Conuolutional Neural Networks Machine Learning

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, October 14, 2019

Today's Agenda

- Neural Networks vs. Convolutional Networks
- What is a convolution?
- Convolutional Neural Networks
- Convolution Layer
- Pooling Layer
- Fully-connected Layer

Neural Networks

$32 \times 32 \times 3$ image \Rightarrow stretch to 3072×1

$1 \square \underset{$| $\boldsymbol{\Theta} x$ |
| :---: |
| weights |$}{\square} 1 \underbrace{\square}_{3072}$

Neural Networks

Neural Networks

0	0	3	2
1	1	0	1
4	2	1	2
0	2	1	5

0	
	0
	3
	1
	1
	1

What is a Convolution?

Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel.

What is a Convolution?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

5×5 matrix (image)

What is a Convolution?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

5×5 matrix (image)

What is a Convolution?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

3×3 filter

$$
\begin{aligned}
& 1^{*} 1+1^{*} 0+1^{*} 1+ \\
& 0^{*} 0+1^{*} 1+1^{*} 0+ \\
& 0^{*} 1+0^{*} 0+1^{*} 1=4
\end{aligned}
$$

What is a Convolution?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

3×3 filter

4	3	4
2	4	3
2	3	4

5×5 matrix (image)

$$
\begin{aligned}
& 1^{*} 1+1^{*} 0+1^{*} 1+ \\
& 1^{*} 0+1^{*} 1+0^{*} 0+ \\
& 1^{*} 1+0^{*} 0+0^{*} 1=4
\end{aligned}
$$

What is a Convolution?

What is a Convolution?

What is a Convolution?

-1	-1	-1
-1	8	-1
-1	-1	-1

Edge
Detection

0	-1	0	
-1	5	-1	
0	-1	0	
Sharpen			

$1 / 9$| 1 | 1 | 1 | |
| :--- | :--- | :--- | :---: |
| 1 | 1 | 1 | |
| 1 | 1 | 1 | |
| Box blur | | | |

$1 / 16$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

Gaussian blur 3×3

Today's Agenda

- Neural Networks vs. Convolutional Networks
- What is a convolution?
- Convolutional Neural Networks
- Convolution Layer
- Pooling Layer
- Fully-connected Layer

Conuolutional Neural Networks (CNNs)

"Gradient-based learning applied to document recognition", 1998 http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

There are a few distinct types of layers (e.g., CONV/POOL/FC are by far the most popular).

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

32

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"
$5 \times 5 \times 3$ filter

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"
$5 \times 5 \times 3$ filter

Filters always extend the full depth of the input volume

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image \Rightarrow preserve spatial structure
6 activation maps

http://cs231n.github.io/c onvolutional-networks

Filter W1 (3x3x3) w1 [:,:,0]
$\begin{array}{llll}0 & 1 & -1\end{array}$
$\begin{array}{lll}0 & -1 & 0\end{array}$

0	-1	1

w1 [:,: :1]

-1	0	0
1	-1	0
1	-1	0

$\begin{array}{lll}1 & -1 & 0\end{array}$
w1[:,:,2]

-1	1	-1
0	-1	-1

100

Bias b1 (1x1x1)
b1[:,:,0]
0

Conuolutional Networks

Sequence of Convolutional Layers, interspersed with activation functions.

A Closer Look at Spatial Dimensions

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter
$\Rightarrow 5 \times 5$ output

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 2

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 2

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 2

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 2

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 2
$\Rightarrow 3 \times 3$ output

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 3?

A Closer Look at Spatial Dimensions

7×7 input (spatially) assume 3×3 filter applied with stride 3?

Doesn't fit!

cannot apply 3×3 filter on 7×7 input with stride 3 .

A Closer Look at Spatial Dimensions

Output size:
$(N-F) /$ stride +1

A Closer Look at Spatial Dimensions

Output size:
($\mathrm{N}-\mathrm{F}$) / stride +1
e.g. $N=7, F=3$: stride $1 \Rightarrow(7-3) / 1+1=5$

A Closer Look at Spatial Dimensions

Output size:
($\mathrm{N}-\mathrm{F}$) / stride +1
e.g. $N=7, F=3$:
stride $1 \Rightarrow(7-3) / 1+1=5$
stride $2 \Rightarrow(7-3) / 2+1=3$

A Closer Look at Spatial Dimensions

Output size:
($\mathrm{N}-\mathrm{F}$) / stride +1
e.g. $N=7, F=3$:
stride $1 \Rightarrow(7-3) / 1+1=5$
stride $2 \Rightarrow(7-3) / 2+1=3$
stride $3 \Rightarrow(7-3) / 3+1=2.33$

In Practice: Common to zero pad the border

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

In Practice: Common to zero pad the border

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

7×7 input,
3×3 filter applied with stride 1 with pad 1

What is the output?

In Practice: Common to zero pad the border

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

7×7 input,
3×3 filter applied with stride 1 with pad 1

What is the output?
7×7 output

In Practice: Common to zero pad the border

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

In general, common to see CONV layers with stride 1, filters of size
$F \times F$, and zero-padding with ($F-1$)/2
(will preserve size spatially).
e.g. $F=3 \Rightarrow$ zero pad with 1
$F=5 \Rightarrow$ zero pad with 2
$F=7 \Rightarrow$ zero pad with 3

Partial Convolution based Padding

Guilin Liu Kevin J. Shih Ting-Chun Wang Fitsum A. Reda Karan Sapra Zhiding Yu Andrew Tao Bryan Catanzaro NVIDIA
\{guilinl, kshih, tingchunw, freda, ksapra, zhidingy, atao, bcatanzaro\}@nvidia.com

Abstract

In this paper, we present a simple yet effective padding scheme that can be used as a drop-in module for existing convolutional neural networks. We call it partial convolution based padding, with the intuition that the padded region can be treated as holes and the original input as non-holes. Specifically, during the convolution operation, the convolution results are re-weighted near image borders based on the ratios between the padded area and the convolution sliding window area. Extensive experiments with various deep network models on ImageNet classifica tion and semantic segmentation demonstrate that the pro posed padding scheme consistently outperforms standard zero padding with better accuracy. The code is available at https://github.com/NVIDIA/partialconv

1. Introduction

Convolutional operation often requires padding when part of the filter extends beyond the input image or feature map. Standard approaches include zero padding (extend with zeros), reflection padding (reflect the input values across the border axis) and replication padding (extend by replicating the values along borders). Among them, the most commonly used scheme is zero padding, as was adopted by [13]. Besides its simplicity, zero padding is also computationally more efficient than the other two schemes Yet, there is no consensus on which padding scheme is the best yet. In this work, we conduct extensive experiments on the ImageNet classification task using these three padding

Partial Conv Based Padding vs. Zero Padding

vgg16BN vgg19BN resnet50 resnet101 resnet 152 Architecture
Figure 1. Comparison of the ImageNet classification top-1 accuracy with center crop between partial convolution based padding (in red) and zero padding (in blue) on VGG and ResNet networks. vgg16BN and vgg19BN represent the vgg 16 network and vgg 19 network with batch normalization layers
adding extra unrelated data to the input. Reflection and replication padding attempt to pad with plausible data values by re-using what is along the borders of the input. These two types of padding lead to unrealistic image patterns since only some parts of the input are replicated. Moreover, for all these three padding schemes, the added or replicated fea-

Shrinking too fast is not good, doesn't work well. $32 \rightarrow 28 \rightarrow 24 \rightarrow$...

$32 \times 32 \times 3$ CONV.
ReLU
e.g. 6
$5 \times 5 \times 3$ filters

e.g. 10
 ReLU

Number of Parameters

Input volume: $32 \times 32 \times 3$
105×5 filters with stride 1 , pad 2
Number of parameters in this layer?

Number of Parameters

Input volume: $32 \times 32 \times 3$
105×5 filters with stride 1 , pad 2
Number of parameters in this layer?
Each filter has 5*5*3 $+1=76$ parameters (+1 for bias)
=> $76 * 10=760$

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2
"Multi-Scale Context Aggregation by Dilated Convolutions", ICLR 2016, https://arxiv.org/abs/1511.07122

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Dilated Convolution

7×7 input (spatially)
assume 3×3 filter
with stride 1 with dilation 2

Standard Convolution

Dilated Convolution

Convolutions

"A Guide to Convolution Arithmetic for Deep Learning" https://arxiv.org/pdf/1603.07285 (Janeiro, 2018)

There are a few distinct types of layers (e.g., CONV/POOL/FC are by far the most popular).

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2
\qquad

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2

There are a few distinct types of layers (e.g., CONV/POOL/FC are by far the most popular).

Fully Connected Layer

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Draw your number here

First guess: 3
Second guess: 7
Downsampled drawing:

Layer visibility
Input layer
Convolution layer 1

Show
Show

0123456789

\qquad

Visualizing a CNN trained on Handwritten Digits

- Input image: 1024 pixels (32×32 image)
- CONV 1 (+ RELU): 65×5 (stride 1) filters
- POOL 1: 2×2 max pooling (with stride 2)
- CONV 2 (+ RELU): 165×5 (stride 1) filters
- POOL 2: 2×2 max pooling (with stride 2)
- 2 FC layers:
- 120 neurons in the first FC layer
- 100 neurons in the second FC layer
- Output layer: 10 neurons in the third FC

http://neuralnetworksanddeeplearning.com/chap6.html\#final_conv

Convolutional neural networks in practice

We've now seen the core ideas behind convolutional neural networks. Let's look at how they work in practice, by implementing some convolutional networks, and applying them to the MNIST digit classification problem. The program we'll use to do this is called network3.py, and it's an improved version of the programs network. py and network2. py developed in earlier chapters*. If you wish to follow along, the code is available on GitHub. Note that we'll work through the code for network3. py itself in the next section. In this section, we'll use network3. py as a library to build

"Deep Learning", Goodfellow \& Bengio \& Courville, 2016.
http://www.deeplearningbook.org/contents/convnets.html

Chapter 9

Convolutional Networks

Convolutional networks (LeCum, 1989), also known as convolutional neural networks, or CNNs, are a specialized kind of neural network for processing data that has a known grid-like topology. Examples include time-series data, which can be thought of as a 1-D grid taking samples at regular time intervals, and image data which can be thought of as a 2-D grid of pixels. Convolutional networks have been tremendously successful in practical applications. The name "convolutional neural network" indicates that the network employs a mathematical operation called convolution. Convolution is a specialized kind of linear operation. Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers.

In this chapter, we first describe what convolution is. Next, we explain the motivation behind using convolution in a neural network. We then describe an operation called pooling, which almost all convolutional networks employ. Usually the operation used in a convolutional neural network does not correspond precisely to the definition of convolution as used in other fields, such as engineering or pure mathematics. We describe several variants on the convolution function that are widely used in practice for neural networks. We also show how convolution nay be applied to many kinds of data, with different numbers of dimensions. We then discuss means of making convolution more efficient. Convolutional networks stand out as an example of neuroscientific principles influencing deep learning We discuss these neuroscientific principles, then conclude with comments about the role convolutional net works have played in the history of deep learning. One topic this chapter does not address is how to choose the architecture of your convolutional network. The goal of this chapter is to describe the kinds of toos that convolutional networks provide, while chapter 11 describes general guidelines
"A friendly introduction to Convolutional Neural Networks and Image Recognition" https://youtu.be/2-Ol7ZBOMmU

Convolutional Neural Network

1	-1	1
-1	1	-1
1	-1	1

-1	1	-1
1	-1	1
-1	1	-1

-1	-1	1
-1	1	-1
1	-1	-1

Pooling Layer

1	-1	-1
-1	1	-1
-1	-1	1

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 11 \& 13

Machine Learning Courses

- https://www.coursera.org/learn/neural-networks
- "The 3 popular courses on Deep Learning": https://medium.com/towards-data-science/the-3-popular-courses-for-deeplearning -ai-ac37d4433bd

