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PCA Algorithm

By Singular Value Decomposition



Data Preprocessing

Training set: xV, x®_ .. x™

Preprocessing (feature scaling/mean normalization):

m

_ 1 (0
- in Center the data
i=1

Replace each x](.i)with Xi=H;.

If different features on different scales, scale features to have
comparable range of values.



Data Preprocessing

original data zero-centered data
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normalized data
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Credit: http://cs231n.github.io/neural-networks-2/




PCA Algorithm

Reduce data from n-dimensions to A-dimensions

Compute “covariance matrix”:

Y = % ;(x(’.))(x(i))T - n X n matrix



PCA Algorithm

Reduce data from n-dimensions to A-dimensions

Compute “covariance matrix”:

%y = % ;(x(’.))(x(i))T - n X n matrix

Compute “eigenvectors” of matrix X:

U, S, V] = svd(sigma) » Singular Value Decomposition



PCA Algorithm

Reduce data from n-dimensions to A-dimensions

Compute “covariance matrix”:

%y = % ;(x(i))(x(i))T - n X n matrix

Compute “eigenvectors” of matrix X:

' ,
[U, S, V] = svd(sigma) » Singular Value Decomposition

\\_,y eigenvalues



PCA Algorithm

From [U, S, V] = svd(sigma), we get:

U — u(l) u(n) — Rnxzfz




PCA Algorithm

From [U, S, V] = svd(sigma), we get:

U =

= Rnx;fz
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PCA Algorithm

From [U, S, V] = svd(sigma), we get:

U=|yV... | & Rmn xER' >z ERK

1 _ -

X

kxn nx1



PCA Algorithm

After mean normalization and optionally feature scaling:

= L 3o

T om 4
U, S, V] = svd(sigma)

4= (Ureduce)T XX



PCA Algorithm
By Eigen Decomposition



PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors u and eigenvalues A

Sort eigenvalues and pick first k£ eigenvectors

o & W N =

Project data to k eigenvectors



Using PCA (Iris Dataset)

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)

2. lris-versicolor (n=50)

3. lris-virginica (n=50)

The four features of the Iris dataset:
1. sepallengthincm
2. sepal width in cm
3. petallengthin cm
4. petal width incm
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Today’s Agenda

e Linear Discriminant Analysis

O

O
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PCA vs LDA

LDA: Simple Example
LDA Algorithm

LDA Step by Step



Linear Discriminant Analysis



Linear Discriminant Analysis (LDA)

e LDA pick a new dimension that gives:
o Maximum separation between means of projected classes

o Minimum variance within each projected class

e Solution: eigenvectors based on between-class and
within-class covariance matrix



LDA: Simple Example

Reducing 2D to 1D




LDA: Simple Example

Reducing 2D to 1D




LDA: Simple Example

Reducing 2D to 1D




LDA: Simple Example

Reducing 2D to 1D




LDA: Simple Example

Reducing 2D to 1D




How LDA create a new axis?



How LDA create a new axis?

Reducing 2D to 1D




How LDA create a new axis?

The new axis is created according two criteria:



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance
between the means:

A
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How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance
between the means:

A
4 A\
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2. Minimize the variation (which
LDA calls scatter) within each class.



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance
between the means:

It 1
. ‘ J ‘
pe
S » This is the scatter around the pink dots.

2. Minimize the variation (which
LDA calls scatter) within each class.



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance
between the means:

It 1
(g ‘ J ‘
RN y,
S e
S » [his is the scatter around the blue dots.

2. Minimize the variation (which
LDA calls scatter) within each class.



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance

between the means:
N A
i i
2

. ..‘ - I' | (u - 1)
W J S2‘|'S2

RN y,
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2. Minimize the variation (which
LDA calls scatter) within each class.



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance

between the means:
A 1
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2. Minimize the variation (which
LDA calls scatter) within each class.



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance

between the means:
A s Let’s call (u - 1) d for distance.
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;5 N Y,

2. Minimize the variation (which
LDA calls scatter) within each class.



How LDA create a new axis?

The new axis is created according two criteria:

1. Maximize the distance

between the means:
A s Let’s call (u - 1) d for distance.
L L
‘ ‘ dZ — |deally large
N y, s+ — |deally small
;5 N Y,

2. Minimize the variation (which
LDA calls scatter) within each class.



Why both distance and
scatter are important?

If we only maximize the

distance between means ...




Why both distance and
scatter are important?

If we only maximize the
distance between means ...

A
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o © If we optimize the
distance between
means and scatter




What if we have 3 classes?




What if we have 3 classes?
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What if we have 3 classes?

Find the point that is central

A ® to data.
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What if we have 3 classes?

Then measure the
distance between a
point that is central in
each class and the
main central point.



What if we have 3 classes?

Now maximize the
distance between each
class and the central
point while minimize the
scatter for each class.



What if we have 3 classes?
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LDA: Simple Example
LDA Algorithm

LDA Step by Step



LDA in a Nutshell (Eigen Decomposition)

1. Compute the d-dimensional mean vectors for the different classes.
2. Compute the scatter matrices (between-class S, and within-class § ).

3. Compute the eigenvectors (u,,u,,...,u ) and eigenvalues (4,,4,,...,4 ) for

the scatter matrices SW'ISB.

PIEE

4. Sort the eigenvectors by decreasing eigenvalues and choose &
eigenvectors.

5. Use this dxk eigenvector matrix to transform the samples onto the
new subspace.



LDA Step by Step

http://sebastianraschka.com/Articles/2014_python_Ida.html

150 iris flowers from three different species.

The three classes in the Iris dataset:
1. Iris-setosa (n=50)

2. lris-versicolor (n=50)

3. lris-virginica (n=50)

The four features of the Iris dataset:
1. sepallengthincm
2. sepal width in cm
3. petallengthin cm
4. petal width incm



LDA Step by Step

Iris histogram #1
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Iris histogram #2
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LDA Step by Step

1. Compute the d-dimensional mean vectors for the different classes.



LDA Step by Step

1. Compute the d-dimensional mean vectors for the different classes.

u,:[5.01 3.42 1.46 0.24]
u,:[5.94 2.77 4.26 1.33]
u,:[6.59 2.97 555 2.03 ]




LDA Step by Step

2. Compute the scatter matrices (between-class §, and within-class §))

Within-class scatter matrix SW'

n

Sw = ZSi ,where §; = Z(X—Mi)(x—ﬂi )
i=1

xED,



LDA Step by Step

2. Compute the scatter matrices (between-class §, and within-class §))

Within-class scatter matrix SW'

38.96 13.68 24.61 5.66
13.68 7.04 8.12 491
24.061 8.12 27.22 6.25

.66 491 6.25 6.18




LDA Step by Step

2. Compute the scatter matrices (between-class §, and within-class §))

Between-class scatter matrix SB:
C
_ T
SB — ZNi (i —p) (=)
i=1

where u is the overall mean, and u. and N, are the sample mean and
sizes of the respective classes.



LDA Step by Step

2. Compute the scatter matrices (between-class §, and within-class §))

Between-class scatter matrix SB:

63.21 -19.53 165.16 71.36
-19.53 10.98 -56.05 -22.49
65.16 -56.05 436.64 186.91
| 71.36 -22.49 18691 80.60




LDA Step by Step

3. Compute the eigenvectors (u,,u,,...,.u ) and eigenvalues (4,4,

the scatter matrices SW‘IS .

B
Zfl: 3 Zfz: 3
-0.205 -0.009
-0.387 -0.589
0.546 0.254
_0.714 -0.767

/11: 3.23e+01 /12: 2.78e-01

M3:
(0.179)
-0.318

-0.366

_ 0.601

/13: -4.02e-17

M4:
(0.179 )
-0.318

-0.366

_ 0.601

,...,/Id) for

A 4 ~4.02e-17



LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose &
eigenvectors.

Eigenvalues in decreasing order:
32.27
0.27
5.71e-15
5.71e-15



LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose &
eigenvectors.

Eigenvalues in decreasing order: Variance explained:
32.27 4,:99.15%
0.27 A,: 0.85%
5.71e-15 4,:0.00%

5.71e-15 7,:0.00%



LDA Step by Step

4. Sort the eigenvectors by decreasing eigenvalues and choose &
eigenvectors.

ul; M22 ~ )
(.0.205) (.0.009) -0.205 -0.009
-0.387 -0.589 -0.387 -0.589
0.546 0.254 » 0.546 0.254
_ 0.714 -0.767 ) 0.714 -0.767
" y,

/11: 3.23e+01 /12: 2.78e-01



LDA Step by Step

5. Use this dxk eigenvector matrix to transform the samples onto the
new subspace.

LDA: Iris projection onto the first 2 linear discriminants
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http://sebastianraschka.com/Articles/2
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5. Use this dxk eigenvector matrix to transform the samples onto the
new subspace.

LDA: Iris projection onto the first 2 linear discriminants
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