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Supervised Learning




Unsuperuised Learning

The goal of unsupervised learning is to find patterns in the
data, and build new and useful representations of it.



Clustering
k-Means Algorithm
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k-Means: Image Segmentation

Original K=10

Credit: Christopher Bishop



k-Means Algorithm

= e IS

Define the k centroids.
Find the closest centroid & update cluster assignments.
Move the centroids to the center of their clusters.

Repeat steps 2 and 3 until the centroid stop moving a lot
at each iteration (i.e., until the algorithm converges).



k-Means Algorithm

Randomly initialize K cluster centroids jy, i,, ..., g € R”
repeatt min||x - 4|
. k
fori=1tom N

Y = index (from 1 to K) of cluster centroid closest to x
fork=1toK

WU, = mean of points assigned to cluster k



Clustering
Optimization Objective



k-Means Optimization Objective

)

= index of cluster (from 1 to K) to which example xPis currently

assighed
U, = cluster centroid &

U .o = cluster centroid of cluster to which example x“has been assignhed



k-Means Optimization Objective

()

V=i is currently

index of cluster (from 1 to K) to which example x
assighed

U, = cluster centroid &

U .o = cluster centroid of cluster to which example x“has been assignhed

Optimization objective: .
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Clustering
Random Inttialization






Random Initialization

fori=11to0 100 {
Randomly initialize k-Means.
Run k-Means. Get ¢, ..., ¢™, u,, ..., M-

Compute cost function J.

Pick clustering that gave lowest cost J(C(l), .., c™ Uiy oen ,uK).



Can we do better?

e One idea for initializing k-Means is to use a farthest-first
traversal on the data set, to pick K points that are far
away from each other.






Can we do better?

e One idea for initializing k-Means is to use a farthest-first
traversal on the data set, to pick K points that are far
away from each other.

e However, this is too sensitive to outliers.



k-Means++ (Arthur & Vassilvitski, 2007)

e It works similarly to the “farthest” heuristic.

e Choose each point at random, with probability
proportional to its squared distance from the centers

scikit-learn
(default)

chosen already.




Clustering
Choosing the number of clusters



What is the right value of K?
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What is the right value of K?
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What is the right value of K?
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Elbow Method
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Cost Function J
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Elbow Method
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Elbow Method

(\ J = Sum of Squared Error (SSE)
A

Cost Function J
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Elbow Method
(\ J = Sum of Squared Error (SSE)
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Etbew Method
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Etbew Method

Q: You find that cost function J is

much higher for k = 5 than for k =3.
What can you conclude?

>

Cost Function J

...»
1 2 3 4 5 o6 7 8 9 10

Number of clusters (K)



k-Means: Additional Issues






Outliers

Your theory is wrong!




Outliers

e I|tis often useful to discover outliers and eliminate them
before clustering.



Outliers

e I|tis often useful to discover outliers and eliminate them
before clustering.

e Techniques for identifying outlier: “Anomaly Detection”
[chap. 9], Introduction to Data Mining, 2018.






Outliers

e I|tis often useful to discover outliers and eliminate them
before clustering.

e Techniques for identifying outlier: “Anomaly Detection”
[chap. 9], Introduction to Data Mining, 2018.

e Also, we often want to eliminate small clusters because
they frequently represent groups of outliers.



Reducing the SSE with Postprocessing

e Split a cluster: the cluster with the largest SSE is usually
chosen.
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e Split a cluster: the cluster with the largest SSE is usually
chosen.

e Introduce a new cluster centroid: often the point that is
farthest from any cluster center is chosen.



Reducing the SSE with Postprocessing

e Split a cluster: the cluster with the largest SSE is usually
chosen.

e Introduce a new cluster centroid: often the point that is
farthest from any cluster center is chosen.

e Merge two clusters: The clusters with the closest
centroids are typically chosen.



k-Means Variations



Bisecting k-Means

e A straightforward extension of the basic k-means.

e To obtain k clusters:

o Split the set of all points into two clusters,
o Select one of these clusters to split,

o Repeat until k clusters have been produced.



Bisecting k-Means



Bisecting k-Means



Bisecting k-Means



Bisecting k-Means



Mini-batch k-Means

e Uses mini-batches to reduce the computation time, while
still attempting to optimize the same objective function.

e Converges faster than k-Means, but the quality of the
results is reduced.


http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans

k-Medians Clustering

e Instead of calculating the mean for each cluster to
determine its centroid, one instead calculates the median.

e Minimizing error over all clusters with respect to the
1-norm distance metric, as opposed to the square of the
2-norm distance metric (which k-Means does).


https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Norm_%28mathematics%29
https://en.wikipedia.org/wiki/Norm_%28mathematics%29

k-Medoids Clustering

e Instead of calculating the mean for each cluster to
determine its centroid, one instead calculates the medoid.

e Minimizing error over all clusters with respect to the
1-norm distance metric.

e In contrast to the k-Means, k-Medoids chooses data
points as centroids.


https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Norm_%28mathematics%29

k-Means (top) us k-Medoids (bottom)
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Credit: https://commons.wikimedia.org/wiki/File:K-means_versus_k-medoids.png




k-Means (left) us k-Medoids (right)
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Credit: https://commons.wikimedia.org/wiki/File:K-means_versus_k-medoids.png



Fuzzy Clustering (Soft Clustering)

e Each data point can belong to more than one cluster.

Hard clustering Soft clustering



Fuzzy Clustering (Soft Clustering)

e Each data point can belong to more than one cluster.
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Fuzzy Clustering (Soft Clustering)

e Each data point can belong to more than one cluster.
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