
Artificial Neural Networks
Machine Learning

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, September 11, 2019

REC D
reasoning for complex data

Many inventions were inspired
by Nature ...

It seems logical to look at the
brain’s architecture for inspiration on
how to build an intelligent machine.

The Perceptron

Neuron Model: Logistic Unit

x1

x2

x3

Inputs

Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Logistic
function

=
+

Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output
Logistic
function

=
+

Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output

Sigmoid (Logistic)
activation function

=
+

weights

Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output

Sigmoid (Logistic)
activation function

=
+

x0

𝜃0

weights

Examples

Simple Example: AND

+1

x1

x2

x1, x2 ∈ {0,1} y = x1 AND x2

Simple Example: AND

+1

x1

x2

-30

+20

+20

x1, x2 ∈ {0,1} y = x1 AND x2

Simple Example: AND

+1

x1

x2

-30

+20

+20

x1, x2 ∈ {0,1} y = x1 AND x2

= g(-30 + 20x1 + 20x2)

Simple Example: AND

+1

x1

x2

-30

+20

+20

x1, x2 ∈ {0,1} y = x1 AND x2

x1 x2

0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1

1

0.5

0

g(z)

z

= g(-30 + 20x1 + 20x2)

Simple Example: AND

+1

x1

x2

-30

+20

+20

x1, x2 ∈ {0,1} y = x1 AND x2

x1 x2

0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1

1

0.5

0

g(z)

z

= g(-30 + 20x1 + 20x2)

Simple Example: OR

+1

x1

x2

-10

+20

+20

x1, x2 ∈ {0,1} y = x1 OR x2

x1 x2

0 0 g(-10) ≈ 0
0 1 g(10) ≈ 1
1 0 g(10) ≈ 1
1 1 g(30) ≈ 1

1

0.5

0

g(z)

z

= g(-10 + 20x1 + 20x2)

What does an
artificial neuron do?

It calculates a “weighted sum” of its input,
adds a bias and then decides whether it
should be “fired” or not.

How do we decide whether
the neuron should fire or not?

We decided to add “activation functions”
for this purpose.

Step Function

Its output is 1 (activated) when value > 0 (threshold) and
outputs a 0 (not activated) otherwise.

1

0.5

0 z

Step Function: Problem?

● Binary classifier (“yes” or “no”, activate or not activate). A
Step function could do that for you!

● Multi classifier (class1, class2, class3, etc). What will
happen if more than 1 neuron is “activated”?

Sigmoid Function

● The output of the activation function
is always going to be in range (0,1).

● It is nonlinear in nature.

● Combinations of this function are
also nonlinear! Great!!

1

0.5

0 x

Sigmoid Function: Problem?

● Towards either end of the sigmoid function, the 𝜎(x)
values tend to respond very less to changes in x.

● The problem of “vanishing gradients”.
○ Cannot make significant change because of the

extremely small value.

Tanh Function

● The output of the activation function
is always going to be in range (-1,1).

● It is nonlinear in nature.

● Combinations of this function are
also nonlinear! Great!!

1

0

-1 x

Tanh Function: Problem?

● Like sigmoid, tanh also has the vanishing gradient
problem.

ReLU (Rectified Linear Unit) Function

● It gives an output x if x is positive and
0 otherwise. The range is [0, inf).

● It is nonlinear in nature. Combinations
of this function are also nonlinear!

● Sparsity of the activation!

20

10

0 x

ReLU Function: Problem?

● Because of the horizontal line in ReLU(for negative x),
the gradient can go towards 0.

● “Dying ReLU problem”: several neurons can just die and
not respond making a substantial part of the network
passive.

Leaky ReLU Function
20

10

0 x

● It gives an output x if x is positive
and 0 otherwise. The range is [0, inf).

● (Leaky) ReLU is less computationally
expensive than tanh and sigmoid
because it involves simpler
mathematical operations.

Ok! Which One Do We Use?

● If you don’t know the nature of the function you are
trying to learn, start with ReLU.

● You can use your own custom functions too!

Neural Network

x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

Layer 1 = Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer

x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

Layer 1 = Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer

x0 a0
(2) bias unit

x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

x0 a0
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)

a1
(3)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)a1
(3)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

a1
(3)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

a1
(3)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

a1
(3)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

a1
(3)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯(j)

Feedforward Neural Network
(forward propagating)

a1
(3)

Training a Neural Network

Training a Neural Network

● The first thing we need to do is to select an architecture.

● Input units: dimensionality of the problem (features x)

Training a Neural Network

● The first thing we need to do is to select an architecture.

● Input units: dimensionality of the problem (features x)

● Output units: Number of classes

Training a Neural Network

● The first thing we need to do is to select an architecture.

● Input units: dimensionality of the problem (features x)

● Output units: Number of classes

● Hidden units (per layer)

Training a Neural Network

● Hidden units (per layer):

○ Usually, the more the better

○ Good start: a number close to the number of input

○ Default: 1 hidden layer. If you have >1 hidden layer,
then it is interesting that you have the same number
of units in every hidden layer.

Training a Neural Network

Training a Neural Network

Zero Initialization

x2

x1

 1 1

a1
(2)

a2
(2)

a1
(3)

After each update, parameters corresponding to inputs
going into each of two hidden units are identical.

Symmetric Weights

Symmetric Breaking

● We must initialize 𝚯 to a random value in [-𝜀, 𝜀]
(i.e. [-𝜀 ≤ 𝚯 ≤ 𝜀])

● If the dimensions of Theta1 is 3x4, Theta2 is 3x4 and
Theta3 is 1x4.

Theta1 = random(3,4) * (2 * EPSILON) - EPSILON;
Theta2 = random(3,4) * (2 * EPSILON) - EPSILON;
Theta3 = random(1,4) * (2 * EPSILON) - EPSILON;

Training a Neural Network

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Given one training example (x, y):

Forward Propagation

Training a Neural Network

Training a Neural Network

Training a Neural Network

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

Vectorizing it, we have:

Training a Neural Network

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

'
element-wise multiplication

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

'
element-wise multiplication

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

'
element-wise multiplication

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

'
element-wise multiplication

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

'

Derivative of Logistic Function

+
+

+

+
−

+

−

=

=

=

=

=

= + (quotient rule)

+

 −

−

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

' No .

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit

Gradient Computation: Backpropagation Algorithm

'

'

Training a Neural Network

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

will be used as accumulators for computing

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

For each hidden unit
'

'

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

Backpropagation Algorithm
Training Set:

Set (for all l, i, j)

For i = 1 to m

Set

Performed forward propagation to compute for l = 2, 3, …, L

Using , compute

Compute

=

Training a Neural Network

Gradient Descent

Want :

repeat {

 }

Training a Neural Network

How many iterations are needed to converge?

1. It depends on the meta-parameters of the network (how
many layers, how complex the nonlinear functions are).

How many iterations are needed to converge?

1. It depends on the meta-parameters of the network (how
many layers, how complex the nonlinear functions are).

2. It depends on the learning rate.

How many iterations are needed to converge?

1. It depends on the meta-parameters of the network (how
many layers, how complex the nonlinear functions are).

2. It depends on the learning rate.
3. It depends on the optimization method.

How many iterations are needed to converge?

● Momentum
● Nesterov
● Adagrad

● Adadelta
● RMSprop
● Adam

● AdaMax
● Nadam

http://ruder.io/optimizing-gradient-descent/

Credit: Alec Radford.

1. It depends on the meta-parameters of the network (how
many layers, how complex the nonlinear functions are).

2. It depends on the learning rate.
3. It depends on the optimization method.
4. It depends on the random initialization of the network.

How many iterations are needed to converge?

1. It depends on the meta-parameters of the network (how
many layers, how complex the nonlinear functions are).

2. It depends on the learning rate.
3. It depends on the optimization method.
4. It depends on the random initialization of the network.
5. It depends on the quality of the training set.

How many iterations are needed to converge?

Neural Networks (3Blue1Brown)

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Neural Networks Demystified (in Python)

https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

References

Machine Learning Books

● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 10

● Pattern Recognition and Machine Learning, Chap. 5

● Pattern Classification, Chap. 6

● Free online book: http://neuralnetworksanddeeplearning.com

Machine Learning Courses

● https://www.coursera.org/learn/machine-learning, Week 4 & 5

● https://www.coursera.org/learn/neural-networks

