

Artificial Neural Networks Machine Learning

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, September 11, 2019

Many inventions were inspired by Nature ...

It seems logical to look at the **brain's architecture** for inspiration on how to build an intelligent machine.

The Perceptron

Neuron Model: Logistic Unit x_0 $- \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$ x = $\theta =$ θ $h_{\theta}(x)$ Η x_2 Output θ_{3} *x*₃ $\frac{1}{1+e^{-\theta^T x}}$

Inputs

Sigmoid (Logistic) activation function

weights

Neuron Model: Logistic Unit

Examples

Simple Example: AND

 $x_1, x_2 \in \{0, 1\}$ $y = x_1 \text{ AND } x_2$

Simple Example: AND

 $x_1, x_2 \in \{0, 1\}$ $y = x_1 \text{ AND } x_2$

Simple Example: AND

 $x_1, x_2 \in \{0, 1\}$ $y = x_1 \text{ AND } x_2$

What does an artificial neuron do?

It calculates a "weighted sum" of its input, adds a bias and then decides whether it should be "fired" or not.

How do we decide whether the neuron should fire or not?

We decided to add "activation functions" for this purpose.

Step Function

Its output is **1 (activated)** when value > 0 (threshold) and outputs a **0 (not activated)** otherwise.

Step Function: Problem?

- Binary classifier ("yes" or "no", activate or not activate). A Step function could do that for you!
- Multi classifier (class1, class2, class3, etc). What will happen if more than 1 neuron is "activated"?

Sigmoid Function

- The output of the activation function is always going to be in range **(0,1)**.
- It is nonlinear in nature.
- Combinations of this function are also nonlinear! Great!!

Sigmoid Function: Problem?

- Towards either end of the sigmoid function, the $\sigma(x)$ values tend to respond very less to changes in x.
- The problem of "vanishing gradients".
 - Cannot make significant change because of the extremely small value.

Tanh Function

- The output of the activation function is always going to be in range (-1,1).
- It is nonlinear in nature.
- Combinations of this function are also nonlinear! Great!!

Tanh Function: Problem?

• Like sigmoid, tanh also has the vanishing gradient problem.

ReLU (Rectified Linear Unit) Function

- It gives an output x if x is positive and
 0 otherwise. The range is [0, inf).
- It is nonlinear in nature. Combinations of this function are also nonlinear!
- Sparsity of the activation!

 $\operatorname{ReLU}(x) = \max(0,x)$

ReLU Function: Problem?

- Because of the horizontal line in ReLU(for negative x), the gradient can go towards 0.
- "Dying ReLU problem": several neurons can just die and not respond making a substantial part of the network passive.

Leaky ReLU Function

 It gives an output x if x is positive and 0 otherwise. The range is [0, inf).

 (Leaky) ReLU is less computationally expensive than *tanh* and *sigmoid* because it involves simpler mathematical operations.

Leaky ReLU(x) = = $\begin{cases} x \text{ if } x > 0\\ 0.01x \text{ otherwise} \end{cases}$

Ok! Which One Do We Use?

- If you don't know the nature of the function you are trying to learn, start with ReLU.
- You can use your own custom functions too!

Neural Network

Neural Network

Layer 1 =Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer

Layer 1 Layer 2 Layer 3

Layer 1 = Input layer Layer 2 = Hidden layer Layer 3 = Output layer

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

"activation" of unit *i* in layer *j* (*j*) matrix of weights controlling function mapping from layer *j* to layer *j* + 1

 $a_i^{(j)}$ "activation" of unit *i* in layer *j* $\Theta^{(j)}$ matrix of weights controlling function mapping from layer *j* to layer *j* + 1

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

Feedforward Neural Network (forward propagating)

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

- The first thing we need to do is to select an architecture.
- **Input units:** dimensionality of the problem (features *x*)

- The first thing we need to do is to select an architecture.
- **Input units:** dimensionality of the problem (features *x*)
- **Output units:** Number of classes

- The first thing we need to do is to select an architecture.
- **Input units:** dimensionality of the problem (features *x*)
- **Output units:** Number of classes
- Hidden units (per layer)

- Hidden units (per layer):
 - Usually, the more the better
 - Good start: a number close to the number of input
 - Default: 1 hidden layer. If you have >1 hidden layer, then it is interesting that you have the same number of units in every hidden layer.

Zero Initialization

Symmetric Weights

After each update, parameters corresponding to inputs going into each of two hidden units are identical.

Symmetric Breaking

- We must initialize Θ to a random value in [-ε, ε]
 (i.e. [-ε ≤ Θ ≤ ε])
- If the dimensions of Theta1 is 3x4, Theta2 is 3x4 and Theta3 is 1x4.

Theta1 = random(3,4) * (2 * EPSILON) - EPSILON;

Theta2 = random(3,4) * (2 * EPSILON) - EPSILON;

Theta3 = random(1, 4) * (2 * EPSILON) - EPSILON;

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)}) \quad (\text{add } a_0^{(2)})$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$a^{(3)} = g(z^{(3)}) \quad (\text{add } a_0^{(3)})$$

$$z^{(4)} = \Theta^{(3)}a^{(3)}$$

$$a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

Given one training example (x, y):

Given one training example (x, y):

 $a^{(1)} = x$

Given one training example (x, y):

 $a^{(1)} = x$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

Given one training example (x, y):

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)}a^{(1)}$ $a^{(2)} = g(z^{(2)}) \text{ (add } a^{(2)}_0)$

Given one training example (x, y):

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)}a^{(1)}$ $a^{(2)} = g(z^{(2)}) \quad (\text{add } a^{(2)}_0)$ $z^{(3)} = \Theta^{(2)}a^{(2)}$

Given one training example (x, y):

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)}a^{(1)}$ $a^{(2)} = g(z^{(2)}) \quad (\text{add } a_0^{(2)})$ $z^{(3)} = \Theta^{(2)}a^{(2)}$ $a^{(3)} = g(z^{(3)}) \quad (\text{add } a_0^{(3)})$

Given one training example (x, y):

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)}a^{(1)}$ $a^{(2)} = g(z^{(2)}) \quad (\text{add } a_0^{(2)})$ $z^{(3)} = \Theta^{(2)} a^{(2)}$ $a^{(3)} = g(z^{(3)}) \quad (\text{add } a_0^{(3)})$ $z^{(4)} = \Theta^{(3)}a^{(3)}$

Given one training example (x, y):

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)}a^{(1)}$ $a^{(2)} = g(z^{(2)}) \quad (\text{add } a_0^{(2)})$ $z^{(3)} = \Theta^{(2)} a^{(2)}$ $a^{(3)} = g(z^{(3)}) \quad (\text{add } a_0^{(3)})$ $z^{(4)} = \Theta^{(3)} a^{(3)}$ $a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$

Intuition: $\delta_j^{(l)} =$ "error" of node *j* in layer *l*.

Intuition:
$$\delta_{i}^{(l)}$$
 = "error" of node j in layer l

For each output unit (layer L = 4)

$$\delta_j^{(4)} = a_j^{(4)} - y_j$$

Intuition:
$$\delta_{i}^{(l)}$$
 = "error" of node j in layer i

For each output unit (layer L = 4)

$$\delta_j^{(4)} = a_j^{(4)} - y_j$$
$$(h_{\Theta}(x))_j$$

Intuition:
$$\delta_{i}^{(l)}$$
 = "error" of node j in layer l

For each output unit (layer L = 4)

$$\delta_j^{(4)} = a_j^{(4)} - y_j$$

Vectorizing it, we have:

$$\delta^{(4)} = a^{(4)} - y$$

Intuition:
$$\delta_j^{(l)} =$$
 "error" of node *j* in layer *l*.

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

 $\delta^{(2)}$

Intuition:
$$\delta_j^{(l)} =$$
 "error" of node *j* in layer *l*.

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)}$$

Intuition:
$$\delta_j^{(l)} =$$
 "error" of node *j* in layer *l*.

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot *g'(z^{(3)})$$

• element-wise multiplication

Intuition:
$$\delta_j^{(l)} =$$
 "error" of node *j* in layer *l*.

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot *g'(z^{(3)})$$
$$\delta^{(2)} = (\Theta^{(2)})^{\mathrm{T}} \delta^{(3)} \cdot *g'(z^{(2)})$$

• element-wise multiplication
Gradient Computation: Backpropagation Algorithm

Intuition:
$$\delta_j^{(l)} =$$
 "error" of node *j* in layer *l*.

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot *g'(z^{(3)})$$
$$\delta^{(2)} = (\Theta^{(2)})^{\mathrm{T}} \delta^{(3)} \cdot *g'(z^{(2)})$$

$$a^{(3)}(1 - a^{(3)})$$

Derivative of Logistic Function

g

$$g(z) = \frac{1}{1 + \mathrm{e}^{-z}}$$

$$(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

= $\frac{0 \cdot (1 + e^{-z}) - 1 \cdot (-e^{-z})}{(1 + e^{-z})^2}$ (quotient rule)
= $\frac{e^{-z}}{(1 + e^{-z})^2}$
= $\left(\frac{1}{1 + e^{-z}}\right) \left(1 - \frac{1}{1 + e^{-z}}\right)$
= $g(z)(1 - g(z))$

Gradient Computation: Backpropagation Algorithm

Intuition:
$$\delta_{j}^{(l)}$$
 = "error" of node j in layer l

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot *g'(z^{(3)})$$
$$\delta^{(2)} = (\Theta^{(2)})^{\mathrm{T}} \delta^{(3)} \cdot *g'(z^{(2)})$$

Gradient Computation: Backpropagation Algorithm

Intuition:
$$\delta_{i}^{(l)}$$
 = "error" of node j in layer l

For each output unit (layer L = 4)

$$\delta_{j}^{(4)} = a_{j}^{(4)} - y_{j}$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot *g'(z^{(3)})$$

$$\delta^{(2)} = (\Theta^{(2)})^{\mathrm{T}} \delta^{(3)} \cdot g'(z^{(2)})$$

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = a_j^{(l)} \delta_i^{(l+1)}$$

Training a Neural Network

Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$

Training Set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)

will be used as accumulators for computing $\frac{\partial}{\partial \Theta_{i,i}^{(l)}} J(\Theta)$

Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*) For *i* = 1 to *m*

Set $a^{(1)} = x^{(i)}$

Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)

For i = 1 to m

Set $a^{(1)} = x^{(i)}$

Performed forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., L

- Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)
- For i = 1 to m

Set $a^{(1)} = x^{(i)}$

Performed forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., LUsing $y^{(i)}$, compute $\delta^{(L)} = a^{(L)} - y^{(i)}$

- Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)
- For i = 1 to m

Set $a^{(1)} = x^{(i)}$

Performed forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., LUsing $y^{(i)}$, compute $\delta^{(L)} = a^{(L)} - y^{(i)}$ Compute $\delta^{(L-1)}, \delta^{(L-2)}, ..., \delta^{(2)}$

Intuition:
$$\delta_j^{(l)}$$
 = "error" of node *j* in layer *l*

For each output unit (layer L = 4)

$$\delta_j^{(4)} = a_j^{(4)} - y_j$$

For each hidden unit

$$\delta^{(3)} = (\Theta^{(3)})^{\mathrm{T}} \delta^{(4)} \cdot *g'(z^{(3)}) = a^{(3)}(1 - a^{(3)})$$
$$\delta^{(2)} = (\Theta^{(2)})^{\mathrm{T}} \delta^{(3)} \cdot *g'(z^{(2)})$$

Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)

For i = 1 to m

Set $a^{(1)} = x^{(i)}$

Performed forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., LUsing $y^{(i)}$, compute $\delta^{(L)} = a^{(L)} - y^{(i)}$ Compute $\delta^{(L-1)}, \delta^{(L-2)}, ..., \delta^{(2)}$ $\Delta_{ij}^{(l)} := \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$

- Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)
- For i = 1 to m

Set $a^{(1)} = x^{(i)}$

Performed forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., LUsing $y^{(i)}$, compute $\delta^{(L)} = a^{(L)} - y^{(i)}$ Compute $\delta^{(L-1)}, \delta^{(L-2)}, ..., \delta^{(2)}$ $\Delta_{ij}^{(l)} := \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ $D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)}$

- Training Set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$ Set $\Delta_{ij}^{(l)} = 0$ (for all *l*, *i*, *j*)
- For i = 1 to m

Set $a^{(1)} = x^{(i)}$

Performed forward propagation to compute $a^{(l)}$ for l = 2, 3, ..., LUsing $y^{(i)}$, compute $\delta^{(L)} = a^{(L)} - y^{(i)}$ Compute $\delta^{(L-1)}, \delta^{(L-2)}, ..., \delta^{(2)}$ $\Delta_{ij}^{(l)} := \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ $D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)}$

Training a Neural Network

Gradient Descent

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

Want $\min_{\Theta} J(\Theta)$: repeat {

$$\Theta_{ij}^{(l)} := \Theta_{ij}^{(l)} - \alpha \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Training a Neural Network

1. It depends on the meta-parameters of the network (how many layers, how complex the nonlinear functions are).

- It depends on the meta-parameters of the network (how many layers, how complex the nonlinear functions are).
- **2.** It depends on the learning rate.

- 1. It depends on the meta-parameters of the network (how many layers, how complex the nonlinear functions are).
- **2.** It depends on the learning rate.
- **3.** It depends on the optimization method.

http://ruder.io/optimizing-gradient-descent/

An overview of gradient descent optimization algorithms 🛩

Sebastian Ruder

I'm a PhD student in Natural Language Processing and a research scientist at AYLIEN. I blog about Machine Learning, Deep Learning, NLP, and startups.

Credit: Alec Radford.

- 1. It depends on the meta-parameters of the network (how many layers, how complex the nonlinear functions are).
- **2.** It depends on the learning rate.
- **3.** It depends on the optimization method.
- 4. It depends on the random initialization of the network.

- 1. It depends on the meta-parameters of the network (how many layers, how complex the nonlinear functions are).
- **2.** It depends on the learning rate.
- **3.** It depends on the optimization method.
- 4. It depends on the random initialization of the network.
- 5. It depends on the quality of the training set.

Neural Networks (3Blue1Brown)

	YouTube ^{BR}	Search			Q			*** *** ***	Ø	
↑	Home Neu	Neural Networks		SEASON 3 👻						
ā	Subscriptions			Neural Networks 3BLUE1BROWN SERIES \$3 • E1 1 But what *is* a Neural Network? Deep learning, chapter 1 28Lue1Brown 38Lue1Brown						
	History Watch later Neural ne	PLAY ALL PLAY ALL Neural networks 4 videos • 320,262 views • Last updated on Aug 1, 2018 =↓	2	How machines learn	earn 3BLUE1BROWN SERIES S3 • E2 Gradient descent, how neural networks learn Deep learning, chapter 1:01 3Blue1Brown					
	Liked videos 4 videos • 320,2 Chansons Franca =+ Show more		3	Backpropagation	3BLUE1BROWN SERIES S3 • E3 What is backpropagation re 3Blue1Brown	ally doing? Deep learning,	, chapt	er 3		
SUBS	CRIPTIONS 3Blue	1Brown SUBSCRIBED 1.1M	4	Backpropagation calculus 10:18	3BLUE1BROWN SERIES S3 • E4 Backpropagation calculus 3Blue1Brown	Deep learning, chapter 4				

Neural Networks Demystified (in Python)

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 10
- Pattern Recognition and Machine Learning, Chap. 5
- Pattern Classification, Chap. 6
- Free online book: http://neuralnetworksanddeeplearning.com

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 4 & 5
- https://www.coursera.org/learn/neural-networks