
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

```
- YouTube }\mp@subsup{}{}{8R
```

Q
10

3BLUE1BROWN SERIES S1•E10

Cross products | Essence of linear algebra, Chapter 10
3Blue1Brown
(Watch later
$\equiv \quad$ Liked videos
$\equiv \quad$ Neural Networks ...
Essence of linear algebra

3BLUE1BROWN SERIES S1•E12
Change of basis | Essence of linear algebra, chapter 12

3Blue1Brown

3BLUE1BROWN SERIES S1 • E13
Eigenvectors and eigenvalues | Essence of linear algebra, chapter 13

3Blue1Brown
A geometric understanding of matrices, determinants, eigen-stuffs and more.

PCA Algorithm

By Singular Value Decomposition

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$
Preprocessing (feature scaling/mean normalization):

$$
\mu_{j}=\frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)}
$$

Center the data

Replace each $x_{j}^{(i)}$ with $x_{j}-\mu_{j}$.
If different features on different scales, scale features to have comparable range of values.

Data Preprocessing

PCA Algorithm

Reduce data from n-dimensions to k-dimensions
Compute "covariance matrix":

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n}\left(x^{(i)}\right)\left(x^{(i)}\right)^{\mathrm{T}} \square n \times n \text { matrix }
$$

PCA Algorithm

Reduce data from n-dimensions to k-dimensions
Compute "covariance matrix":

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n}\left(x^{(i)}\right)\left(x^{(i)}\right)^{\mathrm{T}} \quad n \times n \text { matrix }
$$

Compute "eigenvectors" of matrix $\boldsymbol{\Sigma}$:
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}($ sigma $) ~ \square$ Singular Value Decomposition

PCA Algorithm

Reduce data from n-dimensions to k-dimensions
Compute "covariance matrix":

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n}\left(x^{(i)}\right)\left(x^{(i)}\right)^{\mathrm{T}} \quad n \times n \text { matrix }
$$

Compute "eigenvectors" of matrix $\boldsymbol{\Sigma}$:
$[\overrightarrow{\mathrm{U}, \mathrm{S}, \mathrm{V}]}=\operatorname{svd}($ sigma $) \square$
Singular Value Decomposition eigenvalues

PCA Algorithm

From $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=$ svd(sigma), we get:

$$
U=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
u^{(1)} & \cdots & u^{(n)} \\
\mid & \mid & \mid
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

PCA Algorithm

From [U, S, V] = svd(sigma), we get:

$$
U=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\underbrace{u^{(1)}}_{k} & \cdots & u^{(n)} \\
\mid & \mid & \mid
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

$$
x \in \mathbb{R}^{n} \rightarrow z \in \mathbb{R}^{k}
$$

PCA Algorithm

From [U, S, V] = svd(sigma), we get:

$$
U=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
u^{(1)} & \cdots & u^{(n)} \\
\underbrace{\mid}_{k} \mid & \mid
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \rightarrow z \in \mathbb{R}^{k} \\
& z=\left[\begin{array}{ccc}
\left.\left\lvert\, \begin{array}{ccc}
\mid(1) & \mid \\
u^{(1)} & \cdots & u^{(k)} \\
\mid & \mid & \mid
\end{array}\right.\right]_{n \times n}^{\mathrm{T}} x \\
n \times 1
\end{array}\right.
\end{aligned}
$$

PCA Algorithm

After mean normalization and optionally feature scaling:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n}\left(x^{(i)}\right)\left(x^{(i)}\right)^{\mathrm{T}}
$$

[U, S, V] = svd(sigma)
$z=\left(\mathrm{U}_{\text {reduce }}\right)^{\mathrm{T}} \times x$

PCA Algorithm By Eigen Decomposition

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)
2. Compute covariance matrix $\mathbf{\Sigma}$
3. Find eigenvectors u and eigenvalues λ
4. Sort eigenvalues and pick first k eigenvectors
5. Project data to k eigenvectors

Using PCA (Iris Dataset)

150 iris flowers from three different species.
The three classes in the Iris dataset:

1. Iris-setosa ($n=50$)
2. Iris-versicolor ($n=50$)
3. Iris-virginica $(n=50)$

The four features of the Iris dataset:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm

Linear Discriminant Analysis
 Machine Learning

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

Today's Agenda

- Linear Discriminant Analysis
- PCA vs LDA
- LDA: Simple Example
- LDA Algorithm
- LDA Step by Step

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA)

- LDA pick a new dimension that gives:
- Maximum separation between means of projected classes
- Minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrix

LDA: Simple Example

Reducing 2D to 1D

How LDA create a new axis?

How LDA create a new axis?

Reducing 2D to 1D

How LDA create a new axis?

The new axis is created according two criteria:

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

2. Minimize the variation (which

LDA calls scatter) within each class.

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

2. Minimize the variation (which

LDA calls scatter) within each class.

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

2. Minimize the variation (which

LDA calls scatter) within each class.

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

\pm

$$
\frac{(\mu-\mu)^{2}}{s^{2}+s^{2}}
$$

2. Minimize the variation (which

LDA calls scatter) within each class.

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

$$
\frac{(\mu-\mu)^{2}}{s^{2}+s^{2}} \longrightarrow \text { Ideally large }
$$

2. Minimize the variation (which

LDA calls scatter) within each class.

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

\geq
Let's call $(\mu-\mu) d$ for distance.

$$
\frac{(\mu-\mu)^{2}}{s^{2}+s^{2}} \longrightarrow \text { Ideally large }
$$

2. Minimize the variation (which

LDA calls scatter) within each class.

How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance between the means:

Let's call $(\mu-\mu) d$ for distance.

2. Minimize the variation (which

LDA calls scatter) within each class.

Why both distance and scatter are important?

If we only maximize the distance between means ...

Why both distance and scatter are important?

What if we have 3 classes?

What if we have 3 classes?

How we measure the distance among the means?

What if we have 3 classes?

Find the point that is central

What if we have 3 classes?

Then measure the distance between a point that is central in each class and the main central point.

What if we have 3 classes?

What if we have 3 classes?

Today's Agenda

- Linear Discriminant Analysis
- PCA vs LDA
- LDA: Simple Example
- LDA Algorithm
- LDA Step by Step

LDA in a Nutshell (Eigen Decomposition)

1. Compute the d-dimensional mean vectors for the different classes.
2. Compute the scatter matrices (between-class S_{B} and within-class S_{W}).
3. Compute the eigenvectors $\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ and eigenvalues $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$ for the scatter matrices $S_{W}^{-1} S_{B}$.
4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.
5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

LDA Step by Step

http://sebastianraschka.com/Articles/2014_python_Ida.html

150 iris flowers from three different species.
The three classes in the Iris dataset:

1. Iris-setosa ($n=50$)
2. Iris-versicolor $(n=50)$
3. Iris-virginica $(n=50)$

The four features of the Iris dataset:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm

LDA Step by Step

LDA Step by Step

1. Compute the d-dimensional mean vectors for the different classes.

LDA Step by Step

1. Compute the d-dimensional mean vectors for the different classes.

$$
\begin{aligned}
& \mu_{1}:\left[\begin{array}{llll}
5.01 & 3.42 & 1.46 & 0.24
\end{array}\right] \\
& \mu_{2}:\left[\begin{array}{llll}
5.94 & 2.77 & 4.26 & 1.33
\end{array}\right] \\
& \mu_{3}:\left[\begin{array}{llll}
6.59 & 2.97 & 5.55 & 2.03
\end{array}\right]
\end{aligned}
$$

LDA Step by Step

2. Compute the scatter matrices (between-class S_{B} and within-class S_{W})

Within-class scatter matrix S_{W} :

$$
S_{W}=\sum_{i=1}^{c} S_{i}, \text { where } S_{i}=\sum_{x \in D_{i}}^{n}\left(x-\mu_{i}\right)\left(x-\mu_{\mathrm{i}}\right)^{\mathrm{T}}
$$

LDA Step by Step

2. Compute the scatter matrices (between-class S_{B} and within-class S_{W})

Within-class scatter matrix S_{W} :
$\left(\begin{array}{rrrr}38.96 & 13.68 & 24.61 & 5.66 \\ 13.68 & 7.04 & 8.12 & 4.91 \\ 24.61 & 8.12 & 27.22 & 6.25 \\ 5.66 & 4.91 & 6.25 & 6.18\end{array}\right)$

LDA Step by Step

2. Compute the scatter matrices (between-class S_{B} and within-class S_{W})

Between-class scatter matrix S_{B} :

$$
S_{B}=\sum_{i=1}^{c} N_{i}\left(\mu_{i}-\mu\right)\left(\mu_{i}-\mu\right)^{\mathrm{T}}
$$

where μ is the overall mean, and μ_{i} and N_{i} are the sample mean and sizes of the respective classes.

LDA Step by Step

2. Compute the scatter matrices (between-class S_{B} and within-class S_{W})

Between-class scatter matrix S_{B} :
$\left(\begin{array}{rrrr}63.21 & -19.53 & 165.16 & 71.36 \\ -19.53 & 10.98 & -56.05 & -22.49 \\ 65.16 & -56.05 & 436.64 & 186.91 \\ 71.36 & -22.49 & 186.91 & 80.60\end{array}\right]$

LDA Step by Step

3. Compute the eigenvectors $\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ and eigenvalues $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$ for the scatter matrices $S_{W}{ }^{-1} S_{B}$.
$u_{1}:$
$\left(\begin{array}{c}-0.205 \\ -0.387 \\ 0.546 \\ 0.714\end{array}\right)$
$\lambda_{1}: 3.23 \mathrm{e}+01$

$$
\begin{aligned}
& u_{2}: \\
& \left(\begin{array}{l}
-0.009 \\
-0.589 \\
0.254 \\
-0.767
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u_{3}: \\
& \left(\begin{array}{c}
0.179 \\
-0.318 \\
-0.366 \\
0.601
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u_{4}: \\
& \left(\begin{array}{c}
0.179 \\
-0.318 \\
-0.366 \\
0.601
\end{array}\right)
\end{aligned}
$$

$$
\lambda_{3}:-4.02 e-17
$$

$$
\lambda_{4}:-4.02 e-17
$$

LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

Eigenvalues in decreasing order:
32.27
0.27
$5.71 \mathrm{e}-15$
$5.71 e-15$

LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

Eigenvalues in decreasing order:
32.27
0.27
$5.71 \mathrm{e}-15$
$5.71 e-15$

Variance explained:
$\lambda_{1}: 99.15 \%$
$\lambda_{2}: 0.85 \%$
$\lambda_{3}: 0.00 \%$
$\lambda_{4}: 0.00 \%$

LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

$u_{1}:$	$u_{2}:$
$\left(\begin{array}{l}-0.205 \\ -0.387 \\ 0.546 \\ 0.714\end{array}\right)$	$\left(\begin{array}{c}-0.009 \\ -0.589 \\ 0.254 \\ -0.767\end{array}\right)$
$\lambda_{1}: 3.23 e+01$	$\lambda_{2}: 2.78 e-01$

LDA Step by Step

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

LDA Step by Step

http://sebastianraschka.com/Articles/2 014_python_Ida.html
5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8
"Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"

