

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitqF8hE_ab

chapter 14

16:46

MORE FROM YOUTUBE

PCA Algorithm By Singular Value Decomposition

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, ..., x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)}$$

Replace each $x_{j}^{(i)}$ with $x_{j} - \mu_{j}$.

Center the data

If different features on different scales, scale features to have comparable range of values.

Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \implies n \times n \text{ matrix}$$

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \implies n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

$$[U, S, V] = svd(sigma) \implies$$
 Singular Value Decomposition

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \implies n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

[U, S, V] = svd(sigma) Singular Value Decomposition eigenvalues

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \\ | & | \\ k \end{bmatrix} \in \mathbb{R}^{n \times n} \qquad x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \\ | & | \\ k \end{bmatrix} \in \mathbb{R}^{n \times n} \qquad x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$
$$z = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(k)} \\ | & | & | \\ k \times n & n \times 1 \end{bmatrix}^T$$

After mean normalization and optionally feature scaling:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}}$$

[U, S, V] = svd(sigma)

$$z = (\mathbf{U}_{\text{reduce}})^{\mathrm{T}} \times x$$

PCA Algorithm By Eigen Decomposition

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- **3**. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first *k* eigenvectors
- 5. Project data to *k* eigenvectors

Using PCA (Iris Dataset)

150 iris flowers from three different species.

The three classes in the Iris dataset:

- 1. Iris-setosa (n=50)
- 2. Iris-versicolor (n=50)
- 3. Iris-virginica (*n*=50)

The four features of the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

Linear Discriminant Analysis Machine Learning

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, October 2, 2019

Today's Agenda

_ _

- Linear Discriminant Analysis
 - PCA vs LDA
 - LDA: Simple Example
 - LDA Algorithm
 - LDA Step by Step

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA)

- LDA pick a new dimension that gives:
 - Maximum separation between means of projected classes
 - Minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrix

The new axis is created according two criteria:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

The new axis is created according two criteria:

The new axis is created according two criteria:

The new axis is created according two criteria:

If we only maximize the distance between means ...

How we measure the distance among the means?

Then measure the distance between a point that is central in each class and the main central point.

Now maximize the distance between each class and the central point while minimize the scatter for each class.

Today's Agenda

_ __ __

- Linear Discriminant Analysis
 - PCA vs LDA
 - LDA: Simple Example
 - LDA Algorithm
 - LDA Step by Step

LDA in a Nutshell (Eigen Decomposition)

- 1. Compute the *d*-dimensional mean vectors for the different classes.
- 2. Compute the scatter matrices (between-class S_{R} and within-class S_{W}).
- 3. Compute the eigenvectors $(u_1, u_2, ..., u_d)$ and eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices $S_W^{-1}S_B$.
- 4. Sort the eigenvectors by decreasing eigenvalues and choose *k* eigenvectors.
- 5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

http://sebastianraschka.com/Articles/2014_python_lda.html

150 iris flowers from three different species.

The three classes in the Iris dataset:

- 1. Iris-setosa (n=50)
- 2. Iris-versicolor (n=50)
- 3. Iris-virginica (*n*=50)

The four features of the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

1. Compute the *d*-dimensional mean vectors for the different classes.

1. Compute the *d*-dimensional mean vectors for the different classes.

$$\begin{split} \mu_{1} &: [\ 5.01 \ \ 3.42 \ \ 1.46 \ \ 0.24 \] \\ \mu_{2} &: [\ 5.94 \ \ 2.77 \ \ 4.26 \ \ 1.33 \] \\ \mu_{3} &: [\ 6.59 \ \ 2.97 \ \ 5.55 \ \ 2.03 \] \end{split}$$

2. Compute the scatter matrices (between-class S_B and within-class S_W) Within-class scatter matrix S_W :

$$S_W = \sum_{i=1}^{c} S_i$$
, where $S_i = \sum_{x \in D_i}^{n} (x - \mu_i)(x - \mu_i)^T$

2. Compute the scatter matrices (between-class S_B and within-class S_W)

Within-class scatter matrix S_W :

38.96	13.68	24.61	5.66
13.68	7.04	8.12	4.91
24.61	8.12	27.22	6.25
5.66	4.91	6.25	6.18

2. Compute the scatter matrices (between-class S_B and within-class S_W)

Between-class scatter matrix S_{R} :

$$S_B = \sum_{i=1}^{c} N_i (\mu_i - \mu) (\mu_i - \mu)^{\mathrm{T}}$$

where μ is the overall mean, and μ_i and N_i are the sample mean and sizes of the respective classes.

2. Compute the scatter matrices (between-class S_{R} and within-class S_{W})

Between-class scatter matrix S_{R} :

3. Compute the eigenvectors $(u_1, u_2, ..., u_d)$ and eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices $S_W^{-1}S_B$.

<i>u</i> ₁ :	<i>u</i> ₂ :	<i>u</i> ₃ :	u_4 :
(-0.205)	(-0.009)	(0.179)	(0.179)
-0.387	-0.589	-0.318	-0.318
0.546	0.254	-0.366	-0.366
0.714	L-0.767 J	0.601	0.601
$\lambda_1:$ 3.23e+01	$\lambda_2^{}:$ 2.78e-01	λ_3 : -4.02e-17	λ_4 : -4.02e-17

- 4. Sort the eigenvectors by decreasing eigenvalues and choose *k* eigenvectors.
 - Eigenvalues in decreasing order: 32.27 0.27 5.71e-15 5.71e-15

4. Sort the eigenvectors by decreasing eigenvalues and choose *k* eigenvectors.

Eigenvalues in decreasing order:Variance explained:32.27 λ_1 : 99.15%0.27 λ_2 : 0.85%5.71e-15 λ_3 : 0.00%5.71e-15 λ_4 : 0.00%

4. Sort the eigenvectors by decreasing eigenvalues and choose *k* eigenvectors.

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

http://sebastianraschka.com/Articles/2 014_python_lda.html

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8
 "Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"