


https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab



PCA Algorithm
By Singular Value Decomposition



Data Preprocessing

Training set: x(1), x(2), ..., x(m) 

Preprocessing (feature scaling/mean normalization): 

Replace each       with            .  

If different features on different scales, scale features to have 
comparable range of values.

Center the data



Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/
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Compute “covariance matrix”: 
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PCA Algorithm

Reduce data from n-dimensions to k-dimensions 

Compute “covariance matrix”: 

Compute “eigenvectors” of matrix 𝚺:

   [U, S, V] =  svd(sigma) Singular Value Decomposition

n ⨉ n matrix

eigenvalues



PCA Algorithm

From [U, S, V] = svd(sigma), we get:
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PCA Algorithm

From [U, S, V] = svd(sigma), we get:

                                           ∈ ℝnxn  

    k

    
z =     x

T

x ∈ ℝn → z ∈ ℝk 

k ⨉ n          n⨉1 



PCA Algorithm

After mean normalization and optionally feature scaling:

[U, S, V] =  svd(sigma)

z = (Ureduce)
T x x



PCA Algorithm
By Eigen Decomposition



PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors 

5. Project data to k eigenvectors 

   



Using PCA (Iris Dataset)

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)
2. Iris-versicolor (n=50)
3. Iris-virginica (n=50)

The four features of the Iris dataset:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
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Today’s Agenda

● Linear Discriminant Analysis

○ PCA vs LDA

○ LDA: Simple Example

○ LDA Algorithm

○ LDA Step by Step



Linear Discriminant Analysis



Linear Discriminant Analysis (LDA)

● LDA pick a new dimension that gives:

○ Maximum separation between means of projected classes

○ Minimum variance within each projected class

● Solution: eigenvectors based on between-class and 
within-class covariance matrix



LDA: Simple Example

Reducing 2D to 1D

PCA
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Reducing 2D to 1D

LDA
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How LDA create a new axis?

The new axis is created according two criteria: 

1. Maximize the distance 
between the means:

μμ

s2
s2

s2 + s2
d2 Ideally large

Ideally small

Let’s call (μ ₋ μ) d for distance.

2. Minimize the variation (which 
LDA calls scatter) within each class.
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Why both distance and 
scatter are important?

If we only maximize the 
distance between means ...

If we optimize the 
distance between 
means and scatter 
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What if we have 3 classes?

How we measure the 
distance among the 
means?



What if we have 3 classes?
Find the point that is central 
to data.



What if we have 3 classes?

Then measure the  
distance between a 
point that is central in 
each class and the 
main central point.

d2

d2

d2



What if we have 3 classes?

Now maximize the 
distance between each 
class and the central 
point while minimize the 
scatter for each class.

d2

d2

d2



What if we have 3 classes?

s2 + s2 + s2
d2 + d2 + d2

d2

d2

d2



Today’s Agenda

● Linear Discriminant Analysis

○ PCA vs LDA

○ LDA: Simple Example

○ LDA Algorithm
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LDA in a Nutshell (Eigen Decomposition)

1. Compute the d-dimensional mean vectors for the different classes.
2. Compute the scatter matrices (between-class SB and within-class SW).
3. Compute the eigenvectors (u1,u2,...,ud) and eigenvalues (λ1,λ2,...,λd) for 

the scatter matrices SW
-1SB.

4. Sort the eigenvectors by decreasing eigenvalues and choose k 
eigenvectors.

5. Use this d×k eigenvector matrix to transform the samples onto the 
new subspace. 



LDA Step by Step

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)
2. Iris-versicolor (n=50)
3. Iris-virginica (n=50)

The four features of the Iris dataset:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cmhttp://sebastianraschka.com/Articles/2014_python_lda.html
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LDA Step by Step

1. Compute the d-dimensional mean vectors for the different classes.



LDA Step by Step

1. Compute the d-dimensional mean vectors for the different classes.

𝜇1 : [ 5.01  3.42  1.46  0.24 ]

𝜇2 : [ 5.94  2.77  4.26  1.33 ]

𝜇3 : [ 6.59  2.97  5.55  2.03 ]



LDA Step by Step

2. Compute the scatter matrices (between-class SB and within-class SW)

Within-class scatter matrix SW:

    , where 



LDA Step by Step

2. Compute the scatter matrices (between-class SB and within-class SW)

Within-class scatter matrix SW:

    38.96  13.68  24.61  5.66
    13.68  17.04  08.12  4.91
    24.61  08.12  27.22  6.25
    05.66  04.91  06.25  6.18



LDA Step by Step

2. Compute the scatter matrices (between-class SB and within-class SW)

Between-class scatter matrix SB:

where 𝜇 is the overall mean, and 𝜇i and Ni are the sample mean and 
sizes of the respective classes.



LDA Step by Step

2. Compute the scatter matrices (between-class SB and within-class SW)

Between-class scatter matrix SB:

  063.21  -19.53  165.16    71.36
   -19.53   10.98   -56.05   -22.49
  165.16  -56.05  436.64  186.91
  071.36  -22.49  186.91    80.60



LDA Step by Step

3. Compute the eigenvectors (u1,u2,...,ud) and eigenvalues (λ1,λ2,...,λd) for 
the scatter matrices SW

-1SB.

u1:
  -0.205
  -0.387
  -0.546
  -0.714

λ1: 3.23e+01

u2:
  -0.009
  -0.589
  -0.254
  -0.767

λ2: 2.78e-01

u3:
  -0.179
  -0.318
  -0.366
  -0.601

λ3: -4.02e-17

u4:
  -0.179
  -0.318
  -0.366
  -0.601

λ4: -4.02e-17



LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose k 
eigenvectors.

Eigenvalues in decreasing order:
32.27
0.27
5.71e-15
5.71e-15



LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose k 
eigenvectors.

Eigenvalues in decreasing order:
32.27
0.27
5.71e-15
5.71e-15

Variance explained:
λ1: 99.15%
λ2: 0.85%
λ3: 0.00%
λ4: 0.00%



LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose k 
eigenvectors.

 -0.205 -0.009
 -0.387 -0.589
 -0.546 -0.254
 -0.714 -0.767 

u1:
  -0.205
  -0.387
  -0.546
  -0.714

λ1: 3.23e+01

u2:
  -0.009
  -0.589
  -0.254
  -0.767

λ2: 2.78e-01



LDA Step by Step

5. Use this d×k eigenvector matrix to transform the samples onto the 
new subspace. 



LDA Step by Step

5. Use this d×k eigenvector matrix to transform the samples onto the 
new subspace. 

http://sebastianraschka.com/Articles/2
014_python_lda.html
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