stationary policy - with
numerous properties that are unchanged in time) one can also
use an algorithm called policy iteration, which makes a greedy
search in the policy space. This algorithm is more efficient than
value iteration.

Value Functions

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

29

¨ What happens if we do not have full MDP?
¤ That is, we need to learn the associated rewards
¤ Well .. We know about states and actions
¤ We do not know about the system model (transition function) or

the reward function
¤ We can learn from experience and carry out actions to generate

such experiences.

¨ This is the main goal of reinforcement learning...

Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

30

¨ We still want to learn the value function
¤ We are forced to approach it interactively
¤ Based on the experiences of the world

¨ Let's talk about one of the main algorithms:
¤ Q-learning
¤ Off-policy x On-policy

n An off-policy learns the optimal policy value regardless of the agent's
actions, as well as Q-learning

n An on-policy learns the value of the policy being carried out by the agent,
including the exploitation steps (SARSA)

n This distinction disappears if the policy followed is greedy

Learning the value function

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

31

¨ Learning algorithm to compute optimal Q function (value
of actions)

¨ Q*(s) = argmaxa[Q(s,a)]

¨ Q*(st,at) = r(st,at) + g max a’ [Q(st+1,a’)]

Q-Learning

This table is usually huge and takes up a lot of memory!

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

32

¨ Q(st) is updated after observing the st + 1 state and the
reward received
¤ Consider that we are in s1 and that we want to perform the aright

action. How to update Q (s1, aright)? Use reward 0 and g=0.9

¨ Q(s1,aright) = r + g max a’ Q(s2,a’)
= 0 + 0.9 max{63,81,100}
= 90

Q-Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

33

¨ Q-learning approximation, iteratively, the state-action
value function, Q
¤ We will not estimate MDP directly
¤ Learn the function value and policy simultaneously

¨ Maintains the estimate of Q (s, a) in a table
¤ Updates these estimates as you add more experience
¤ The estimate does not depend on the operating policy

Q-Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

34

¨ Q(s, a) = Q(s, a) + (r + maxa’Q(s’, a’)) - Q(s, a))

¨ The change in Q value to perform action a in state s is the
difference between the real reward (r + maxa'Q (s ', a')) and
the expected reward (Q (s, a))

¨ We can think of this as a type of PD control or the error of the
output of an NN that takes the system in the direction of the
correct Q.

Q-Learning Algorithm

Old value Old value

Reward

Estimate of the best
future value

error

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

35

¨ Q(s, a) = Q(s, a) + (r + g maxa’Q(s’, a’)) - Q(s, a))

¤ To aim to reduce the influence of future expected reinforcements.
As see before:
n If 0, the agent is considered "short-sighted" because it only considers

current elements
n If g> = 1 and no final state, it will tend to infinity

Q-Learning Algorithm

Temporal discount
factor

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

36

¨ Q(s, a) = Q(s, a) + 𝛼((r + g maxa’Q(s’, a’)) - Q(s, a)))

¨ 0 ≤ 𝛼 ≤ 1 is the rate of learning
¨ 𝛼 indicates how much new information is relevant

¤ A value of 0 will prevent the agent from learning
¤ A value of 1 will make it learn only with the latest information
¤ If the problem is deterministic, the factor must be 1
¤ If the problem is stochastic, the value must be less than 1

Q-Learning Algorithm

Learning rate

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

37

¨ Initialize Q (s, a) for small random values, "s, a
¨ Observe state s
¨ Choose an action, a, and execute
¨ Observe next state, s ', and reward of s', r
¨ Q(s, a) ← (1 - 𝛼)Q(s, a) + 𝛼(r + g maxa’Q(s’, a’))
¨ Go back to 2

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

38

¨ Consider the grid-world below and an agent who is
trying to learn the optimal policy.

¨ The possible actions are:
¤ D (right), E (left), N (north) and S (south).

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

39

¨ The Q table has been initialized with the following values:

¨ Reinforcements (positive and negative) will be given only in the indicated regions. Assume
γ = 1 and α = 0.5 for all calculations. Consider the agent in the initial position indicated.

¨ Perform 5 greedy actions in sequence, performing the required updates on Table Q.
¨ Consider: Q (st, at) = (1 - α) Q (st, at) + α (rt + γ max Q (st+1, a’))

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

40

¨ Action 1:

¨ Which action to perform in state 1,1?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action D.
¤ Updating the value

n Q(s1,1, aD) = (1 − α) Q(s1,1, aD) + α(rt + Q(s1,2, aD))
n Q(s1,1, aD) = (1 − 0,5)*(0,4) + 0,5(0 + 1*0,4) = 0,4

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

41

¨ Action 2:

¨ Which action to execute in state 1,2?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action D.
¤ Updating the value

n Q(s1,2, aD) = (1 − α) Q(s1,2, aD) + α(rt + Q(s1,3, aS))
n Q(s1,2, aD) = (1 − 0,5)*(0,4) + 0,5(50 + 1*0,3) = 25,35

0,4

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

42

¨ Action 3:

¨ Which action to execute in state 1,3?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action S.
¤ Updating the value

n Q(s1,3, aS) = (1 − α) Q(s1,3, aS) + α(rt + Q(s2,3, aE))
n Q(s1,3, aS) = (1 − 0,5)*(0,3) + 0,5(0 + 1*0,5) = 0,4

0,4
25,35

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

43

¨ Action 4:

¨ What action to perform in state 2,3?
¤ According to greedy policy, the one with the highest value of Q.

n Therefore, action E.
¤ Updating the value

n Q(s2,3, aE) = (1 − α) Q(s2,3, aE) + α(rt + Q(s2,2, aE))
n Q(s2,3, aE) = (1 − 0,5)*(0,5) + 0,5(0 + 1*0,4) = 0,45

0,4
25,35

0,4

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

44

¨ Action 5:

¨ What action to perform in state 1,3?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action E.
¤ Updating the value

n Q(s2,2, aE) = (1 − α) Q(s2,2, aE) + α(rt + Q(s2,1, aN))
n Q(s2,2, aE) = (1 − 0,5)*(0,4) + 0,5(-100 + 1*0,5) = -49,55

0,4
25,35

0,4

0,45

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

45

¨ Final state of the agent: 2,1

¨ Table Q has been updated for the 5 actions performed in the respective states.
¨ What did the agent learn?

¤ Going to the right when it is 1,2 is good as it will receive high reinforcement
¤ Going to the left when it is 2,2 is bad because it will receive negative reinforcement value

¨ This information is now embedded in the Q table
¤ The value Q of action D in state 1,2 is high -> it tends to be chosen
¤ The Q value of the E action in the 2,2 state is low -> it tends to be discarded

Q-Learning Algorithm

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

46

¨ If I always choose the Maximum value for Q, one can fall
into a trap! Each step r = -10

Dilemma

100

100

90

70

0

80

70100

100

90

0

0

80

100

100

9
0

70

0

80

70100

100

90

70

0

80

100

100

90

70

0

80

70

First iteration

Will follw this path!

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

47

¨ To exploit
¤ Choose the action that currently has the highest value Q (s, a)

¨ To explore
¤ Choose a random action so that its Q (s, a) value is updated

¨ Dilemma:
¤ Given that I have learned that Q (s, a) is worth 100, it is worth

trying to perform the action a’ if Q (s, a') for now is 20?

¨ It depends on the environment, the number of actions
already taken and the number of shares remaining

Dilemma: Explore x Exploit

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

48

¨ Formula to solve the Dilemma:
¤ e-Greedy: random exploration

n Given a random q

if
otherwise

¨ The system will choose a random action if q <= e or will
choose the highest reward action if q> e

¨ It is hoped, with this, that with many iterations the optimal
solution (optimal policy)

e-Greedy

π (st) =
arandom

argmaxa Q(st,at)

⎧
⎨
⎪

⎩⎪

q ≤ ε

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

49

100

100

100

100

?

100

100

90

100

100

90

80 100

100

90

80

?

100

100

90

80

70

100

100

90

80

90e-Greedy
Best a

100

100

90

80

?

e-Greedy
Random a

e-Greedy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

50

¨ Dense rewards
¤ Reinforcements other than zero are given to intermediate states
¤ The opposite of delayed reward
¤ Can reduce the complexity of learning
¤ Lead to faster convergence

Dense Rewards

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

51

¨ RL will solve many of your problems, however:
¤ Needs a lot of training

¨ Choosing random actions can be dangerous and time
consuming, but the system may not converge if they are
not chosen
¤ It can take a lot of time to learn

¨ Not all problems fit into MDP format
¤ The algorithm finds the optimal solution (theoretically proved) in

infinite iterations
¤ That is, sometimes we have to settle for sub-optimal solutions

Considerations

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

52

¨ Examples of RL applications in robotics

https://www.youtube.com/watch?v=2iNrJx6IDEo

Examples

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

53

¨ Examples of RL applications in robotics

https://www.youtube.com/watch?v=W_gxLKSsSIE

Examples

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

54

¨ SARSA (State-action-reward-state-action)
¤ State s, performs action a, falls in state s'

n In Q-learning, it is assumed that the best possible action will be taken from
the state s'

n In SARSA, this value will be the value of the actual share that was executed
n That is, the value will only be updated when the new action choice occurs,

based on the defined control policy
n That is:

n The Q-learning policy update is Q (s, a) = r(s) + alfa * max (Q(s’))
n The SARSA policy update is Q (s, a) = r(s) + alfa * Q (s', a’)

Q-learning x SARSA

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

55

¨ Cliff example
¤ Each action = -1
¤ Hang on the cliff = -100
¤ Reach target = 0
¤ epsilon=0.1
¤ alpha=0.1
¤ gamma=0.9

¤ https://studywolf.wordpress.com

Q-learning x SARSA

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

56

¨ Q-learning

Q-learning x SARSA

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

57

¨ SARSA

Q-learning x SARSA

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

58

¨ Goal: Balance the pole on top of a moving cart
¨ State: Pole angle, angular speed. Cart position, horizontal

velocity
¨ Actions: horizontal force to the cart
¨ Reward: 1 at each time step if the pole is upright

Examples of RL
Cart-pole balancing - traininng

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

59

¨ Goal: Balance the pole on top of a moving cart
¨ State: Pole angle, angular speed. Cart position, horizontal

velocity
¨ Actions: horizontal force to the cart
¨ Reward: 1 at each time step if the pole is upright

Examples of RL
Cart-pole balancing – learned policy

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

60

¨ Goal: To get the cheese while avoiding collision
¨ State: Grid with cells that can be: occupied, free, target, visited
¨ Actions: left, up, right, down
¨ Reward:

¤ 1 when the rat hits the cheese cell
¤ -0.04 for each move from one cell to an adjacent cell
¤ -0.8 for an attempt to move outside the maze boundaries
¤ -0.75 when hit a blocked cell (dark-orange cell)
¤ -0.25 points for any move to a cell which he has already visited

¨ Stop criteria: when the total reward hits -0.5 * maze.size

Examples of RL
Maze-solving

https://www.samyzaf.com/ML/rl/qmaze.html

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

61

¨ Goal: Pick an object of different shapes
¨ State: Raw pixels from camera
¨ Actions: Move arm. Grasp
¨ Reward: Positive when pickup is successful

Examples of RL
Grasping Objects with Robotic Arm

https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

62

¨ Goal: To satisfy one’ needs
¨ State: Sight. Hearing. Taste. Smell. Touch. Level on

unsatisfaction of needs (drives)
¨ Actions: Think. Move.
¨ Reward: Homeostasis of needs?

Examples of RL
Human Life

d0 d1 d2 d3 ... dn

Homeostasis is a reference state for drives

d0 d1 d2

n0 n1 n2

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

63

Deep RL

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

64

¨ RL it’s problematic for coping with large state-spaces and
continuous values

¨ To help solving this problem, we could work with function
approximators

¨ Any kind of function approximators may be employed in RL,
however, neural nets are achieving best results

¨ DRL: Reinforcement learning that uses neural networks to
approximate functions from complex data inputs
¤ Reinforcement learning becoming tractable
¤ No output examples needed
¤ Able to derive robust control policies
¤ Much lower custom handcrafted tuning
¤ Possible to bypass human intuition
¤ Able to cope with high dimensional inputs
¤ DRL allows the development of control without explicit models
¤ Recent theoretical and empirical improvements

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

65

¨ NN for control goes back to the 90's
¤ The thesis of Lin, 93 already discussed:

n Experience replay and more

¨ TD-Gammon (Tesauro, 1992)
¤ It stopped improving after about 1,500,000 games (auto-play)

using 80 hidden units

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

66

¨ But... playing backgammon does
not look as cool as playing Atari!

¨ DeepMind breakthrough
¤ Human-level control through deep

reinforcement learning

¨ Posted in Nature in 2015
¨ Okay ... the computer time is not

the same as the time limited by the
mechanical factor ... but ...

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

67

¨ Markov property
MC

MDP

MC x MDP

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

68

¨ State in MDP can be represented as raw images

¨ An action can be a move in a chess game or moving a robotic arm or a joystick

¨ For a GO game, the reward is very sparse: 1 if we win or -1 if we lose.

Reinforcement Learning
Problem Formulation

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

69Reinforcement Learning
Problem Formulation

¨ RL problem may be formalized as MDPs:
¤ Partially observable Markov decision process (POMDP) is a

generalization of a Markov decision process (MDP)
¤ Control problems are essentially concerned with continuous MDPs.

POMDP requires the inclusion of O:
n the observation space

¨ Reinforcement Learning is an optimization problem for the
policy

¨ What to approach?
n Policies (select the next action)
n Value functions (measures the quality of actions or state-action pairs)

¤ Value function x Reinforcement
n The value function measures the quality of the state over time.
n Reinforcement is immediate

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

70

¨ 𝑆 is the state space, or the finite set of states in the
environment

¨ 𝐴 is the action space, the finite set of actions that an agent
can execute

¨ 𝑃 𝑠()*, 𝑟(𝑠(, 𝑎(is the transition operator. It specifies the
probability that the environment will emit reward 𝑟(and
transit to state 𝑠()* for each state 𝑠(and action 𝑎(
¤ The transition function is the system dynamics. It predicts the next state

after taking action. It is called the model which plays a major role
when we discuss Model-based RL

¨ 𝑟(is the reward signal at a given instant t, as r ∈ R
¨ 𝜌/ is the initial state probability distribution
¨ 𝛾 ∈ 0,1 , is the discount rate, used to adjust the ratio

between the contribution of recent rewards and past rewards.

MDP

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

71

¨ Return and Discounted Return
¤ Episodic approach of Reinforcement Learning:

n 𝑅 = 𝑟/ + 𝑟* +𝑟6 +⋯+𝑟89*= ∑(;/89* 𝑟(
¤ However, when no terminal state is naturally given or we desire

a weighting of instantaneous rewards:
n 𝜂= = 𝑟/ + 𝛾𝑟* +𝛾6 𝑟6 +⋯ = ∑>;/? 𝛾> 𝑟()>

Agent-environment interaction

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

72

¨ Policies
¤ describe the behavior of an agent and may be deterministic or

stochastic
¤ 𝜋(𝑎|𝑠) maps states to probabilities of selecting each possible action

at a given state
¤ It can be deterministic 𝜋(𝑠), which directly maps an state s to a

determined action a
n π: 𝑆 → 𝐴

¤ It can be stochastic 𝜋 𝑎 𝑠 ,which given a state s, each action a ∈
A(s) has an associated probability to be chosen
n π: 𝑆𝑥𝐴 → 0,1 , ∀𝑠 ∈ 𝑆 ∑I∈J𝜋(𝑠, 𝑎) = 1

¨ Value Functions
¤ Function that maps states s or state-action pairs (s,a) to a real number
¤ Interpreted as the measure of how good it is for the agent to be at a

given state or how good it is to perform a given action in a given
state.

Agent-environment interaction

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

73Agent-environment interaction
Policy

Policy palameters Aply the brake

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

74

¨ Value function based algorithms

¨ Value Functions
¤ V(s)

n 𝑉= 𝑠(= 𝔼= [𝜂(|𝑠(]
n 𝑉= 𝑠(= 𝔼= [∑>;/? 𝛾> 𝑟()>|𝑠(]

¤ Q(s,a)
n 𝑄= 𝑠(, 𝑎(= 𝔼= [𝜂(|𝑠(, 𝑎(]
n 𝑄= 𝑠(, 𝑎(= 𝔼= [∑>;/? 𝛾> 𝑟()>|𝑠(, 𝑎(]

RL Algorithms

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

75RL Algorithms

S. Levine, “Lecture 4: Reinforcement learning introduction - cs 294-112 at uc berkeley: Deep reinforcement learning.” [Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse/

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

76RL Algorithms: Value function based

S. Levine, “Lecture 4: Reinforcement learning introduction - cs 294-112 at uc berkeley: Deep reinforcement learning.” [Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse/

Fit 𝑉 𝑠 or 𝑄 𝑠, 𝑎

𝜋∗ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄 𝑠, 𝑎

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

77

¨ Policy optimization based algorithms
¤ Policies are often represented as a parameterized function πθ,

typically encoded by an Artificial Neural Network, where θ is
the net parameter set

¤ We can optimize the policy through gradient-based optimization
or gradient-free methods (e.g.: AG)

¤ Generally, Stochastic Gradient Ascent or one of its variations is
used to optimize an objective function of the form
n ℒTU 𝜃 = W𝔼([𝑙𝑜𝑔=Z 𝑎(𝑠(∑(𝑟 𝑠(, 𝑎(]

RL Algorithms

maximizing the likelihood of taking that action in that state

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

78RL Algorithms: Policy optimization based algorithms

S. Levine, “Lecture 4: Reinforcement learning introduction - cs 294-112 at uc berkeley: Deep reinforcement learning.” [Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse/

R=∑(;/89* 𝑟(

𝜃 ← 𝜃 + 𝛼∇]𝔼 [^
(

𝑟(]

Evaluate returns

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

79

¨ Policy optimization based algorithms
¤ The regular ("vanilla") policy gradients are susceptible to high

variance when the objective function considers simply the
"reward to go"

¤ To reduce the variance of policy gradients, without introducing
bias to the model, is to use an alternative objective function with
a baseline b

n ℒTU 𝜃 = W𝔼(𝑙𝑜𝑔=Z 𝑎(𝑠(∑(𝑟 𝑠(, 𝑎(− 𝑏

n 𝑏 = *
`
∑a;*` 𝑟a

RL Algorithms

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

80

¨ Actor-Critic
¤ Improves the choice of baseline
¤ An actor-critic algorithm consists of a policy gradient method

that works in association with a value estimator W𝑉= 𝑠 .
¨ The actor is the policy that infers the best actions to take,

while the critic is the component that bootstraps the
evaluation of the current policy

¨ Concept of advantage function A:
¤ 𝐴= = 𝑄= 𝑠(, 𝑎(- 𝑉= 𝑠(

RL Algorithms

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

81

¨ Policy gradients rely on a stochastic gradient ascent, or
other first order optimization technique, to maximize
some performance measure 𝜂(θ). The policy πθ is,
commonly, a deep or shallow neural network

¨ One of the most frequently used gradient estimator has
the form:
¤ c𝑔 = W𝔼(𝑙𝑜𝑔=Z 𝑎(𝑠(W𝐴(

¨ Derived from the object function:
¤ ℒTU 𝜃 = W𝔼(𝑙𝑜𝑔=Z 𝑎(𝑠(W𝐴(

Stochastic Policy Gradients

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

82Deep Reinforcement Learning
Taxonomy

• Learn the
model of the
world, then
plan using
the model

• Update
model often

• Re-plan often

Value-based
• Learn the state or state-action value
• Act by choosing best action in state
• Exploration is a necessary add-on
Policy-based
• Learn the stochastic policy function that maps

state to action
• Act by sampling policy
• Exploration is baked in

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

83Deep Reinforcement Learning
Taxonomy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

84Deep Reinforcement Learning
Taxonomy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

85

¨ DQN
¤ End-to-end learning of Q(s,a) values from the pixels s
¤ The input state s is a stack of pixels from the last 4 frames
¤ The output is Q (s, a) for the 18 joystick / button positions
¤ The reward is the change in the score for this step

Deep Reinforcement Learning
DQN

𝑄()* 𝑠(, 𝑎(= 𝑄(𝑠(, 𝑎(+ 𝛼(𝑅()* + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠()*, 𝑎 − 𝑄(𝑠(, 𝑎()
New state

Learning rate Discount factor

Old state Reward

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

86

¨ DQN
¤ Use a neural network to approximate the Q-function:

n 𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗ 𝑠, 𝑎

Deep Reinforcement Learning
DQN

fv 𝑠, 𝜃 fq 𝑠, 𝑎, 𝜃 fq 𝑠, 𝑎1, 𝜃 ... fq 𝑠, 𝑎𝑚, 𝜃

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

87

¨ DQN (With Experience replay)
¤ Take action 𝑎𝑡 according to 𝜀-greedy policy
¤ Store transition (𝑠𝑡, 𝑎𝑡, 𝑟()*, 𝑠()*) in replay memory 𝒟
¤ Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠’) from 𝒟
¤ Compute Q-learning target
¤ Optimize MSE between Q-network and Q-learning targets

n ℒ = m𝔼n,I,o,n’~𝒟 (𝑟 + 𝛾𝑚𝑎𝑥𝑎’ 𝑄 𝑠’, 𝑎’ − 𝑄 𝑠, 𝑎)6

n Using variant of SGD

n Δ𝜃 = 𝛼[(𝑅 + 𝛾𝑚𝑎𝑥𝑎’ r𝑄 𝑠’, 𝑎’) − r𝑄 𝑠, 𝑎 ∇ r𝑄 𝑠, 𝑎

Deep Reinforcement Learning

Target Prediction

TD Error Gradient of our
current prediction

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

88

¨ DQN for Atari

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

89

¨ DQN tricks
¤ Experience Replay

n Stores experiences (actions, state transitions, and rewards) and creates mini-batches
from them for the training process

¤ Fixed Target Network
n Error calculation includes the target function depends on network parameters and thus

changes quickly. Updating it only every 1,000 steps increases stability of training
process

¨ Variations
¤ Dueling DQN (DDQN)
¤ Decompose Q(s,a)

n V(s): the value of being at that state
n A(s,a): the advantage of taking action a in state s versus all other possible actions at

that state

¤ Use two streams:
n one that estimates the state value V(s)
n one that estimates the advantage for each action A(s,a)

¤ Useful for states where action choice does not affect Q(s,a)

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

90Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

91Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

92Deep Reinforcement Learning
Taxonomy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

93

¨ Before, the policy was to use the best action
¨ But ... and if it is simpler to represent the policy?
¨ Value Based

¤ Learned value function
¤ Implied Policy

n For example, ε-greedy

¨ DQN (off-policy): Approximate Q and infer optimal
policy

¨ PG (on-policy): Directly optimize policy space
¨ Policy-based

¤ No function value
¤ Policy Learned

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

94

¨ Policy Gradient
¤ Adjust the policy to make it better
¤ We will directly adjust the policy
¤ Let's see our experience and adjust following the gradient

¨ Benefits:
¤ Better Convergence Properties
¤ Effective with high-dimensional or continuous action spaces
¤ Can learn stochastic policies

¨ Methods
¤ Finite differences
¤ Monte-Carlos
¤ Actor-critic

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

95Deep Reinforcement Learning
Policy Gradient

¨ REINFORCE: Policy gradient that increases probability of
good actions and decreases probability of bad action:
¤ ∇𝔼(𝑅(= 𝔼 ∇] 𝑙𝑜𝑔𝑃(𝑎)𝑅(

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

96

¨ Pros vs DQN:
¤ Messy World: If Q function is too complex to be learned, DQN

may fail miserably, while PG will still learn a good policy
¤ Speed: Faster convergence
¤ Stochastic Policies: Capable of learning stochastic policies -

DQN can’t
¤ Continuous actions: Much easier to model continuous action

space

¨ Cons vs DQN:
¤ Data: Sample inefficient (needs more data)
¤ Stability: Less stable during training process
¤ Poor credit assignment to (state, action) pairs for delayed

rewards

Deep Reinforcement Learning
Policy Gradient

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

97

¨ Pros vs DQN:
¤ Messy World: If Q function is too complex to be learned, DQN may fail miserably, while PG will still

learn a good policy
¤ Speed: Faster convergence
¤ Stochastic Policies: Capable of learning stochastic policies - DQN can’t
¤ Continuous actions: Much easier to model continuous action space

¨ Cons vs DQN:
¤ Data: Sample inefficient (needs more data)
¤ Stability: Less stable during training process
¤ Poor credit assignment to (state, action) pairs for delayed rewards

¨ Problem with REINFORCE:
¤ Calculating the reward at the end, means all the actions will be averaged as good because the total

reward was high

Deep Reinforcement Learning
Policy Gradient

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

98

¨ Policy gradient
¤ More refined methods:

n Basic idea in on-policy optimization
n Avoid taking bad actions that collapse the training performance.

n TRPO
n PPO

Deep Reinforcement Learning
Policy Gradient

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

99Deep Reinforcement Learning
PPO

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

100Deep Reinforcement Learning
PPO

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

101Deep Reinforcement Learning
PPO

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

102

Deep Reinforcement Learning

¨ PPO

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

103Deep Reinforcement Learning
Taxonomy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

104

¨ Can we combine the best of policy-based and
value-based?

¨ Yes. Advantage Actor-Critic (A2C)
¨ Combine DQN (value-based) and REINFORCE

(policy-based)
¤ Two neural networks (Actor and Critic):

n Actor is policy-based: Samples the action from a policy
n Critic is value-based: Measures how good the chosen

action is
n Δ𝜃 = 𝛼∇]𝑙𝑜𝑔𝜋(𝑆(, 𝐴(; 𝜃) 𝑅(
n Δ𝜃 = 𝛼∇]𝑙𝑜𝑔𝜋 𝑆(, 𝐴(; 𝜃 𝑄(𝑆(, 𝐴()

¤ Update at each time step - temporal difference
(TD) learning

Deep Reinforcement Learning
A2C

Traditional Policy Update

New Policy Update

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

105

¨ Actor-critic PPO

DRL for Quadrutor Control

Position
Orientation
Linear Vel.

Angular Vel.
Motor PWM signals Value Estimation

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

106

¨ Actor-critic PPO

DRL for Quadrutor Control

Reward Signal

Where

Quadrotor is bounded to a 3.2m radius sphere

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

107

¨ Actor-critic PPO

DRL for Quadrutor Control

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

108DRL for Quadrutor Control

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

109

DRL for Quadrutor Control

109

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

110Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

111Deep Reinforcement Learning
Taxonomy

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

112Deep Reinforcement Learning: Model-based
The GO game

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

113Deep Reinforcement Learning: Model-based
The GO game

¨ Video
¤ Model-based Marta

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

114

¨ It does not always start from scratch
¨ Uses "low cost" simulation experience to learn real world

skills
¨ Allows the agent to act effectively in an environment that

has not seen before
¤ TL: Using the experience of a set of tasks for faster learning

and/or better performance in a new task

DRL: transfer learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

115

¨ A broad notion of "task":
¤ varied objectives (reward)
¤ robots (can affect state, action and dynamics)
¤ varied environments (can affect observation space, dynamics,

reward)

¨ Often, we will make assumptions about what will change
between tasks

DRL: transfer learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

116Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

117

¨ Other approaches (with a kind of supervision)
¤ Imitation Learning

n Humans are able to do this early on
n 8 months - mimics simple actions and expressions
n 18 months - imitates delayed actions with multiple steps
n 36 months - mimics actions with multiple steps
n Imitation of the result of the action
n Inferring intentions

¤ Inverse RL
n Behavior examples
n Infer the reinforcement
n Usually uses information from the expert, but, in the limit, could learn from a

flawed system
n Requires a similar body scheme

¤ Prediction
n There is a reference model

Deep Reinforcement Learning

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

118

¨ Model an MDP and an AR algorithm appropriate to the
problem of a robot that has two IR sensors, which returns
readings of {0,1} m and 4 Sonars, which returns readings
of {0,5} m. The robot aims to walk as much as possible in
an environment without hitting the walls. Possible actions
are:
¤ Walk forward
¤ Walk backwards
¤ Rotate 10o

¤ Rotate -10o

Exercise

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

119

¨ Non-Convergence x Convergence

Exercise

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

120

12
0
Lecture 17 ¨ Reading:

¤ RUSSELL, S. NORVIG, P. Artificial Intelligence.
3a edição. Chapter 21.

¤ BARTO, A., SUTTON, R. Reinforcement
Learning: An Introduction. Second Edition.
Freely Available at:
https://drive.google.com/file/d/1xeUDVGW
GUUv1-
ccUMAZHJLej2C7aAFWY/view?usp=sharing

Activities

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

121

12
1
Lecture 17

¨ BARTO, A., SUTTON, R. Reinforcement Learning: An
Introduction. Second Edition.

¨ MURPHY, R. R. Introduction to AI robotics. MIT Press,
2002.

¨ Lex Fridman, MIT Deep Learning Course, MIT, 2019.
¨ DUDEK, G.; JENKIN, M. Computational Principles of

mobile robotics. Cambridge Press, 2000.
¨ ROMERO, R. A. F.; PRESTES, E.; OSÓRIO, F.; WOLF, D.

(Orgs) Robótica móvel. LTC, 2014.
¨ BROOKS, R. Intelligence without representation.

Artificial Intelligence, 47:139-159, 1991.
¨ RUSSEL, S. NORVIG, P. Artificial Intelligence: a

modern approach. Prentice Hall, 2002.
¨ BRATKO, I. PROLOG: programming for artificial

intelligence. Addison Wesley, 2nd edition, 1990.

References

MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

122

This material is part of the Machine Learning Course
By Esther Colombini and Alexandre Simões

