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Random initialization




Zero Initialization Symmetric Weights

e mp a =al

After each update, parameters corresponding to inputs
going into each of two hidden units are identical.



Symmetric BreaRing

e We must initialize ® to a random value in [-¢, €]
(le. [-e<O <¢))

e If the dimensions of Thetal is 3x4, Theta? is 3x4 and
Theta3is 1x4.

Thetal = random(3,4) * (2 * EPSILON) - EPSILON;
Theta?2 = random(3,4) * (2 * EPSILON) - EPSILON;
Theta3 = random(1l,4) * (2 * EPSILON) - EPSILON;
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Forward Propagation

Given one training example (x, y):

(add a®)
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Gradient Computation: Backpropagation Algorithm

Intuition: 5](.1) = “error” of nodej in layer [
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Intuition: 5](.1) = “error” of nodej in layer [ ‘
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Gradient Computation: Backpropagation Algorithm
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Backpropagation Algorithm

Training Set: (x'",y"), (x®,y®), ..., (x"™,y™)



Backpropagation Algorithm

Training Set: (x'",y"), (x'%,y?), ..., (", y™)
Set A§}) = 0 (forall Z i, )

0
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will be used as accumulators for computing

J(®)




Backpropagation Algorithm

Training Set: (x(l),y(l)) (x(z),y(z)), cees (x(’”),y(’””))
Set A} = 0 (forall L i, j)
Fori=1tom

Set gV = x®

Performed forward propagation to compute a® forl= 2,3, ..., L

Using y ). compute 5P = g'£ y
Compute 5D 542 5@
D . AD () S(+1) 0 — ()
Ay = AL+ a’s; 0@)([) J(®) = D;
o._ 1 ro
Dl] « WAU
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Gradient Descent
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A Step by Step
Backpropagation Example



b1 b2

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



Given inputs 0.05 and 0.10,
we want the neural network to output 0.01 and 0.99.

b1.35 b2 .60

Initial weights, the biases, and training inputs/outputs.

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



The Forward Pass

Here’s how we calculate the total net input for /i;:
netpy = wy * 1 + W *x 15 + by x 1

netp; = 0.15%0.054+0.2x0.14+0.35%1 =0.3775

We then squash it using the logistic function to get the output of A;:

outp = ! = ! = 0.593269992

11'—('_"‘:'}:1 l+e—U.3H:)

Carrying out the same process for h, we get:

outps = 0.596884378

b1.35

b2 .60



The Forward Pass

We repeat this process for the output layer neurons, using the output from the

hidden layer neurons as inputs.

Here’s the output for 01:

net, = ws * outy + we * outps + by x 1

nety = 0.4 % 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967 . b1.35 b2 .60

O’utol - 3 1 — 1+P~1'1105905967 - 0.75136507

1+P~nrt01

And carrying out the same process for 02 we get:

out,y = 0.772928465



The Error

We can now calculate the error for each output neuron using the squared error

function and sum them to get the total error:

Eiotat = Y 3(target — output)?

For example, the target output for 01 is 0.01 but the neural network output
0.75136507, therefore its error is:

b1.35 b2 .60
1 1

E, = L(targety — outy)? = 1(0.01 — 0.75136507)2 = 0.274811083

1
2 2

Repeating this process for 02 (remembering that the target is 0.99) we get:
E» = 0.023560026
The total error for the neural network is the sum of these errors:

Fiotal = Eo1 + Epz = 0.274811083 + 0.023560026 = 0.298371109



The BacRkprogation Pass

Output Layer

Consider ws. We want to know how much a change in W5 affects the total error,

aka (.)Ef()tal
Jws

()E otal § “ . - . = o“
a—‘w;i is read as “the partial derivative of F;,;,; with respect to Ws*. You

can also say “the gradient with respect to ws*

By applying the chain rule we know that: Inet,1 . dout,y . OFipa _ OFiopa
Ou':l;llt ows onet,; = dout,; —  Ows
OFEiotal _ OFiotal dout 1 onetoy
= = B X w5
ows dout,y — Onety ows
output w6
s net o¢| outoy E o = Y(target o1 - out )2
Etotat =Eo1+E o2
b2



The BacRkprogation Pass

We need to figure out each piece in this equation.

First, how much does the total error change with respect to the output?

Eiotal = %(tanrgetol — outy)? + 3(target,y — outy)?

aE(ulul = l r . 2-1
Fodtal = 2 x 5(target,) — outy))*™' * =1+ 0

aEtrllal

otk = —(target,; — outy) = —(0.01 — 0.75136507) = 0.74136507

‘.)”"[n] * “”l”nl (.)[‘:/n/rl/ = (‘)[:‘!nhll

output durs onet,; = dout,; —  Ows
h1
w5
output w6
s net o¢| outo E 1 = Y(target o1 - out,)?
Etota TEc1 +E o

b2



The BacRkprogation Pass

Next, how much does the output of 01 change with respect to its total net input?

The partial derivative of the logistic function is the output multiplied by 1 minus

the output:

1

O‘Utol = IFe-rctol

Joutol. — oyt (1 — outy) = 0.75136507(1 — 0.75136507) = 0.186815602

onet,q

i)ll('/,,l * U()ll/,,l (')1‘:;,,/,,/ — (‘)['j/‘,h,/
output ows, onet,; = dout,; —  Ows
h1
w5
output w6
s net o¢| outo E 1 = Y(target o1 - out,)?
Etota =Ec1+E o2

b2



The BacRkprogation Pass

Finally, how much does the total net input of 9] change with respect to w5?
nety, = ws * outy; + we * outys + by x 1

netal, — 1y outpy * w4 0+ 0 = outy = 0.593269992

ows
Putting it all together:

OEfnlﬂl — (')Elnful * (’)UUtnl * (')IICt'n]

(.)1“/1:/11/ T (‘)[:luhll

ows dout,y oneto1 ows
onet * dout |
OBtotal — ().74136507 * 0.186815602 * 0.593269992 = 0.082167041 Cws. " dneto]
w5
< W6 Nnet | outo
b2

dout duws

E o1 = o(target o4 - outy )?

Etota =Eo1+Eq



The BacRkprogation Pass

You'll often see this calculation combined in the form of the delta rule:

aEtotaI

sl = —(targeto — outor) * outsr (1 — out,n) * outp

9Ftotal and a‘"‘t"‘ which can be written as 2Etetal.
dout,y Inetyy dInetyy

Alternatively, we have
aka ¢, (the Greek letter delta) aka the node delta. We can use this to

rewrite the calculation above:

6 = aEtntaI * a(-nltol — aE{ntal
ol =

dout 1 donetyy dnet,
do1 = —(target,; — outyy) * outyy (1 — out,y)
Therefore:
9Etotal — Opr0utpy

dws



The BacRkprogation Pass

To decrease the error, we then subtract this value from the current weight

(optionally multiplied by some learning rate, eta, which we’ll set to 0.5):
wy = ws — 1 x L2etal — 0.4 — 0.5 % 0.082167041 = 0.35891648

ows

Some sources use « (alpha) to represent the learning rate, others use 7

(eta), and others even use € (epsilon).

We can repeat this process to get the new weights wg, w7, and Ws:
wg = 0.408666186
w =0.511301270

wg = 0.561370121



The BacRkprogation Pass

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for Wy, Wy,

w3, and Wy.

Big picture, here’s what we need to figure out:

aEto!a( G aEh)!uI i)O'll-tIrl allethl

dw douty dnetpq dw

b1 b2



The BacRkprogation Pass

We’re going to use a similar process as we did for the output layer, but slightly
different to account for the fact that the output of each hidden layer neuron

contributes to the output (and therefore error) of multiple output neurons. We

()Ef otal

o needs to take
Llh

know that outy, affects both out,, and out,, therefore the =

into consideration its effect on the both output neurons:

aEfotrnl p an] _|_
doutp doutpy Oouthl

Starting with O—EI—

douty,
OF,1 __ OFE. onet,1
Qouty1 ~  Onety doutpq
We can calculate ()(ZIE;‘ using values we calculated earlier:

9Eo1 _ 0Eq g;’l“;"' = (.74136507 % 0.186815602 = (.138498562

dnetyy dout



The BacRkprogation Pass

And 3{')’—:;:11 is equal to Ws:

neto = Ws * outp) + we * outpa + by * 1

Qnetol _ 4y — (.40
outpy

Plugging them in:

OEOI anl

ol — DBal , fnelal — (),138498562 * 0.40 = 0.055399425




The BacRkprogation Pass

Following the same process for 0‘2}%’% we get:

(‘.')Ollth 1

Therefore:

Obgrar — 0Fa1 | 9B _ () 055309425 + —0.019049119 = 0.036350306

doutyy —  Ooutpy doutpy

9Etal \ye need to figure out ()"Li:ll and then ‘)";i’"- for each

Now that we have Dot e )

weight:

; = 1
OUth) = Too=wetnr

Jouln. — outyy (1 — outpy) = 0.59326999(1 — 0.59326999) = 0.241300709

dInetyq



The BacRkprogation Pass

We calculate the partial derivative of the total net input to h; with respect to w;

the same as we did for the output neuron:

netp; = wy ¥, + Wy *x 29 + by x 1

Onetp1 __
B 1 — 0.05

Putting it all together:

()Etotnl T é)Etol(JI aOUthl a'llethl
Jwn dout dnetpq Jdw

9Beatal — (),036350306 * 0.241300709 * 0.05 = 0.000438568

dwq



The BacRkprogation Pass

We can now update w;:

wy =w; — N * ‘—)%l—;—’ = (0.15 — 0.5 % 0.000438568 = 0.149780716

Repeating this for w9, W3, and Wy
wy = 0.19956143
wi = 0.24975114
w; = 0.29950229

Finally, we've updated all of our weights! When we fed forward the 0.05 and 01
inputs originally, the error on the network was 0.298371109. After this first round
of backpropagation, the total error is now down to 0.291027924. It might not
seem like much, but after repeating this process 10,000 times, for example, the
error plummets to 0.0000351085. At this point, when we feed forward 0.05 and
0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and
0.984065734 (vs 0.99 target).



Neural NetworRs and Deep Learning: http://neuralnetworksanddeeplearning.com

CHAPTER 3

Improving the way neural networks learn

When a golf player is first learning to play golf, they usually spend
most of their time developing a basic swing. Only gradually do they
develop other shots, learning to chip, draw and fade the ball,
building on and modifying their basic swing. In a similar way, up to
now we've focused on understanding the backpropagation
algorithm. It's our "basic swing", the foundation for learning in
most work on neural networks. In this chapter I explain a suite of
techniques which can be used to improve on our vanilla
implementation of backpropagation, and so improve the way our

networks learn.

The techniques we'll develop in this chapter include: a better
choice of cost function, known as the cross-entropy cost function;
four so-called "regularization" methods (L1 and L2 regularization,
dropout, and artificial expansion of the training data), which make
our networks better at generalizing beyond the training data; a
better method for initializing the weights in the network; and a set

of heuristics to help choose good hyper-parameters for the

notwrarly T11 alen nvamnowr covvaral onthor technialniec 1n lace danth

Neural Networks and Deep

Learning
What this book is about
On the exercises and problems

» Using neural nets to recognize
handwritten digits

» How the backpropagation
algorithm works

» Improving the way neural
networks learn

» A visual proof that neural nets can
compute any function

» Why are deep neural networks
hard to train?

» Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $5,
but you can choose the amount.
Donate
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Multi-class Classification
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Softmax Classification

The output layer is typically modified by replacing the individual
activation functions by a shared softmax function.
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Softmax Classification

The output layer is typically modified by replacing the individual
activation functions by a shared softmax function.
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Softmax Classification

The output layer is typically modified by replacing the individual
activation functions by a shared softmax function.
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Softmax Classification

Cat 5.1 164.0
Dog 3.2 =) 24.5
Frog -1.7 0.18
Car -2.0 0.13
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