
Recall from last time ...

DBSCAN

DBSCAN Clustering

● Core points: A point is a core point if there are at least MinPts
within a distance of Eps, where MinPts and Eps are
user-specified parameters.

● Border points: A border point is not a core point, but falls
within the neighborhood of a core point.

● Noise points: A noise point is any point that is neither a core
point nor a border point.

DBSCAN Clustering
core pointborder point

noise point

AB
C

MinPts = 7

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering

Clustering Performance
Evaluation

Silhouette Coefficient

● The silhouette value is a measure of how similar a sample
is to its own cluster (cohesion) compared to other clusters
(separation).

Cohesion Separation

Silhouette Coefficient

● The silhouette value is a measure of how similar a sample
is to its own cluster (cohesion) compared to other clusters
(separation).

● The silhouette ranges from −1 to +1.
○ High value = the clustering configuration is appropriate.
○ Low value = the clustering configuration may have too many

or too few clusters.

Silhouette Coefficient

● The Silhouette Coefficient is defined for each sample and
is composed of two scores:
○ a: The mean distance between a sample and all other

points in the same cluster.
○ b: The mean distance between a sample and all other

points in the next nearest cluster.

Silhouette Coefficient

● The Silhouette Coefficient s for a single sample is given as:

● The score is bounded between -1 for incorrect clustering
and +1 for highly dense clustering (a ≪ b). Scores around
zero indicate overlapping clusters.

http://scikit-learn.org/stable/modules/clustering.html#clustering

Dimensionality Reduction
Machine Learning

MC886, September 30, 2019

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

REC D
reasoning for complex data

Why is Dimensionality Reduction useful?

Why is Dimensionality Reduction useful?

● Data Compression

○ Reduce time complexity: less computation required

○ Reduce space complexity: less number of features

○ More interpretable: it removes noise

Why is Dimensionality Reduction useful?

● Data Compression

○ Reduce time complexity: less computation required

○ Reduce space complexity: less number of features

○ More interpretable: it removes noise

● Data Visualization

Why is Dimensionality Reduction useful?

● Data Compression

○ Reduce time complexity: less computation required

○ Reduce space complexity: less number of features

○ More interpretable: it removes noise

● Data Visualization

● To mitigate “the curse of dimensionality”

Today’s Agenda

● The Curse of Dimensionality

● PCA (Principal Component Analysis)

○ PCA Formulation

○ PCA Algorithm

○ Choosing k

The Curse of
Dimensionality

The Curse of Dimensionality

Even a basic 4D hypercube is incredibly hard to picture in our mind.

The Curse of Dimensionality

Dimensionality (number of features)

Cl
as

si
fie

r p
er

fo
rm

an
ce

Optimal number of features

The Curse of Dimensionality

As the dimensionality of data grows, the density of
observations becomes lower and lower and lower.

10 samples
1 dimension: 5 regions

Feature 1

The Curse of Dimensionality

As the dimensionality of data grows, the density of
observations becomes lower and lower and lower.

Feature 1
Fea

ture
2

10 samples
2 dimensions: 25 regions

Feature 1

Fe
at

ur
e

3

Fea
ture

2

As the dimensionality of
data grows, the density of

observations becomes
lower and lower and lower.

10 samples
3 dimensions: 125 regions

Feature 1

Fe
at

ur
e

3

Fea
ture

2

● 1 dimension: the sample
density is 10/5 =
2 samples/interval

● 2 dimensions: the sample
density is 10/25 =
0.4 samples/interval

● 3 dimensions: the sample
density is 10/125 =
0.08 samples/interval

The Curse of Dimensionality: Solution?

The Curse of Dimensionality: Solution?

● Increase the size of the training set to reach a sufficient
density of training instances.

The Curse of Dimensionality: Solution?

● Increase the size of the training set to reach a sufficient
density of training instances.

● Unfortunately, the number of training instances required
to reach a given density grows exponentially with the
number of dimensions.

How to reduce dimensionality?

How to reduce dimensionality?

● Feature Selection: choosing a subset of all the features
(the ones more informative).
○ x1, x2, x3, x4, x5

● Feature Extraction: create a subset of new features by
combining the existing ones.
○ z = f(x1, x2, x3, x4, x5)

How to reduce dimensionality?

● Feature Selection: choosing a subset of all the features
(the ones more informative).
○ x1, x2, x3, x4, x5

● Feature Extraction: create a subset of new features by
combining the existing ones.
○ z = f(x1, x2, x3, x4, x5)

How to reduce dimensionality?

● Feature Selection: choosing a subset of all the features
(the ones more informative).
○ x1, x2, x3, x4, x5

● Feature Extraction: create a subset of new features by
combining the existing ones.
○ z = f(x1, x2, x3, x4, x5)

PCA: Principal
Component Analysis

Principal Component Analysis (PCA)

● The most popular dimensionality reduction algorithm.

● PCA have two steps:
○ It identifies the hyperplane that lies closest to the data.
○ It projects the data onto it.

Problem Formulation (PCA)

×

××

×
×

x1

x2

Problem Formulation (PCA)

×

××

×
×

x1

x2

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

Projection Error

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

××
××

×

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

××
××

×

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

××
××

×

Problem Formulation (PCA)

×

××

×
×

x1

x2

×
×

××
×

××
××

×

Problem Formulation (PCA)

● Reduce from 2-dimension to 1-dimension: Find a direction
(a vector u(1) ∈ ℝn) onto which to project the data so as to
minimize the projection error.

×
××

×
×

x1

x2 u(1)

Problem Formulation (PCA)

● Reduce from n-dimension to k-dimension: Find k vectors
u(1), u(2), ..., u(k) onto which to project the data, so as to
minimize the projection error.

PCA Algorithm
By Eigen Decomposition

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors

5. Project data to k eigenvectors

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors

5. Project data to k eigenvectors

Data Preprocessing

Training set: x(1), x(2), ..., x(m)

Preprocessing (feature scaling/mean normalization):

Replace each with .

If different features on different scales, scale features to have
comparable range of values.

Center the data

Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors

5. Project data to k eigenvectors

PCA Algorithm

Reduce data from n-dimensions to k-dimensions

Compute “covariance matrix”:

n ⨉ n matrix

PCA Algorithm

Reduce data from n-dimensions to k-dimensions

Compute “covariance matrix”:

Covariance of dimensions x1 and x2:
● Do x1 and x2 tend to increase together?
● or does x2 decrease as x1 increases?

n ⨉ n matrix

x1 x2
x1
x2

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Multiple a vector by 𝚺 :

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Multiple a vector by 𝚺 :

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Multiple a vector by 𝚺 :

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Multiple a vector by 𝚺 :

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Multiple a vector by 𝚺 :

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Multiple a vector by 𝚺 :

Turns towards direction of variation

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Want vectors u which aren’t
turned: 𝚺u = 𝜆u

u = eigenvectors of 𝚺
𝜆 = eigenvalues

PCA Algorithm

×

×

×

××

x1

x2

×
×

××
u2

u1

Want vectors u which aren’t
turned: 𝚺u = 𝜆u

u = eigenvectors of 𝚺
𝜆 = eigenvalues

Principal components =
eigenvectors w. largest eigenvalues

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors

5. Project data to k eigenvectors

Finding Principal Components

1. Find eigenvalues by solving: det(𝚺 - 𝜆I) = 0

Finding Principal Components

1. Find eigenvalues by solving: det(𝚺 - 𝜆I) = 0

Finding Principal Components

1. Find eigenvalues by solving: det(𝚺 - 𝜆I) = 0

Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Want ||u1||=1

Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Want ||u1||=1

Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Want ||u1||=1

Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Want ||u1||=1

Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Want ||u1||=1

Finding Principal Components

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Want ||u1||=1

Finding Principal Components

Want ||u1||=1

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

Finding Principal Components

Want ||u1||=1

2. Find ith eigenvector by solving: 𝚺ui = 𝜆iui

3. 1st PC: and 2nd PC:

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors

5. Project data to k eigenvectors

How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

● Pick ui that explain the most variance:

○ Sort eigenvectors s.t. 𝜆1 > 𝜆2 > 𝜆3 > … > 𝜆n

○ Pick first k eigenvectors which
explain 95% of total variance

How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

● Pick ui that explain the most variance:

○ Sort eigenvectors s.t. 𝜆1 > 𝜆2 > 𝜆3 > … > 𝜆n

○ Pick first k eigenvectors which
explain 95% of total variance

k

0.95

How many PCs?

● Have eigenvectors u1, u2, …, un , want k < n

● eigenvalue 𝜆i = variance along ui

● Pick ui that explain the most variance:

○ Sort eigenvectors s.t. 𝜆1 > 𝜆2 > 𝜆3 > … > 𝜆n

○ Pick first k eigenvectors which
explain 95% of total variance
■ Typical threshold: 90%, 95%, 99%

k

0.95

PCA in a Nutshell (Eigen Decomposition)

1. Center the data (and normalize)

2. Compute covariance matrix 𝚺
3. Find eigenvectors u and eigenvalues 𝜆
4. Sort eigenvalues and pick first k eigenvectors

5. Project data to k eigenvectors

Principal Component Analysis (12 videos, 3-15min)
https://www.youtube.com/playlist?list=PLBv09BD7ez_5_yapAg86Od6JeeypkS4YM

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

References

Machine Learning Books

● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8

“Dimensionality Reduction”

● Pattern Recognition and Machine Learning, Chap. 12 “Continuous Latent Variables”

● Pattern Classification, Chap. 10 “Unsupervised Learning and Clustering”

Machine Learning Courses

● https://www.coursera.org/learn/machine-learning, Week 8

