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¨ Markov Decision Process
¨ Reinforcement Learning
¨ Q-learning
¨ Examples
¨ Exercise
¨ Deep RL

Summary
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¨ Supervised Learning
¨ Semi-Supervised Learning
¨ Unsupervised Learning
¨ Reinforcement Learning 

¤ It’s all “supervised” by a loss function!

¨ Supervised learning is “teach by example”:
¤ Here’s some examples, now learn patterns in these example. 

¨ Reinforcement learning is “teach by experience”: 
¤ Here’s a world, now learn patterns by exploring it.  

Types of Learning
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https://deeplearning.mit.edu
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¨ Often the use of supervised learning is impractical
¤ How to get correct training examples for a given situation? What 

if the environment is unknown?
¤ Examples:

n Child acquiring motor coordination
n Robot interacting with an environment to achieve objective(s)

¨ Human appear to learn to walk through “very few 
examples” of trial and error. How is an open question... 
¤ Possible answers

n Hardware: 230 million years of bipedal movement data. 
n Imitation Learning: Observation of other humans walking
n Algorithms: Better than backpropagation and stochastic gradient descent 

Reinforcement Learning: For what?
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The promise of 
Deep Learning 

The promise of 
Deep Reinforcement Learning 
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¨ Premise:
¤ At each time instant t, the agent is in a state s
¤ In state s it performs action a and goes to state s'
¤ The state is evaluated and gives a reward to the agent
¤ Thus, the action a in state s has a value for the agent
¤ If you choose correct

n wins a reward (gains value)

¤ if not
n receives a punishment (loses value)

¨ Reinforcement learning:
¤ Choose an action policy that maximizes the total rewards 

received by the agent

What is Reinforcement Learning?
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¨ Fully Observable (Chess) vs Partially Observable (Poker)
¨ Single Agent (Atari) vs Multi Agent (DeepTraffic)
¨ Deterministic (Cart Pole) vs Stochastic (DeepTraffic)
¨ Static (Chess) vs Dynamic (DeepTraffic) 
¨ Discrete (Chess) vs Continuous (Cart Pole) 

¤ Note: Real-world environment might not technically be stochastic 
or partially-observable but might as well be treated as such due 
to their complexity. 

Environment and Actions 
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¨ Experiential learning
¤ The world is the best model of itself

¨ RL is characterized by problems involving the concept of 
Autonomy
¤ RL links AI concepts and Optimal Control
¤ RL is applicable to real problems

Reinforcement Learning Assumptions
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¨ Specify what to do, not how to do
¤ This is done through the reward function

¨ Usually find the best end solutions
¤ Based on current experiences, there are no assumptions of the 

programmer

¨ In short:
¤ Less human time is needed to find a good solution
¤ It is not necessary to define heuristics, techniques to solve the 

problem, etc.
¤ Just set the learning system and let the system learn!

Reinforcement Learning Assumptions
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¨ Backgammon Game (1020 states)
¤ Game Modeling:

n Victory: +100
n Defeat: - 100

¤ Zero for other states of the game (delayed reward)
n DELAYED REWARD -> leaves to reward at the end of a process
n After 1 million matches against himself, he plays as well as the best human 

player

¨ Robots Football
n Robot Soccer Brainstormers (RoboCup)
n Team whose knowledge is obtained 100% by learning techniques by 

reinforcement

¤ Computer Go (10170 states)

Applications
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¨ Formally, an MDP is given by:
¤ A set of states, S = {s1, s2, ..., sn}
¤ A set of actions, A = {a1, a2, ..., am}
¤ A Reward function, R: S:A:S → r

¨ A state transition function, T: S,A → S
¨ We want to learn the policy p: S → A, that is, given 

states in S we have the best actions in A to be applied.
¤ Policy: sequence of states and actions

¨ Markov property
¤ Everything you need to make a decision is included in the status
¤ There is no way to consult the past (previous states)

Markov Decision Processes - MDPs
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¨ With the reward set, what we need is to make a decision 
in each state:
¤ Multiple actions (A and B)
¤ Each action has a reward associated with it

¨ The goal is to maximize the reward
¨ Just take the action with the highest reward for the current 

state

Making decisions
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¨ We can generalize the previous example to multi-
sequential decisions
¤ Each decision affects the next decision

¨ This is formally modeled as Markov Decisive Process 
(PDM or MDP)

Markov Decision Processes (MDPs)
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¨ There are 3 policies for the MDP below:
¤ 0 → 1 → 3 → 5
¤ 0 → 1 → 4 → 5
¤ 0 → 2 → 4 → 5

¨ Which is better?

Policies
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¨ Sort policies by rewards
¤ 0 → 1 → 3 → 5 = 1 + 1 + 1 = 3
¤ 0 → 1 → 4 → 5 = 1 + 1 + 10 = 12
¤ 0 → 2 → 4 → 5 = 2 - 1000 + 10 = -988

Markov Decision Processes (MDPs)
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¨ We can set a value without specifying the policy
¤ Specify the value of choosing action a from state s

¤ This is the state-of-action quality function, Q

State-Action Value
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¨ Q(s, a) = R(s, a, s’) + maxa’ Q(s’, a’)

¨ Form:
¤ Next reward + the best I can do from the next state, even if the 

policy is not followed

¨ If we have the value function, then finding the best policy 
is easy:
¤ p(s) = argmax Q(s, a)

¨ argmax f(x) means the argument that makes f(x) 
maximum

Value Function

s’ is the next state
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¨ We are looking for the optimal policy: p*(s)
¨ This means that no policy generates a reward greater 

than p*

¨ Optimal policy defines optimal value functions:

¨ The easiest way to learn an optimal policy is to learn the 
optimal value function first!

Optimal Policy
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¨ We can introduce a term into the function to prevent high 
values from saturating the system and getting it into looping

¨ Called the temporary discount factor, g
0 ≤ g ≤ 1

¨ Interpretation:
¤ Determines the importance of future rewards

n If 0, the agent is considered "short-sighted" because it only considers current 
elements

n If g> = 1 and no final state, it will tend to infinity
n To aim to reduce the influence of future expected reinforcements

Q(s, a) = R(s, a, s’) + gmaxa’ Q(s’, a’)

Action-Value Functions
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¨ If we have the model, an iterative algorithm by value or 
by policy can find the best policy
¤ Dynamic Programming (applicable to problems in which the 

optimal solution can be computed from the optimum solution 
previously calculated and stored)

¤ Value Iteration: uses dynamic programming to determine the 
value V* (s), or argmax, of each state s ∈ S of the MDP, at each 
decision time.

¤ In the case of infinite horizon (and stationary policy - with 
numerous properties that are unchanged in time) one can also 
use an algorithm called policy iteration, which makes a greedy 
search in the policy space. This algorithm is more efficient than 
value iteration.

Value Functions
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¨ What happens if we do not have full MDP?
¤ That is, we need to learn the associated rewards
¤ Well .. We know about states and actions
¤ We do not know about the system model (transition function) or 

the reward function
¤ We can learn from experience and carry out actions to generate 

such experiences.

¨ This is the main goal of reinforcement learning...

Reinforcement Learning
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¨ We still want to learn the value function
¤ We are forced to approach it interactively
¤ Based on the experiences of the world

¨ Let's talk about one of the main algorithms:
¤ Q-learning
¤ Off-policy x On-policy

n An off-policy learns the optimal policy value regardless of the agent's 
actions, as well as Q-learning

n An on-policy learns the value of the policy being carried out by the agent, 
including the exploitation steps (SARSA)

n This distinction disappears if the policy followed is greedy

Learning the value function
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¨ Learning algorithm to compute optimal Q function (value 
of actions)

¨ Q*(s) = argmaxa[Q(s,a)] 

¨ Q*(st,at) = r(st,at) + g max a’ [Q(st+1,a’)]

Q-Learning

This table is usually huge and takes up a lot of memory!
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¨ Q(st) is updated after observing the st + 1 state and the 
reward received
¤ Consider that we are in s1 and that we want to perform the aright 

action. How to update Q (s1, aright)? Use reward 0 and g=0.9

¨ Q(s1,aright) = r + g max a’ Q(s2,a’)
= 0 + 0.9 max{63,81,100}
= 90

Q-Learning
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¨ Q-learning approximation, iteratively, the state-action 
value function, Q
¤ We will not estimate MDP directly
¤ Learn the function value and policy simultaneously

¨ Maintains the estimate of Q (s, a) in a table
¤ Updates these estimates as you add more experience
¤ The estimate does not depend on the operating policy

Q-Learning
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¨ Q(s, a) = Q(s, a)  + (r +  maxa’Q(s’, a’)) - Q(s, a))

¨ The change in Q value to perform action a in state s is the 
difference between the real reward (r + maxa'Q (s ', a')) and 
the expected reward (Q (s, a))

¨ We can think of this as a type of PD control or the error of the 
output of an NN that takes the system in the direction of the 
correct Q.

Q-Learning Algorithm

Old value Old value

Reward

Estimate of the best 
future value

error
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¨ Q(s, a) = Q(s, a)  + (r + g maxa’Q(s’, a’)) - Q(s, a))

¤ To aim to reduce the influence of future expected reinforcements. 
As see before:
n If 0, the agent is considered "short-sighted" because it only considers 

current elements
n If g> = 1 and no final state, it will tend to infinity

Q-Learning Algorithm

Temporal discount 
factor
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¨ Q(s, a) = Q(s, a)  + 𝛼((r + g maxa’Q(s’, a’)) - Q(s, a)))

¨ 0 ≤ 𝛼 ≤ 1 is the rate of learning
¨ 𝛼 indicates how much new information is relevant

¤ A value of 0 will prevent the agent from learning
¤ A value of 1 will make it learn only with the latest information
¤ If the problem is deterministic, the factor must be 1
¤ If the problem is stochastic, the value must be less than 1

Q-Learning Algorithm

Learning rate
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¨ Initialize Q (s, a) for small random values, "s, a
¨ Observe state s
¨ Choose an action, a, and execute
¨ Observe next state, s ', and reward of s', r
¨ Q(s, a) ← (1 - 𝛼)Q(s, a) + 𝛼(r + g maxa’Q(s’, a’))
¨ Go back to 2

Q-Learning Algorithm
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¨ Consider the grid-world below and an agent who is
trying to learn the optimal policy.

¨ The possible actions are: 
¤ D (right), E (left), N (north) and S (south).

Q-Learning Algorithm
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¨ The Q table has been initialized with the following values:

¨ Reinforcements (positive and negative) will be given only in the indicated regions. Assume 
γ = 1 and α = 0.5 for all calculations. Consider the agent in the initial position indicated. 

¨ Perform 5 greedy actions in sequence, performing the required updates on Table Q.
¨ Consider: Q (st, at) = (1 - α) Q (st, at) + α (rt + γ max Q (st+1, a’))

Q-Learning Algorithm
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¨ Action 1:

¨ Which action to perform in state 1,1?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action D. 
¤ Updating the value

n Q(s1,1, aD) = (1 − α) Q(s1,1, aD) + α(rt + Q(s1,2, aD) ) 
n Q(s1,1, aD) = (1 − 0,5)*(0,4) + 0,5(0 + 1*0,4) =  0,4 

Q-Learning Algorithm
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¨ Action 2:

¨ Which action to execute in state 1,2?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action D. 
¤ Updating the value

n Q(s1,2, aD) = (1 − α) Q(s1,2, aD) + α(rt + Q(s1,3, aS) ) 
n Q(s1,2, aD) = (1 − 0,5)*(0,4) + 0,5(50 + 1*0,3) =  25,35 

0,4

Q-Learning Algorithm
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¨ Action 3:

¨ Which action to execute in state 1,3?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action S. 
¤ Updating the value

n Q(s1,3, aS) = (1 − α) Q(s1,3, aS) + α(rt + Q(s2,3, aE) ) 
n Q(s1,3, aS) = (1 − 0,5)*(0,3) + 0,5(0 + 1*0,5) =  0,4 

0,4
25,35

Q-Learning Algorithm
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¨ Action 4:

¨ What action to perform in state 2,3?
¤ According to greedy policy, the one with the highest value of Q.

n Therefore, action E.
¤ Updating the value

n Q(s2,3, aE) = (1 − α) Q(s2,3, aE) + α(rt + Q(s2,2, aE) ) 
n Q(s2,3, aE) = (1 − 0,5)*(0,5) + 0,5(0 + 1*0,4) =  0,45 

0,4
25,35

0,4

Q-Learning Algorithm
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¨ Action 5:

¨ What action to perform in state 1,3?
¤ According to greedy policy, the one with the highest value of Q.

n Hence, action E. 
¤ Updating the value

n Q(s2,2, aE) = (1 − α) Q(s2,2, aE) + α(rt + Q(s2,1, aN) ) 
n Q(s2,2, aE) = (1 − 0,5)*(0,4) + 0,5(-100 + 1*0,5) =  -49,55 

0,4
25,35

0,4

0,45

Q-Learning Algorithm
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¨ Final state of the agent: 2,1

¨ Table Q has been updated for the 5 actions performed in the respective states.
¨ What did the agent learn?

¤ Going to the right when it is 1,2 is good as it will receive high reinforcement
¤ Going to the left when it is 2,2 is bad because it will receive negative reinforcement value

¨ This information is now embedded in the Q table
¤ The value Q of action D in state 1,2 is high -> it tends to be chosen
¤ The Q value of the E action in the 2,2 state is low -> it tends to be discarded

Q-Learning Algorithm
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¨ If I always choose the Maximum value for Q, one can fall
into a trap! Each step r = -10

Dilemma
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Will follw this path!
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¨ To exploit
¤ Choose the action that currently has the highest value Q (s, a)

¨ To explore
¤ Choose a random action so that its Q (s, a) value is updated

¨ Dilemma:
¤ Given that I have learned that Q (s, a) is worth 100, it is worth 

trying to perform the action a’ if Q (s, a') for now is 20?

¨ It depends on the environment, the number of actions 
already taken and the number of shares remaining

Dilemma: Explore x Exploit
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¨ Formula to solve the Dilemma:
¤ e-Greedy: random exploration

n Given a random q

if
otherwise

¨ The system will choose a random action if q <= e or will
choose the highest reward action if q> e

¨ It is hoped, with this, that with many iterations the optimal
solution (optimal policy)

e-Greedy

π (st ) =
arandom

argmaxa Q(st,at )

⎧
⎨
⎪

⎩⎪

q ≤ ε
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¨ Dense rewards 
¤ Reinforcements other than zero are given to intermediate states
¤ The opposite of delayed reward
¤ Can reduce the complexity of learning
¤ Lead to faster convergence

Dense Rewards
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¨ RL will solve many of your problems, however:
¤ Needs a lot of training

¨ Choosing random actions can be dangerous and time 
consuming, but the system may not converge if they are 
not chosen
¤ It can take a lot of time to learn

¨ Not all problems fit into MDP format
¤ The algorithm finds the optimal solution (theoretically proved) in 

infinite iterations
¤ That is, sometimes we have to settle for sub-optimal solutions

Considerations
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¨ Examples of RL applications in robotics

https://www.youtube.com/watch?v=2iNrJx6IDEo

Examples
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¨ Examples of RL applications in robotics

https://www.youtube.com/watch?v=W_gxLKSsSIE

Examples
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¨ SARSA (State-action-reward-state-action)
¤ State s, performs action a, falls in state s'

n In Q-learning, it is assumed that the best possible action will be taken from 
the state s'

n In SARSA, this value will be the value of the actual share that was executed
n That is, the value will only be updated when the new action choice occurs, 

based on the defined control policy
n That is:

n The Q-learning policy update is Q (s, a) = r(s) + alfa * max (Q(s’)) 
n The SARSA policy update is Q (s, a) = r(s) + alfa * Q (s', a’)

Q-learning x SARSA
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¨ Cliff example
¤ Each action = -1
¤ Hang on the cliff = -100
¤ Reach target = 0
¤ epsilon=0.1
¤ alpha=0.1
¤ gamma=0.9

¤ https://studywolf.wordpress.com

Q-learning x SARSA
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¨ Q-learning

Q-learning x SARSA
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¨ SARSA

Q-learning x SARSA
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¨ Goal: Balance the pole on top of a moving cart 
¨ State: Pole angle, angular speed. Cart position, horizontal 

velocity
¨ Actions: horizontal force to the cart 
¨ Reward: 1 at each time step if the pole is upright 

Examples of RL
Cart-pole balancing - traininng

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947
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¨ Goal: Balance the pole on top of a moving cart 
¨ State: Pole angle, angular speed. Cart position, horizontal 

velocity
¨ Actions: horizontal force to the cart 
¨ Reward: 1 at each time step if the pole is upright 

Examples of RL
Cart-pole balancing – learned policy

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947
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¨ Goal: To get the cheese while avoiding collision
¨ State: Grid with cells that can be: occupied, free, target, visited
¨ Actions: left, up, right, down
¨ Reward: 

¤ 1 when the rat hits the cheese cell
¤ -0.04 for each move from one cell to an adjacent cell
¤ -0.8 for an attempt to move outside the maze boundaries
¤ -0.75 when hit a blocked cell (dark-orange cell)
¤ -0.25 points for any move to a cell which he has already visited

¨ Stop criteria:  when the total reward hits -0.5 * maze.size

Examples of RL
Maze-solving

https://www.samyzaf.com/ML/rl/qmaze.html
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¨ Goal: Pick an object of different shapes 
¨ State: Raw pixels from camera 
¨ Actions: Move arm. Grasp 
¨ Reward: Positive when pickup is successful 

Examples of RL
Grasping Objects with Robotic Arm 

https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html
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¨ Goal: To satisfy one’ needs 
¨ State: Sight. Hearing. Taste. Smell. Touch. Level on 

unsatisfaction of needs (drives) 
¨ Actions: Think. Move. 
¨ Reward: Homeostasis of needs?  

Examples of RL
Human Life 

d0 d1 d2 d3 ... dn

Homeostasis is a reference state for drives

d0 d1 d2

n0 n1 n2
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Deep RL
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¨ RL it’s problematic for coping with large state-spaces and 
continuous values

¨ To help solving this problem, we could work with function 
approximators

¨ Any kind of function approximators may be employed in RL, 
however, neural nets are achieving best results

¨ DRL: Reinforcement learning that uses neural networks to 
approximate functions from complex data inputs
¤ Reinforcement learning becoming tractable
¤ No output examples needed
¤ Able to derive robust control policies 
¤ Much lower custom handcrafted tuning
¤ Possible to bypass human intuition
¤ Able to cope with high dimensional inputs
¤ DRL allows the development of control without explicit models
¤ Recent theoretical and empirical improvements

Deep Reinforcement Learning
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¨ NN for control goes back to the 90's
¤ The thesis of Lin, 93 already discussed:

n Experience replay and more

¨ TD-Gammon (Tesauro, 1992)
¤ It stopped improving after about 1,500,000 games (auto-play) 

using 80 hidden units

Deep Reinforcement Learning
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¨ But... playing backgammon does 
not look as cool as playing Atari!

¨ DeepMind breakthrough
¤ Human-level control through deep 

reinforcement learning

¨ Posted in Nature in 2015
¨ Okay ... the computer time is not 

the same as the time limited by the 
mechanical factor ... but ...

Deep Reinforcement Learning
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¨ Markov property
MC

MDP

MC x MDP
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¨ State in MDP can be represented as raw images

¨ An action can be a move in a chess game or moving a robotic arm or a joystick

¨ For a GO game, the reward is very sparse: 1 if we win or -1 if we lose.

Reinforcement Learning 
Problem Formulation
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Problem Formulation

¨ RL problem may be formalized as MDPs: 
¤ Partially observable Markov decision process (POMDP) is a 

generalization of a Markov decision process (MDP)
¤ Control problems are essentially concerned with continuous MDPs. 

POMDP requires the inclusion of O: 
n the observation space

¨ Reinforcement Learning is an optimization problem for the 
policy

¨ What to approach?
n Policies (select the next action)
n Value functions (measures the quality of actions or state-action pairs)

¤ Value function x Reinforcement
n The value function measures the quality of the state over time. 
n Reinforcement is immediate
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¨ 𝑆 is the state space, or the finite set of states in the 
environment

¨ 𝐴 is the action space, the finite set of actions that an agent 
can execute

¨ 𝑃 𝑠()*, 𝑟( 𝑠(, 𝑎( is the transition operator. It specifies the 
probability that the environment will emit reward 𝑟( and 
transit to state 𝑠()* for each state 𝑠( and action 𝑎(
¤ The transition function is the system dynamics. It predicts the next state 

after taking action. It is called the model which plays a major role 
when we discuss Model-based RL

¨ 𝑟( is the reward signal at a given instant t, as r ∈ R
¨ 𝜌/ is the initial state probability distribution
¨ 𝛾 ∈ 0,1 , is the discount rate, used to adjust the ratio 

between the contribution of recent rewards and past rewards.

MDP
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¨ Return and Discounted Return
¤ Episodic approach of Reinforcement Learning:

n 𝑅 = 𝑟/ + 𝑟* +𝑟6 +⋯+𝑟89*= ∑(;/89* 𝑟(
¤ However, when no terminal state is naturally given or we desire

a weighting of instantaneous rewards:
n 𝜂= = 𝑟/ + 𝛾𝑟* +𝛾6 𝑟6 +⋯ = ∑>;/? 𝛾> 𝑟()>

Agent-environment interaction
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¨ Policies
¤ describe the behavior of an agent and may be deterministic or 

stochastic
¤ 𝜋(𝑎|𝑠) maps states to probabilities of selecting each possible action 

at a given state
¤ It can be deterministic 𝜋(𝑠), which directly maps an state s to a 

determined action a 
n π: 𝑆 → 𝐴

¤ It can be stochastic 𝜋 𝑎 𝑠 ,which given a state s, each action a ∈
A(s) has an associated probability to be chosen
n π: 𝑆𝑥𝐴 → 0,1 , ∀𝑠 ∈ 𝑆 ∑I∈J𝜋(𝑠, 𝑎) = 1

¨ Value Functions
¤ Function that maps states s or state-action pairs (s,a) to a real number
¤ Interpreted as the measure of how good it is for the agent to be at a 

given state or how good it is to perform a given action in a given 
state.

Agent-environment interaction
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Policy

Policy palameters Aply the brake
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¨ Value function based algorithms

¨ Value Functions
¤ V(s)

n 𝑉= 𝑠( = 𝔼= [𝜂(|𝑠(]
n 𝑉= 𝑠( = 𝔼= [∑>;/? 𝛾> 𝑟()>|𝑠(]

¤ Q(s,a)
n 𝑄= 𝑠(, 𝑎( = 𝔼= [𝜂(|𝑠(, 𝑎(]
n 𝑄= 𝑠(, 𝑎( = 𝔼= [∑>;/? 𝛾> 𝑟()>|𝑠(, 𝑎(]

RL Algorithms
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S. Levine, “Lecture 4: Reinforcement learning introduction - cs 294-112 at uc berkeley: Deep reinforcement learning.” [Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse/
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S. Levine, “Lecture 4: Reinforcement learning introduction - cs 294-112 at uc berkeley: Deep reinforcement learning.” [Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse/

Fit 𝑉 𝑠 or 𝑄 𝑠, 𝑎

𝜋∗ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄 𝑠, 𝑎
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¨ Policy optimization based algorithms
¤ Policies are often represented as a parameterized function πθ, 

typically encoded by an Artificial Neural Network, where θ is 
the net parameter set

¤ We can optimize the policy through gradient-based optimization 
or gradient-free methods (e.g.: AG)

¤ Generally, Stochastic Gradient Ascent or one of its variations is 
used to optimize an objective function of the form
n ℒTU 𝜃 = W𝔼( [𝑙𝑜𝑔=Z 𝑎( 𝑠( ∑( 𝑟 𝑠(, 𝑎( ]

RL Algorithms

maximizing the likelihood of taking that action in that state
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S. Levine, “Lecture 4: Reinforcement learning introduction - cs 294-112 at uc berkeley: Deep reinforcement learning.” [Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse/

R=∑(;/89* 𝑟(

𝜃 ← 𝜃 + 𝛼∇]𝔼 [^
(

𝑟(]

Evaluate returns
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¨ Policy optimization based algorithms
¤ The regular ("vanilla") policy gradients are susceptible to high 

variance when the objective function considers simply the 
"reward to go"

¤ To reduce the variance of policy gradients, without introducing 
bias to the model, is to use an alternative objective function with 
a baseline b

n ℒTU 𝜃 = W𝔼( 𝑙𝑜𝑔=Z 𝑎( 𝑠( ∑( 𝑟 𝑠(, 𝑎( − 𝑏

n 𝑏 = *
`
∑a;*` 𝑟a

RL Algorithms
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¨ Actor-Critic
¤ Improves the choice of baseline
¤ An actor-critic algorithm consists of a policy gradient method 

that works in association with a value estimator W𝑉= 𝑠 .
¨ The actor is the policy that infers the best actions to take, 

while the critic is the component that bootstraps the 
evaluation of the current policy

¨ Concept of advantage function A:
¤ 𝐴= = 𝑄= 𝑠(, 𝑎( - 𝑉= 𝑠(

RL Algorithms



MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

81

¨ Policy gradients rely on a stochastic gradient ascent, or
other first order optimization technique, to maximize 
some performance measure 𝜂(θ). The policy πθ is, 
commonly, a deep or shallow neural network

¨ One of the most frequently used gradient estimator has
the form:
¤ c𝑔 = W𝔼( 𝑙𝑜𝑔=Z 𝑎( 𝑠( W𝐴(

¨ Derived from the object function:
¤ ℒTU 𝜃 = W𝔼( 𝑙𝑜𝑔=Z 𝑎( 𝑠( W𝐴(

Stochastic Policy Gradients
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Taxonomy

• Learn the 
model of the 
world, then 
plan using 
the model 

• Update 
model often 

• Re-plan often 

Value-based
• Learn the state or state-action value 
• Act by choosing best action in state
• Exploration is a necessary add-on 
Policy-based
• Learn the stochastic policy function that maps 

state to action 
• Act by sampling policy
• Exploration is baked in 
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Taxonomy
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¨ DQN
¤ End-to-end learning of Q(s,a) values from the pixels s
¤ The input state s is a stack of pixels from the last 4 frames
¤ The output is Q (s, a) for the 18 joystick / button positions
¤ The reward is the change in the score for this step

Deep Reinforcement Learning
DQN

𝑄()* 𝑠(, 𝑎( = 𝑄( 𝑠(, 𝑎( + 𝛼(𝑅()* + 𝛾𝑚𝑎𝑥𝑎𝑄( 𝑠()*, 𝑎 − 𝑄( 𝑠(, 𝑎( )
New state

Learning rate Discount factor

Old state Reward
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¨ DQN
¤ Use a neural network to approximate the Q-function: 

n 𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗ 𝑠, 𝑎

Deep Reinforcement Learning
DQN

fv 𝑠, 𝜃 fq 𝑠, 𝑎, 𝜃 fq 𝑠, 𝑎1, 𝜃 ... fq 𝑠, 𝑎𝑚, 𝜃
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¨ DQN (With Experience replay)
¤ Take action 𝑎𝑡 according to 𝜀-greedy policy
¤ Store transition (𝑠𝑡, 𝑎𝑡, 𝑟()*, 𝑠()*) in replay memory 𝒟
¤ Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠’) from 𝒟
¤ Compute Q-learning target
¤ Optimize MSE between Q-network and Q-learning targets

n ℒ = m𝔼n,I,o,n’~𝒟 (𝑟 + 𝛾𝑚𝑎𝑥𝑎’ 𝑄 𝑠’, 𝑎’ − 𝑄 𝑠, 𝑎 )6

n Using variant of SGD

n Δ𝜃 = 𝛼[ (𝑅 + 𝛾𝑚𝑎𝑥𝑎’ r𝑄 𝑠’, 𝑎’ ) − r𝑄 𝑠, 𝑎 ∇ r𝑄 𝑠, 𝑎

Deep Reinforcement Learning

Target Prediction

TD Error Gradient of our 
current prediction
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¨ DQN for Atari

Deep Reinforcement Learning
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¨ DQN tricks
¤ Experience Replay

n Stores experiences (actions, state transitions, and rewards) and creates mini-batches 
from them for the training process 

¤ Fixed Target Network 
n Error calculation includes the target function depends on network parameters and thus 

changes quickly. Updating it only every 1,000 steps increases stability of training 
process

¨ Variations
¤ Dueling DQN (DDQN) 
¤ Decompose Q(s,a) 

n V(s): the value of being at that state 
n A(s,a): the advantage of taking action a in state s versus all other possible actions at 

that state 

¤ Use two streams:
n one that estimates the state value V(s)
n one that estimates the advantage for each action A(s,a) 

¤ Useful for states where action choice does not affect Q(s,a) 

Deep Reinforcement Learning
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92Deep Reinforcement Learning
Taxonomy
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¨ Before, the policy was to use the best action
¨ But ... and if it is simpler to represent the policy?
¨ Value Based

¤ Learned value function
¤ Implied Policy

n For example, ε-greedy

¨ DQN (off-policy): Approximate Q and infer optimal 
policy 

¨ PG (on-policy): Directly optimize policy space 
¨ Policy-based

¤ No function value
¤ Policy Learned

Deep Reinforcement Learning
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¨ Policy Gradient
¤ Adjust the policy to make it better
¤ We will directly adjust the policy
¤ Let's see our experience and adjust following the gradient

¨ Benefits:
¤ Better Convergence Properties
¤ Effective with high-dimensional or continuous action spaces
¤ Can learn stochastic policies

¨ Methods
¤ Finite differences
¤ Monte-Carlos
¤ Actor-critic

Deep Reinforcement Learning
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Policy Gradient

¨ REINFORCE: Policy gradient that increases probability of 
good actions and decreases probability of bad action: 
¤ ∇𝔼( 𝑅( = 𝔼 ∇] 𝑙𝑜𝑔𝑃(𝑎)𝑅(
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¨ Pros vs DQN: 
¤ Messy World: If Q function is too complex to be learned, DQN 

may fail miserably, while PG will still learn a good policy
¤ Speed: Faster convergence 
¤ Stochastic Policies: Capable of learning stochastic policies -

DQN can’t 
¤ Continuous actions: Much easier to model continuous action 

space 

¨ Cons vs DQN: 
¤ Data: Sample inefficient (needs more data) 
¤ Stability: Less stable during training process
¤ Poor credit assignment to (state, action) pairs for delayed 

rewards 

Deep Reinforcement Learning
Policy Gradient
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¨ Pros vs DQN: 
¤ Messy World: If Q function is too complex to be learned, DQN may fail miserably, while PG will still 

learn a good policy
¤ Speed: Faster convergence 
¤ Stochastic Policies: Capable of learning stochastic policies - DQN can’t 
¤ Continuous actions: Much easier to model continuous action space 

¨ Cons vs DQN: 
¤ Data: Sample inefficient (needs more data) 
¤ Stability: Less stable during training process
¤ Poor credit assignment to (state, action) pairs for delayed rewards 

¨ Problem with REINFORCE: 
¤ Calculating the reward at the end, means all the actions will be averaged as good because the total 

reward was high 

Deep Reinforcement Learning
Policy Gradient
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¨ Policy gradient
¤ More refined methods: 

n Basic idea in on-policy optimization
n Avoid taking bad actions that collapse the training performance. 

n TRPO
n PPO

Deep Reinforcement Learning
Policy Gradient
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Deep Reinforcement Learning

¨ PPO
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Taxonomy



MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

104

¨ Can we combine the best of policy-based and 
value-based?

¨ Yes. Advantage Actor-Critic (A2C)
¨ Combine DQN (value-based) and REINFORCE 

(policy-based) 
¤ Two neural networks (Actor and Critic):

n Actor is policy-based: Samples the action from a policy
n Critic is value-based: Measures how good the chosen 

action is 
n Δ𝜃 = 𝛼∇]𝑙𝑜𝑔𝜋(𝑆(, 𝐴(; 𝜃) 𝑅(
n Δ𝜃 = 𝛼∇]𝑙𝑜𝑔𝜋 𝑆(, 𝐴(; 𝜃 𝑄(𝑆(, 𝐴()

¤ Update at each time step - temporal difference 
(TD) learning 

Deep Reinforcement Learning
A2C

Traditional Policy Update

New Policy Update
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¨ Actor-critic PPO

DRL for Quadrutor Control

Position
Orientation
Linear Vel.

Angular Vel.
Motor PWM signals Value Estimation



MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

106

¨ Actor-critic PPO

DRL for Quadrutor Control

Reward Signal

Where

Quadrotor is bounded to a 3.2m radius sphere
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¨ Actor-critic PPO

DRL for Quadrutor Control
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DRL for Quadrutor Control

109
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Taxonomy
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The GO game



MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

113Deep Reinforcement Learning: Model-based
The GO game

¨ Video
¤ Model-based Marta
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¨ It does not always start from scratch
¨ Uses "low cost" simulation experience to learn real world 

skills
¨ Allows the agent to act effectively in an environment that 

has not seen before
¤ TL: Using the experience of a set of tasks for faster learning 

and/or better performance in a new task

DRL: transfer learning
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¨ A broad notion of "task":
¤ varied objectives (reward)
¤ robots (can affect state, action and dynamics)
¤ varied environments (can affect observation space, dynamics, 

reward)

¨ Often, we will make assumptions about what will change 
between tasks

DRL: transfer learning
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¨ Other approaches (with a kind of supervision)
¤ Imitation Learning

n Humans are able to do this early on
n 8 months - mimics simple actions and expressions
n 18 months - imitates delayed actions with multiple steps
n 36 months - mimics actions with multiple steps
n Imitation of the result of the action
n Inferring intentions

¤ Inverse RL
n Behavior examples
n Infer the reinforcement
n Usually uses information from the expert, but, in the limit, could learn from a 

flawed system
n Requires a similar body scheme

¤ Prediction
n There is a reference model

Deep Reinforcement Learning
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¨ Model an MDP and an AR algorithm appropriate to the 
problem of a robot that has two IR sensors, which returns 
readings of {0,1} m and 4 Sonars, which returns readings 
of {0,5} m. The robot aims to walk as much as possible in 
an environment without hitting the walls. Possible actions 
are:
¤ Walk forward
¤ Walk backwards
¤ Rotate 10o

¤ Rotate -10o

Exercise
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¨ Non-Convergence x Convergence

Exercise



MC906 - Esther Luna Colombini – Instituto de Computação (Unicamp)

120

12
0
Lecture 17 ¨ Reading:

¤ RUSSELL, S. NORVIG, P. Artificial Intelligence. 
3a edição. Chapter 21.

¤ BARTO, A., SUTTON, R. Reinforcement 
Learning: An Introduction. Second Edition. 
Freely Available at: 
https://drive.google.com/file/d/1xeUDVGW
GUUv1-
ccUMAZHJLej2C7aAFWY/view?usp=sharing

Activities
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1
Lecture 17

¨ BARTO, A., SUTTON, R. Reinforcement Learning: An 
Introduction. Second Edition.

¨ MURPHY, R. R. Introduction to AI robotics. MIT Press, 
2002.

¨ Lex Fridman, MIT Deep Learning Course, MIT, 2019.
¨ DUDEK, G.; JENKIN, M. Computational Principles of

mobile robotics. Cambridge Press, 2000.
¨ ROMERO, R. A. F.; PRESTES, E.; OSÓRIO, F.; WOLF, D. 

(Orgs) Robótica móvel. LTC, 2014.
¨ BROOKS, R. Intelligence without representation. 

Artificial Intelligence, 47:139-159, 1991.
¨ RUSSEL, S. NORVIG, P. Artificial Intelligence: a 

modern approach. Prentice Hall, 2002.
¨ BRATKO, I. PROLOG: programming for artificial 

intelligence. Addison Wesley, 2nd edition, 1990.
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