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Today’s Agenda

● Recurrent Neural Networks

○ An Intuitive Explanation

○ A More Formal Explanation

○ Vanilla vs LSTMs
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RNNs: 
A More Formal Explanation
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Recurrent Neural Networks: Process Sequences

one to one   one to many    many to one             many to many many to many

Video classification 
on frame level

Machine Translation
seq. words ⇒ seq. of words

Sentiment Classification
seq. words ⇒ sentiment

Image Captioning
image ⇒ seq. words

Vanilla Neural 
Networks
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Recurrent Neural Network

x

RNN
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Recurrent Neural Network

x

y

RNN

usually want to
predict a vector at
some time steps
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Recurrent Neural Network

x

y

RNN

We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state
some function
with parameters W

input vector at
some time step
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Recurrent Neural Network

x

y

RNN

We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set of 
parameters are used at every time step.
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Recurrent Neural Network

x

y

RNN

The state consists of a single “hidden” vector h:
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x1

fW

RNN: Computational Graph

h1h0
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x1

fW

RNN: Computational Graph

h1h0

x2

fW h2

x3

fW h3 ... hT

W

Re-use the same weight matrix at every time-step
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RNN: Computational Graph

h1h0

x2

fW h2

y1

x3

fW h3

y2

... hT

yTy3

W
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x3

fW h3
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... hT

yTy3
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RNN: One to Many
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Character-level 
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Loss
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Loss

Forward through 
entire sequence to 
compute loss, then 
backward through 
entire sequence to 
compute gradient.
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Loss Truncated backpropagation 
through time (TBTT)

Run forward and backward 
through chunks of the sequence 
instead of whole sequence
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Loss
Carry hidden states forward in time 
forever, but only backpropagate for 
some smaller number of steps
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Loss
Carry hidden states forward in time 
forever, but only backpropagate for 
some smaller number of steps
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https://gist.github.com/karpathy/d4dee566867f8291f086

Min-char-rnn.py
112 lines of Python
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x

y

RNN
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At first:
train more

train more

train more
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Latex source
35



36



37



 Proof. Omitted.
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Generated code
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Training: “Maior dúvida da aula” 27/october/2017
https://github.com/llSourcell/recurrent_neural_network
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Training: “Maior dúvida da aula” 27/october/2017
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei, CVPR 2015
Show and Tell: A Neural Image Caption Generator, Vinyals et al., CVPR 2015
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Convolutional 
Neural Network

Recurrent
Neural 
Network

Image Captioning
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test image
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test image
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test image
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test image

x0

<START>
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test image

x0

y0

h0

<START>

Wih

before:
h = tanh(Wxh*x + Whh*h)

now:
h = tanh(Wxh*x + Whh*h + Wih*v)
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test image

x0

y0

h0

<START>

sample

teddy
50



test image

x0

y0

h0

<START>

sample

x1

teddy

y1

h1
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test image

x0

y0

h0

<START>

x1

teddy

y1

h1

bear

y2

h2

sample 
<END> token
=> finish
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No errors Minor errors Somewhat related

A white teddy bear 
sitting in the grass

A man in baseball 
uniform throwing a ball

A woman is holding a 
cat in her hand

A man riding a wave on 
top of a surfboard

A cat sitting on a
suitcase on the floor

A woman standing on a 
beach holding a surfboard

Image Captioning
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Today’s Agenda

● Recurrent Neural Networks

○ An Intuitive Explanation

○ A More Formal Explanation

○ Vanilla vs LSTMs
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Vanilla RNN: Gradient Flow
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Vanilla RNN: Gradient Flow
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Vanilla RNN: Gradient Flow

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN: Gradient Flow

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: 
Scale gradient if its norm is too big.
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Vanilla RNN: Gradient Flow

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN architecture
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Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation, 1997 60



Long Short Term Memory (LSTM)

LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation, 1997

i : input gate, whether to write to cell 
f : forget gate, whether to erase cell 
o : output gate, how much to reveal cell
g : gate gate, how much to write to cell
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Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM)

63



Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM)

“forget gate layer”
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Long Short Term Memory (LSTM)

“input gate layer” decides which values we’ll update
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Long Short Term Memory (LSTM)
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Long Short Term Memory (LSTM)
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LSTM Variations
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation, 1997

Uninterrupted gradient flow!
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Ren et al., “Exploring Models and Data for Image Question Answering” 71



http://www.deeplearningbook.org/contents/rnn.html 72

http://www.deeplearningbook.org/contents/rnn.html


http://colah.github.io/posts/2015-08-Understanding-LSTMs
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http://karpathy.github.io/2015/05/21/rnn-effectiveness
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https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
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https://medium.com/swlh/attention-please-forget-about-recurrent-neural-networks-8d8c9047e117
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