
Recall from last time ...



DBSCAN





DBSCAN Clustering 

● Core points: A point is a core point if there are at least MinPts 
within a distance of Eps, where MinPts and Eps are 
user-specified parameters. 

● Border points: A border point is not a core point, but falls 
within the neighborhood of a core point. 

● Noise points: A noise point is any point that is neither a core 
point nor a border point. 
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https://www.naftaliharris.com/blog/visualizing-dbscan-clustering



Clustering Performance 
Evaluation



Silhouette Coefficient

● The silhouette value is a measure of how similar a sample 
is to its own cluster (cohesion) compared to other clusters 
(separation).

 

Cohesion Separation



Silhouette Coefficient

● The silhouette value is a measure of how similar a sample 
is to its own cluster (cohesion) compared to other clusters 
(separation).

 

● The silhouette ranges from −1 to +1. 
○ High value = the clustering configuration is appropriate.
○ Low value = the clustering configuration may have too many 

or too few clusters.



Silhouette Coefficient

● The Silhouette Coefficient is defined for each sample and 
is composed of two scores:
○ a: The mean distance between a sample and all other 

points in the same cluster.
○ b: The mean distance between a sample and all other 

points in the next nearest cluster.



Silhouette Coefficient

● The Silhouette Coefficient s for a single sample is given as:

● The score is bounded between -1 for incorrect clustering 
and +1 for highly dense clustering (a ≪ b). Scores around 
zero indicate overlapping clusters.



http://scikit-learn.org/stable/modules/clustering.html#clustering
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○ Reduce time complexity: less computation required

○ Reduce space complexity: less number of features

○ More interpretable: it removes noise
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Why is Dimensionality Reduction useful?

● Data Compression

○ Reduce time complexity: less computation required

○ Reduce space complexity: less number of features

○ More interpretable: it removes noise

● Data Visualization

● To mitigate “the curse of dimensionality”



Today’s Agenda

● The Curse of Dimensionality

● PCA (Principal Component Analysis)

○ PCA Formulation

○ PCA Algorithm

○ Choosing k



The Curse of 
Dimensionality



The Curse of Dimensionality

Even a basic 4D hypercube is incredibly hard to picture in our mind.



The Curse of Dimensionality

Dimensionality (number of features)

Cl
as

si
fie

r p
er

fo
rm

an
ce

Optimal number of features



The Curse of Dimensionality

As the dimensionality of data grows, the density of 
observations becomes lower and lower and lower.

10 samples
1 dimension: 5 regions

Feature 1



The Curse of Dimensionality

As the dimensionality of data grows, the density of 
observations becomes lower and lower and lower.
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10 samples
2 dimensions: 25 regions
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As the dimensionality of 
data grows, the density of 

observations becomes 
lower and lower and lower.

10 samples
3 dimensions: 125 regions
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● 1 dimension: the sample 
density is 10/5 =                  
2 samples/interval

● 2 dimensions: the sample 
density is 10/25 =            
0.4 samples/interval

● 3 dimensions: the sample 
density is 10/125 =          
0.08 samples/interval



The Curse of Dimensionality: Solution?



The Curse of Dimensionality: Solution?

● Increase the size of the training set to reach a sufficient 
density of training instances. 



The Curse of Dimensionality: Solution?

● Increase the size of the training set to reach a sufficient 
density of training instances. 

● Unfortunately, the number of training instances required 
to reach a given density grows exponentially with the 
number of dimensions. 



How to reduce dimensionality?



How to reduce dimensionality?

● Feature Selection: choosing a subset of all the features 
(the ones more informative).
○ x1, x2, x3, x4, x5

● Feature Extraction: create a subset of new features by 
combining the existing ones.
○ z = f(x1, x2, x3, x4, x5)
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How to reduce dimensionality?

● Feature Selection: choosing a subset of all the features 
(the ones more informative).
○ x1, x2, x3, x4, x5

● Feature Extraction: create a subset of new features by 
combining the existing ones.
○ z = f(x1, x2, x3, x4, x5)



PCA: Principal 
Component Analysis



Principal Component Analysis (PCA)

● The most popular dimensionality reduction algorithm.

● PCA have two steps:
○ It identifies the hyperplane that lies closest to the data.
○ It projects the data onto it. 



Problem Formulation (PCA)
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Problem Formulation (PCA)

● Reduce from 2-dimension to 1-dimension: Find a direction 
(a vector u(1) ∈ ℝn) onto which to project the data so as to 
minimize the projection error.

×
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Problem Formulation (PCA)

● Reduce from n-dimension to k-dimension: Find k vectors  
u(1), u(2), ..., u(k) onto which to project the data, so as to 
minimize the projection error.



PCA Algorithm
By Eigen Decomposition



PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors 

5. Project data to k eigenvectors 
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Data Preprocessing

Training set: x(1), x(2), ..., x(m) 

Preprocessing (feature scaling/mean normalization): 

Replace each       with            .  

If different features on different scales, scale features to have 
comparable range of values.

Center the data



Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/



PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors 

5. Project data to k eigenvectors 

   



PCA Algorithm

Reduce data from n-dimensions to k-dimensions 

Compute “covariance matrix”: 

   

n ⨉ n matrix



PCA Algorithm

Reduce data from n-dimensions to k-dimensions 

Compute “covariance matrix”: 

Covariance of dimensions x1 and x2:
● Do x1 and x2 tend to increase together?
● or does x2 decrease as x1 increases?

   

n ⨉ n matrix

x1    x2
x1    
x2
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PCA Algorithm
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Multiple a vector by 𝚺 :

Turns towards direction of variation
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u = eigenvectors of 𝚺 
𝜆 = eigenvalues 
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Want vectors u which aren’t 
turned:  𝚺u = 𝜆u

u = eigenvectors of 𝚺 
𝜆 = eigenvalues 

Principal components = 
eigenvectors w. largest eigenvalues



PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors 

5. Project data to k eigenvectors 

   



Finding Principal Components

1. Find eigenvalues by solving: det(𝚺 - 𝜆I) = 0
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Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

   
Want ||u1||=1 
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Finding Principal Components

Want ||u1||=1 

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

3. 1st PC:             and 2nd PC: 



PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors 

5. Project data to k eigenvectors 

   



How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui
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● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

● Pick ui that explain the most variance:

○ Sort eigenvectors s.t. 𝜆1 > 𝜆2 > 𝜆3 > … > 𝜆n

○ Pick first k eigenvectors which                           
explain 95% of total variance

   



How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

● Pick ui that explain the most variance:

○ Sort eigenvectors s.t. 𝜆1 > 𝜆2 > 𝜆3 > … > 𝜆n

○ Pick first k eigenvectors which                           
explain 95% of total variance 
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How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

● Pick ui that explain the most variance:

○ Sort eigenvectors s.t. 𝜆1 > 𝜆2 > 𝜆3 > … > 𝜆n

○ Pick first k eigenvectors which                           
explain 95% of total variance 
■ Typical threshold: 90%, 95%, 99%

   

k

0.95



PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors 

5. Project data to k eigenvectors 

   



Principal Component Analysis (12 videos, 3-15min)
https://www.youtube.com/playlist?list=PLBv09BD7ez_5_yapAg86Od6JeeypkS4YM



https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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