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REC    D
reasoning for complex data



Many inventions were inspired 
by Nature ...



It seems logical to look at the 
brain’s architecture for inspiration on 
how to build an intelligent machine.





The Perceptron



Neuron Model: Logistic Unit

x1

x2

x3

Inputs



Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Logistic
function

=
+



Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output
Logistic
function

=
+



Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output

Sigmoid (Logistic) 
activation function

=
+

weights



Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output

Sigmoid (Logistic) 
activation function

=
+

x0

𝜃0

weights



Examples
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Simple Example: OR
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What does an 
artificial neuron do? 



It calculates a “weighted sum” of its input, 
adds a bias and then decides whether it 
should be “fired” or not.



How do we decide whether 
the neuron should fire or not?



We decided to add “activation functions” 
for this purpose.



Step Function

Its output is 1 (activated) when value > 0 (threshold) and 
outputs a 0 (not activated) otherwise.
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Step Function: Problem?

● Binary classifier (“yes” or “no”, activate or not activate). A 
Step function could do that for you! 

● Multi classifier (class1, class2, class3, etc). What will 
happen if more than 1 neuron is “activated”?



Sigmoid Function

● The output of the activation function 
is always going to be in range (0,1).

● It is nonlinear in nature. 

● Combinations of this function are 
also nonlinear! Great!!
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Sigmoid Function: Problem?

● Towards either end of the sigmoid function, the 𝜎(x) 
values tend to respond very less to changes in x. 

● The problem of “vanishing gradients”. 
○ Cannot make significant change because of the 

extremely small value.



Tanh Function

● The output of the activation function 
is always going to be in range (-1,1).

● It is nonlinear in nature. 

● Combinations of this function are 
also nonlinear! Great!!
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Tanh Function: Problem?

● Like sigmoid, tanh also has the vanishing gradient 
problem.



ReLU (Rectified Linear Unit) Function

● It gives an output x if x is positive and 
0 otherwise. The range is [0, inf).

● It is nonlinear in nature. Combinations 
of this function are also nonlinear! 

● Sparsity of the activation!
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ReLU Function: Problem?

● Because of the horizontal line in ReLU( for negative x ), 
the gradient can go towards 0.

● “Dying ReLU problem”: several neurons can just die and 
not respond making a substantial part of the network 
passive.



Leaky ReLU Function
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● It gives an output x if x is positive 
and 0 otherwise. The range is [0, inf).

● (Leaky) ReLU is less computationally 
expensive than tanh and sigmoid 
because it involves simpler 
mathematical operations.



Ok! Which One Do We Use?

● If you don’t know the nature of the function you are 
trying to learn, start with ReLU.

● You can use your own custom functions too!



Neural Network
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Training a Neural Network

● Hidden units (per layer): 

○ Usually, the more the better 

○ Good start: a number close to the number of input 

○ Default: 1 hidden layer. If you have >1 hidden layer, 
then it is interesting that you have the same number 
of units in every hidden layer.
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Zero Initialization
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After each update, parameters corresponding to inputs 
going into each of two hidden units are identical.

Symmetric Weights



Symmetric Breaking

● We must initialize 𝚯 to a random value in [-𝜀, 𝜀]              
(i.e. [-𝜀 ≤ 𝚯 ≤ 𝜀])

● If the dimensions of Theta1 is 3x4, Theta2 is 3x4 and 
Theta3 is 1x4.

Theta1 = random(3,4) * (2 * EPSILON) - EPSILON;    
Theta2 = random(3,4) * (2 * EPSILON) - EPSILON;   
Theta3 = random(1,4) * (2 * EPSILON) - EPSILON;



Training a Neural Network
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Vectorizing it, we have: 
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Derivative of Logistic Function 
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Training a Neural Network



Gradient Descent

Want                 :

repeat {

  

 }



Training a Neural Network
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1. It depends on the meta-parameters of the network (how 
many layers, how complex the nonlinear functions are).

2. It depends on the learning rate. 
3. It depends on the optimization method.

How many iterations are needed to converge?



● Momentum
● Nesterov 
● Adagrad

● Adadelta
● RMSprop
● Adam

● AdaMax
● Nadam

http://ruder.io/optimizing-gradient-descent/



Credit: Alec Radford.
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1. It depends on the meta-parameters of the network (how 
many layers, how complex the nonlinear functions are).

2. It depends on the learning rate. 
3. It depends on the optimization method.
4. It depends on the random initialization of the network. 
5. It depends on the quality of the training set. 

How many iterations are needed to converge?



Neural Networks (3Blue1Brown)

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi


Neural Networks Demystified (in Python)

https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
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