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Today’s Agenda

e Neural Networks vs. Convolutional Networks
e What is a convolution?
e C(Convolutional Neural Networks

o Convolution Layer

o Pooling Layer

o Fully-connected Layer
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What is a Convolution?

Convolution is the process of adding each element
of the image to its local neighbors, weighted by
the kernel.



What is a Convolution?
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What is a Convolution?
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What is a Convolution?
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5 x 5 matrix 0*1 +0*0 + 1*1 =4
(image)



What is a Convolution?
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5 x 5 matrix 1*1 + 0*0 + 0*1 = 4
(image)



What is a Convolution?

Edge
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What is a Convolution?

Emboss
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What is a Convolution?
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Edge Sharpen Box blur Gaussian blur

Detection 3x3
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Today’s Agenda

e Neural Networks vs. Convolutional Networks
e Whatis a convolution?
e Convolutional Neural Networks

o Convolution Layer

o Pooling Layer

o Fully-connected Layer
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Neural NetworRks
(CNNs)
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“Gradient-based learning applied to document recognition”,
1998 http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



l fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ivati

RelLU activation
Convolution Convolution 1 /—M

(5 x 5) kernel (5 x 5) kernel
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(28 x 28 x 1) (24 x24 x nl) (12x12 xnl) (8 x8xn2) (4x4xn2)

'/ OUTPUT

n3 units

There are a few distinct types of layers (e.g., CONV/POOL/FC
are by far the most popular).
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure
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Convolution Layer

32 x 32 x 3 image = preserve spatial structure

'6000000000 Convolve the filter with the image i.e.
8888888888 “slide over the image spatially, computing
0000088888 dot products
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32 1QOO0000000 |
olofolololetetels |
§§§§§§§§§ 5x 5 x 3 filter M)
--3 |

W
N
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure

'6000000000 Convolve the filter with the image i.e.
8888888888 “slide over the image spatially, computing
0000088888 dot products
Q0000
32 1IQO00Q000000Q |
ololololelelolole |
§§§§§§§§§ 5x 5 x 3 filter M)
_-3 --
32

Filters always extend the full
depth of the input volume 19



Convuolution Layer

32 x 32 x 3 image = preserve spatial structure

5 x 5 x 3 filter [>
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure

1 number:

5*5*3 = /5-dimensional
dot product + bias)

wix + b
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure

<8) ) 1 number:
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure

——————
I

1 number:

S

5*6*3 = /5-dimensional

=z dot product + bias)

wix + b

00000

That region in the input image is called the

local receptive field for the hidden neuron.




Convuolution Layer

32 x 32 x 3 image = preserve spatial structure
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Convolution Layer

32 x 32 x 3 image = preserve spatial structure

= activation map
8288383838 |
§§§§§OOOOO Convolye (shde) over
0000088888 all spatial locations
32 1IQO000Q00000 | > 28
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"3 28
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Convolution Layer

32 x 32 x 3 image = preserve spatial structure

= activation maps
0000000000 . |
8888888888 Convolve (slide) over
QOQOOO - :
0000088888 all spatial locations
32 IQOOO00Q0Q0Q00 | > 28
QOO0QQQ0QO
QQQQQQQQQ 32 x 32 x 3 image
§§§§§§§§§ 5% 5 x 3 filter I
g 28
32 (considering a second filter)
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Convuolution Layer

32 x 32 x 3 image = preserve spatial structure

Q000000000 |
§§§§§88888 Convolye (shde} over
0000088888 all spatial locations
Lyl elolololololololo]e. —

olololololololole)

QQQQQQQQQ 32 x 32 x 3 image

§§§§§§§§§ I 5 x 5 x 3 filter

3
32

If we had 65 x5 x 3 filters ...



Convuolution Layer

32 x 32 x 3 image = preserve spatial structure
6 activation maps

8838838838 . =

§§§§§OOOOO Convolye (shde) over

0000088888 all spatial locations

32 1IQQOQ0QQQQQ | > 28
QQQQQQ0QQ0Q
QQRQQQQQQ 32 x 32 x 3 image
§§§§§§§§§ 5 x 5 x 3 filter s
"3 28
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If we had 65 x5 x 3 filters ...
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http://cs231n.github.io/c
onvolutional-networks
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Credit: Martin Gorner, @martin_gorner (twitter)
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Convolutional Networks

Sequence of Convolutional Layers, interspersed with activation functions.

_>

CONV. -

RelLU
32x32x%x3 e.g. 6 28 x 28 x 6

5x5x3
filters

_>

CONV.
RelLU
e.g. 10
5x5x%x6
filters

H CONV.
RelLU

24 x 24 x 10
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A Closer Look at Spatial Dimensions

32
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A Closer Look at Spatial Dimensions

is

/ x 7 input (spatially)
assume 3 x 3 filter
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A Closer Look at Spatial Dimensions

]

/ x 7 input (spatially)
assume 3 x 3 filter
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A Closer Look at Spatial Dimensions

]

/ x 7 input (spatially)
assume 3 x 3 filter
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A Closer Look at Spatial Dimensions

]

/ x 7 input (spatially)
assume 3 x 3 filter
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A Closer Look at Spatial Dimensions

ui

/ x 7 input (spatially)
assume 3 x 3 filter

38



A Closer Look at Spatial Dimensions

[

/ x 7 input (spatially)
assume 3 x 3 filter
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A Closer Look at Spatial Dimensions

H:

/ x 7 input (spatially)
assume 3 x 3 filter

= 5 x 5 output
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A Closer Look at Spatial Dimensions

is

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 2
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A Closer Look at Spatial Dimensions

]

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 2
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A Closer Look at Spatial Dimensions

ui

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 2
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A Closer Look at Spatial Dimensions

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 2
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A Closer Look at Spatial Dimensions

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 2

:D = 3 x 3 output
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A Closer Look at Spatial Dimensions

is

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 3?
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A Closer Look at Spatial Dimensions

is

/ x 7 input (spatially)
assume 3 x 3 filter
applied with stride 3?

Doesn't fit!
cannot apply 3 x 3 filter on
7 x 7 input with stride 3.
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A Closer Look at Spatial Dimensions

Output size:
e (N - F)/stride + 1
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A Closer Look at Spatial Dimensions

Output size:
e (N - F)/stride + 1

N - eg. N=/,F=3:
stridel = (7-3)/1+1=5
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A Closer Look at Spatial Dimensions

Output size:
e (N - F)/stride + 1

N - eg. N=/,F=3:
stridel = (7-3)/1+1=5
stride2 = (7-3)/2+1=3
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A Closer Look at Spatial Dimensions

Output size:
e (N - F)/stride + 1

N = eg. N=7,F=3:

stridel = (7-3)/1+1=5
stride2 = (7-3)/2+1=3
stride3 = (7 -3)/3+1=2.33
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In Practice: Common to zero pad the border

Oj]o0|Jo0fO0OfO0O]J]O0O]J0]10}|O
0 0
0 0
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0 0
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0 0
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In Practice: Common to zero pad the border

0 0 / x /7 input,
3 x 3 filter applied

Z Z with stride 1 with pad 1
0 0 What is the output?

0 0

0 0

0 0

ololo|lo|lo|lo|o|o]o
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In Practice: Common to zero pad the border

0 0 / x /7 input,
3 x 3 filter applied

Z Z with stride 1 with pad 1
0 0 What is the output?

0 0 /7 x 7 output

0 0

0 0

ololo|lo|lo|lo|o|o]o
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In Practice: Common to zero pad the border

0 0 In general, common to see CONV

0 0 layers with stride 1, filters of size

0 o | F xF, and zero-padding with (F-1)/2
0 0 (will preserve size spatially).

0 °| e.g.F=3= zeropad with 1

° 0 F =5 = zero pad with 2

0 0

F =7 = zero pad with 3
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https://arxiv.org/abs/1811.11718

arXiv:1811.11718v1 [cs.CV] 28 Nov 2018

Partial Convolution based Padding

Guilin Liu  KevinJ. Shih  Ting-Chun Wang  Fitsum A. Reda

Karan Sapra  Zhiding Yu

Andrew Tao  Bryan Catanzaro

NVIDIA

{guilinl, kshih, tingchunw, freda, ksapra, zhidingy, atao, bcatanzaro}@nvidia.com

Abstract

In this paper, we present a simple yet effective padding
scheme that can be used as a drop-in module for existing
convolutional neural networks. We call it partial convo-
lution based padding, with the intuition that the padded
region can be treated as holes and the original input as
non-holes. Specifically, during the convolution operation,
the convolution results are re-weighted near image bor-
ders based on the ratios between the padded area and the
convolution sliding window area. Extensive experiments
with various deep network models on ImageNet classifica-
tion and semantic segmentation demonstrate that the pro-
posed padding scheme consistently outperforms standard
zero padding with better accuracy. The code is available
at https://github.com/NVIDIA/partialconv

1. Introduction

Convolutional operation often requires padding when
part of the filter extends beyond the input image or fea-
ture map. Standard approaches include zero padding (ex-
tend with zeros), reflection padding (reflect the input val-
ues across the border axis) and replication padding (extend
by replicating the values along borders). Among them,
the most commonly used scheme is zero padding, as was
adopted by [ 1 7]. Besides its simplicity, zero padding is also
computationally more efficient than the other two schemes.
Yet, there is no consensus on which padding scheme is the
best yet. In this work, we conduct extensive experiments on
the ImageNet classification task using these three padding

Partial Conv Based Padding vs. Zero Padding

f0zero Padding |
78 | [l 8 Partial Conv Based Padding

Imagenet Top-1 Accuracy

"l H

vggl6BN vggl9BN resnet50 resnetl01 resnetl52
Architecture

Figure 1. Comparison of the ImageNet classification top-1 accu-
racy with center crop between partial convolution based padding
(in red) and zero padding (in blue) on VGG and ResNet networks.
vggl6BN and vggl9BN represent the vgg 16 network and vggl9
network with batch normalization layers.

adding extra unrelated data to the input. Reflection and
replication padding attempt to pad with plausible data val-
ues by re-using what is along the borders of the input. These
two types of padding lead to unrealistic image patterns since
only some parts of the input are replicated. Moreover, for
all these three padding schemes, the added or replicated fea-



Shrinking too fast is not good, doesn’t work well.

32 > 28 > 24 — ...

_>

CONV.
RelLU
32x32x3 e.g. 6
5x5x%x3
filters

28 x 28 x 6

_>

CONV.
RelLU
e.g. 10
5x5x%x6
filters

H CONV.
RelLU

24 x 24 x 10
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Number of Parameters

Input volume: 32 x 32 x 3
10 5 x b filters with stride 1, pad 2

Number of parameters in this layer?
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Number of Parameters

Input volume: 32 x32 x 3
5 x 5 filters with stride 1, pad 2

Number of parameters in this layer?
Each filter has 5*5*3 + 1 = 76 parameters (+1 for bias)
=>76*10 =760

59



Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2

Vs
“Multi-Scale Context Aggregation by Dilated Convolutions”, ICLR 2016, https://arxiv.ora/abs/1511.07 123



https://arxiv.org/abs/1511.07122

Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Dilated Convolution

/ x 7 input (spatially)
assume 3 x 3 filter
with stride 1 with dilation 2
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Standard Convolution

Dilated Convolution
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Convolutions

“A Guide to Convolution Arithmetic for Deep Learning”
https://arxiv.ora/pdf/1603.07285 (Janeiro, 2018)
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https://arxiv.org/pdf/1603.07285

l fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ivati

RelLU activation
Convolution Convolution 1 /—M

(5 x 5) kernel (5 x 5) kernel

. . Max-Pooling - ; Max-Pooling
valid padding (2x2) valid padding (2x2)

/—M/-M

INPUT nl channels nl channels n2 channels n2 channels

(28 x 28 x 1) (24 x24 x nl) (12x12 xnl) (8 x8xn2) (4x4xn2)

'/ OUTPUT

n3 units

There are a few distinct types of layers (e.g., CONV/POOL/FC
are by far the most popular).
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Pooling Layer

e Makes the representations smaller and more manageable
e QOperates over each activation map independently
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Pooling Layer

e Makes the representations smaller and more manageable
e QOperates over each activation map independently

Max pooling with 2 x 2
filters and stride 2

-

=l WO -
N TN O |-
W = [ NN
| O | 00| >
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Pooling Layer

e Makes the representations smaller and more manageable
e QOperates over each activation map independently

Max pooling with 2 x 2

filters and stride 2 6
>

_ WOl
N T NN|TO) | -
W = [ NN
| O | 00| >




Pooling Layer

e Makes the representations smaller and more manageable
e QOperates over each activation map independently

Max pooling with 2 x 2

filters and stride 2 6| 8
>
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Pooling Layer

e Makes the representations smaller and more manageable
e QOperates over each activation map independently

! L Max pooling with 2 x 2

5161|178 filters and stride 2 6| 8
>

31210 3
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Pooling Layer

e Makes the representations smaller and more manageable
e QOperates over each activation map independently

Max pooling with 2 x 2

filters and stride 2
>

78



l fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ivati

RelLU activation
Convolution Convolution 1 /—M

(5 x 5) kernel (5 x 5) kernel

. . Max-Pooling - ; Max-Pooling
valid padding (2x2) valid padding (2x2)

/—M/-M

INPUT nl channels nl channels n2 channels n2 channels

(28 x 28 x 1) (24 x24 x nl) (12x12 xnl) (8 x8xn2) (4x4xn2)

'/ OUTPUT

n3 units

There are a few distinct types of layers (e.g., CONV/POOL/FC
are by far the most popular).
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Fully Connected Layer

e Contains neurons that connect to the entire input volume, as in
ordinary Neural Networks
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http://scs.ryerson.ca/~aharley/vis/conv/flat.html
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Visualizing a CNN trained on Handwritten Digits

e |nputimage: 1024 pixels (32 x 32 image)
e CONV 1 (+RELU). 65 x5 (stride 1) filters
e POOL 1: 2 x 2 max pooling (with stride 2)
e CONV 2 (+ RELU): 16 5 x 5 (stride 1) filters
e POOL 2: 2 x 2 max pooling (with stride 2)
e 2 FClayers:

o 120 neurons in the first FC layer

o 100 neurons in the second FC layer

e Output layer: 10 neurons in the third FC
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http://neuralnetworksanddeeplearning.com/chap6.html#final_conv

& (@ neuralnetworksanddeeplearning.com/chap6.html#final conv

Convolutional neural networks in
practice

We've now seen the core ideas behind convolutional neural
networks. Let's look at how they work in practice, by implementing
some convolutional networks, and applying them to the MNIST
digit classification problem. The program we'll use to do this is
called network3.py, and it's an improved version of the programs
network.py and network2.py developed in earlier chapters*. If you
wish to follow along, the code is available on GitHub. Note that
we'll work through the code for network3. py itself in the next
section. In this section, we'll use network3.py as a library to build

convolutional networks.

El| ¢ ||Q Search

*Note also that network3. py incorporates ideas
from the Theano library's documentation on
convolutional neural nets (notably the
implementation of LeNet-5), from Misha Denil's
implementation of dropout, and from Chris

Olah.
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“Deep Learning”, Goodfellow & Bengio &
Courville, 2016.

http://www.deeplearningbook.org/contents/convnets.html

Chapter 9

Convolutional Networks

Convolutional networks (1..C i, 17:0), also known as convolutional neural
networks. or CNNs, are a specialized kind of neural network for processing data
that has a known grid-like topology. Examples include time-series data, which can
be thought of as a 1-D grid taking samples at regular time intervals, and image data,
which can be thought of as a 2-D grid of pixels. Convolutional networks haw been
tremendously successful in practical applications. The name “convolutional neural
network” indicates that the network employs a mathematical operation called
convolution. Convolution is a specialized kind of linear operation. Convelutional
networks are simply neural networks that use convolution in place of general matriz
multiplication i at least one of their layers.

In this chapter, we first describe what convolution is. Next, we explain the
motivation behind using convolution in a neural network. We then describe an
operation called pooling, which almast all convolutional networks employ. Usually,
the operation used in a conwlutional neural network does not correspond precisely
to the definition of convolution as used in other fields, such as engineering or
pure mathematics. We describe several variants on the convolution function that
are widely used in practice for neural networks. We also show how convolution
may be applied to many kinds of data, with different numbers of dimensions. We
then discuss means of making convolution more efficient. Convolutional networks
stand out as an example of neuroscientific principles influencing deep learning.
We discuss these neuroscientific principles, then conclude with comments about
the role convolutional networks have played in the history of deep learning. One
topic this chapter does not address is how to choose the architecture of your
convolutional network. The goal of this chapter is to describe the kinds of tools
that convolutional networks provide, while chapter 11 describes general guidelines
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http://www.deeplearningbook.org/contents/convnets.html

“A friendly introduction to Convolutional Neural Networks and
Image Recognition” https://youtu.be/2-0l7ZBOMmU

Convolutional Neural Network
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1 -1 | -1

1N -1 | -1

-1 [ -1 —) =
11 8 \

A friendly introduction to Convolutional Neural Networks and Image Recognition 85
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