Recall from last time ...




DBSCAN






DBSCAN Clustering

o : A point is a core point if there are at least MinPts
within a distance of Eps, where MinPts and Eps are
user-specified parameters.

e Border points: A border point is not a core point, but falls
within the neighborhood of a core point.

e Noise points: A noise point is any point that is neither a core
point nor a border point.



MinPts =7 . _
border point core point

noise point




epsilon =1.00
minPoints = 4

Restart ‘ https://www.naftaliharris.com/blog/visualizing-dbscan-clustering



Clustering Performance
Evaluation



Silhouette Coefficient

e The silhouette value is a measure of how similar a sample
Is to its own cluster (cohesion) compared to other clusters
(separation).

S

Cohesion Separation




Silhouette Coefficient

e The silhouette value is a measure of how similar a sample
Is to its own cluster (cohesion) compared to other clusters
(separation).

e The silhouette ranges from -1 to +1.

o High value = the clustering configuration is appropriate.
o Low value = the clustering configuration may have too many
or too few clusters.



Silhouette Coefficient

e The Silhouette Coefficient is defined for each sample and
Is composed of two scores:

o a: The mean distance between a sample and all other
points in the same cluster.

o b: The mean distance between a sample and all other
points in the next nearest cluster.



Silhouette Coefficient

e The Silhouette Coefficient s for a single sample is given as:

b - a

max(a,b)

S =

e The scoreis bounded between -1 for incorrect clustering
and +1 for highly dense clustering (a < b). Scores around
zero indicate overlapping clusters.



http://scikit-learn.org/stable/modules/clustering.html#clustering

.wn Installation Documentation - Examples [ >oogle Custom Search ] m X
Previous | Next Up .
) - 2.3. Clustering
scikit-learn v0.19.0
Other versions Clustering of unlabeled data can be performed with the module sklearn.cluster.

Please cite us if you
use the software.

Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on train data,
and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For the class,

43 Sy the labels over the training data can be found in the labels  attribute.

2.3.1. Overview of clustering
methods

2.3.2. K-means

® 2.32.1. Mini Batch K-Means

Input data

One important thing to note is that the algorithms implemented in this module can take different kinds of matrix as input.

2.3.3. Affinity P ti
W All the methods accept standard data matrices of shape [n_samples, n features] . These can be obtained from the

2.3.4. Mean Shift

2.3.5. Spectral clustering classes in the sklearn.feature_extraction module. For AffinityPropagation, SpectralClustering and DBSCAN one
m 2.35.1. Different label assignment can also input similarity matrices of shape [n_samples, n_samples] . These can be obtained from the functions in the
strategies sklearn.metrics.pairwise module.

2.3.6. Hierarchical clustering
m 2.3.6.1. Different linkage type: Ward.

complete and average linkage 2.3.1 - Ovel'\liew Of clustel'ing methOdS
W 2.3.6.2. Adding connectivity

constraints

m 2.3.6.3. Varying the metric MiniBatchKMeansAffinityPropagation ~ MeanShift ~ SpectralClustering Ward AgglomeranveClustenng DBSCAN Birch GaussianMixture

2.3.7. DBSCAN
2.3.8. Birch
2.3.9. Clustering performance
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Why is Dimensionality Reduction useful?
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e Data Compression

o Reduce time complexity: less computation required
o Reduce space complexity: less number of features

o More interpretable: it removes noise
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Why is Dimensionality Reduction useful?

e Data Compression

o Reduce time complexity: less computation required
o Reduce space complexity: less number of features
o More interpretable: it removes noise

e Data Visualization

e To mitigate “the curse of dimensionality”



Today’s Agenda

e The Curse of Dimensionality

e PCA (Principal Component Analysis)
o PCA Formulation
o PCA Algorithm
o Choosing k



The Curse of
Dimensionality



The Curse of Dimensionality

X
Y
. H
= |
<
0 | 2 3 4 #Dim

Even a basic 4D hypercube is incredibly hard to picture in our mind.



The Curse of Dimensionality

Classifier performance
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Dimensionality (number of features)

Dimensionality (humber of features)

Optimal number of features



The Curse of Dimensionality

As the dimensionality of data grows, the density of
observations becomes lower and lower and lower.

10 samples
: L] 4 B IMFA. 1 dimension: 5 regions

Feature 1




The Curse of Dimensionality

As the dimensionality of data grows, the density of
observations becomes lower and lower and lower.

L A/ // '-// /q, 10 samples
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Feature 1

As the dimensionality of
data grows, the density of
observations becomes
lower and lower and lower.

10 samples
3 dimensions: 125 regions
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e 2 dimensions: the sample
4 density is 10/25 =
L/ 0.4 samples/interval
)/
%

e 3 dimensions: the sample
density is 10/125 =
0.08 samples/interval
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The Curse of Dimensionality: Solution?



The Curse of Dimensionality: Solution?

e Increase the size of the training set to reach a sufficient
density of training instances.



The Curse of Dimensionality: Solution?

e Increase the size of the training set to reach a sufficient
density of training instances.

e Unfortunately, the number of training instances required
to reach a given density grows exponentially with the
number of dimensions.



How to reduce dimensionality?



How to reduce dimensionality?

e Feature Selection

e Feature Extraction



How to reduce dimensionality?

e Feature Selection: choosing a subset of all the features
(the ones more informative).

O Xq, Xy, X3, Xy Xg

e Feature Extraction



How to reduce dimensionality?

e Feature Selection: choosing a subset of all the features
(the ones more informative).
O Xy, X5 Xg, X, X

e Feature Extraction: create a subset of new features by
combining the existing ones.

o z="f(x;, X,, X5, X, Xg)



PCA: Principal
Component Analuysis



Principal Component Analysis (PCA)

e The most popular dimensionality reduction algorithm.

e PCA have two steps:
o Itidentifies the hyperplane that lies closest to the data.
o It projects the data onto it.



Problem Formulation (PCA)
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Problem Formulation (PCA)

-

47

> Projection Error




Problem Formulation (PCA)
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Problem Formulation (PCA)




Problem Formulation (PCA)

e Reduce from 2-dimension to 1-dimension: Find a direction

(a vector u'V € R”) onto which to project the data so as to

minimize the projection error.

le

X

X

(D

e



Problem Formulation (PCA)

e Reduce from n-dimension to k-dimension: Find & vectors
uD, u®, . u® onto which to project the data, so as to
minimize the projection error.



PCA Algorithm
By Eigen Decomposition



PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors u and eigenvalues A

Sort eigenvalues and pick first k£ eigenvectors

o & W N =

Project data to k eigenvectors



PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors u and eigenvalues A

Sort eigenvalues and pick first k£ eigenvectors

o & W N B

Project data to k eigenvectors



Data Preprocessing

Training set: xV, x®_ .. x™

Preprocessing (feature scaling/mean normalization):

m

_ 1 (0
- in Center the data
i=1

Replace each x](.i)with Xi=H;.

If different features on different scales, scale features to have
comparable range of values.



Data Preprocessing

original data zero-centered data

10 10

19

normalized data

-10
-10 -5 0 5 10

Credit: http://cs231n.github.io/neural-networks-2/




PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors u and eigenvalues A

Sort eigenvalues and pick first k£ eigenvectors

o &> W M B

Project data to k eigenvectors



PCA Algorithm

Reduce data from n-dimensions to A-dimensions

Compute “covariance matrix”:

Y = % ;(x(’.))(x(i))T - n X n matrix



PCA Algorithm

Reduce data from n-dimensions to A-dimensions

Compute “covariance matrix”:
n
1 (Dy( v (NT -
> = — Z(x )(x™) - n X n matrix
[j=

Covariance of dimensions X, and X,

e Do x, and x, tend to increase together?
e or does X, decrease as X, increases?

4
)

|

%

2.00.8
0.80.6

|



PCA Algorithm Multiple a vector by X :

osoe 7]




PCA Algorithm Multiple a vector by X :
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PCA Algorithm lYIuItipIe_a \iector by X :
2.008],, _1H_1.2]
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PCA Algorithm lt/lultiple_a \iector by X :
2.008], _1H_1.2]

10.80.6|7| 1]|7[-02
X 4 o 2.008], [-12]_[-2.5
X 10.80.6|7]-0.2|7[-1.0
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X =
_ 1080.6]7[-1.0]7|-2.7




PCA Algorithm lt/lultiple_a \iector by X :
2.008], _1H_1.2]

10.80.6|7| 1]|7[-02
X 4 o 2.008], [-12]_[-2.5
X 10.80.6|7]-0.2|7[-1.0
9 2.00.8]_[-2.5] [-6.0
X =
_ 1080.6]7[-1.0]7|-2.7
X

1 [2.00.8]_[-6.0]_[-14.1
108067 -27|7| -6.4




PCA Algorithm Multiple a vector by X :

120087, [-1]_[-1.2
10.80.6]7| 1 |7|-02

X, 4 o 2.008], [-12]_[-2.5
X 10.80.6|7]-0.2|7[-1.0
9 2.00.8]_[-2.5] [-6.0
X =
_ 1080.6]7[-1.0]7|-2.7
"1 [2.008], [-6.0]_[-14.1
10.80.6]|7| -2.7|"| -6.4

Turns towards direction of variation



PCA Algorithm

Want vectors u which aren’t
turned: Xu = Au

X u = eigenvectors of X

A = eigenvalues




PCA Algorithm

Want vectors u which aren’t
turned: Xu = Au

X u = eigenvectors of X

A = eigenvalues

Principal components =

eigenvectors w. largest eigenvalues




PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors # and eigenvalues A

Sort eigenvalues and pick first k£ eigenvectors

o & W N =

Project data to k eigenvectors



Finding Principal Components

1. Find eigenvalues by solving: det(X - AI) =0

2.0-1 0.8
det[ 0.8 0.6—/1] =



Finding Principal Components

1. Find eigenvalues by solving: det(X - AI) =0

det[z'o_ﬂ 0.8

0.8 0.6—/1] = (2.0-2)(0.6-2)-(0.8)(0.8)



Finding Principal Components

1. Find eigenvalues by solving: det(X - AI) =0

det[z'o_ﬂ 0.8

0.8 0.6- ,1] = (2.0-1)(0.6-2)-(0.8)(0.8) = 1°-2.64+0.56 = 0

(1,0,) = {2.36,0.23)



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

2008 || un| _ Uy
[0.8 O.6][u12] B 2'36[u12]



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

20 08 ull . Mll 2.0”11 + O.8M12 — 2.36“11
|:08 O6]|:u12:| - 236|:M12:| » O.8u11 + O.6u12 — 2.361/!12



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

20 08 ull . Mll 2.0”11 + O.8M12 — 2.36“11
|:08 O6:||:u12:| - 236|:M12:| » O.8u11 + O.6u12 — 2.361/!12

=



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

20 08 ull . Mll 2.0”11 + O.8M12 — 2.36“11 . 2 2
[0.8 O.6][u12] = 2'36[u12] » 0.8, + 0.6u,, = 2.36u,, Wy = 2.2u,
\

[2.2]
ul [ d 1



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

20 08 ull . Mll 2.0”11 + O.8M12 — 2.36“11 . 2 2
[0.8 O.6][u12] = 2'36[u12] » 0.8, + 0.6u,, = 2.36u,, Wy = 2.2u,
\
. [2.2]
1 1
B Want |ju [I=1

0.91
0.41



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

12.00.8]
10.80.6

(2.00.8]

10.80.6

2.36

0.23

2.0”11 + O.8M12 — 2.36“11
= 2.2
» O.8u11 + O.6u12 — 2.361/!12 » ull ulz

oy |

¥

-0.41
051 o~ [2]

B Want |ju [I=1

0.91
0.41



Finding Principal Components

2. Find i eigenvector by solving: Yu =Au

(2008 un| U 2.0u;, + 0.8u;, = 2.36u,, B

10806 up| = 270 uy, » 0.8, + 0.6u,, = 2.36u,, Wy = 2.2u,

S - 3

2008 || uy| Uy, _1-0.41

080.6][ 1| = 023 | W = [ 0.91] 0, ~ ﬁz]

B Want |ju [I=1
0.91 -0.41
3. 1stPC: [041] and 2" PC: [ 0.91 ] [0.91]
' ' 0.41



PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors u and eigenvalues A

Sort eigenvalues and pick first k eigenvectors

o & W N =

Project data to k eigenvectors



How many PCs?

e Have eigenvectors U, u u , want k<n

.
e eigenvalue 4, = variance along u,



How many PCs?

e Have eigenvectors U, u u , want k<n

.
e eigenvalue 4, = variance along u,

o Pick u, that explain the most variance:

o Sort eigenvectors s.t. A=A, >A,> >4

n

o Pick first k eigenvectors which
explain 95% of total variance



How many PCs?

e Have eigenvectors Uiy Usy oos U, want k<n ;% -
® eigenvalue A = variance along u, zn:,ii =
e Pick u that explain the most variance: i=1

o Sort eigenvectors s.t. )“1 > )Lz > )L3 > > )Ln " $

o Pick first k eigenvectors which
explain 95% of total variance




How many PCs?

e Have eigenvectors Uiy Usy oos U, want k<n ;ﬂi -
® eigenvalue A = variance along u, zn:,ii =
e Pick u that explain the most variance: i=1

o Sort eigenvectors s.t. )“1 > )Lz > )L3 > > )Ln " $

o Pick first k eigenvectors which
explain 95% of total variance

m Typical threshold: 90%, 95%, 99%




PCA in a Nutshell (Eigen Decomposition)

Center the data (and normalize)
Compute covariance matrix X
Find eigenvectors u and eigenvalues A

Sort eigenvalues and pick first k£ eigenvectors

o & W N =

Project data to k eigenvectors



Principal Component Analysis (12 videos, 3-15min)
https://www.youtube.com/playlist?list=PLBu09BD7ez_5_yapAg860d6jeeypRS4YM

Search

LuUise O anmensiandiily

* Datasets typically high dimensional
— vision: 107 pixels, text: 10° words
* the way we observe / record them
— true dimensionality often much lower
* amanifold (sheet) in a high-d space
* Example: handwritten digits
— 20 x 20 bitmap: {0,1}** possible eventd
+ will never see most of these events

P PLAYALL

Principal Component Analysis

12 videos = 119,895 views = Last updated on May 21,
2014

= A

9 Victor Lavrenko SUBSCRIBE 19K

Lectures 18 and 19 in the Introductory Applied Machine
Learning (IAML) course by Victor Lavrenko at the

Q

. PCA 1: curse of dimensionality

e miiﬁ, Victor Lavrenko

.| PCA2: dimensionality reduction

! Victor Lavrenko

PCA 3: direction of greatest variance

Victor Lavrenko

" PCA 4: principal components = eigenvectors

Victor Lavrenko

PCA 5: finding eigenvalues and eigenvectors

Victor Lavrenko




https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

3 YouTube ™
 Home
&  Trending
i@  Subscriptions
LIBRARY
D History

S Watch later
- Liked videos

> Neural Networks ...

MORE FROM YOUTUBE

Cross products 3BLUE1BROWN SERIES S1-E10

Cross products | Essence of linear algebra,
Chapter 10

~Essence of
linear™
’ S

3BLUET1BROWN SERIES S1-E11

9.] D“p.hl“ = Cross products in the light of linear
P PLAYALL IERDLE transformations | Essence of linear algebra
3Blue1Brown
Essence of linear algebra OIPTYCRTMITY 35LUE1BROWN SERIES S1- E12
B O

Change of basis | Essence of linear algebra,
chapter 12

14 videos = 3,671,987 views * Last updated on Aug 1,

2018

-+

Eigenvectors 3BLUE1BROWN SERIES S1+E13

Eigenvalues g . ¢
i Eigenvectors and eigenvalues | Essence of linear
3Blue1Brown ol ol
EVEPETETE algebra, chapter 13

3Blue1Brown

A geometric understanding of matrices, determinants,
eigen-stuffs and more
BULRoETUEdOl 381 UETBROWN SERIES S1-E14
spaces .
Abstract vector spaces | Essence of linear algebra,

BEETYTE chapter 14

o
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