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REC    D
reasoning for complex data



How well is my model doing?



Today’s Agenda

● Testing and Error Metrics

○ Training, Testing

○ Accuracy

○ Precision

○ Recall

○ F-Score
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Why validating?



Friends don’t let friends 
use testing data 
for training



Data

Training Test

Training TestValidation
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k×2-fold Cross Validation
Training 

Validation

k = 5

...
k times = k×2 folds
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Evaluation Metrics

How well is my model doing?
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Credit Card Fraud
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Model: All transactions are fraudulent.



Credit Card Fraud

! ! !

284,335 472

Model: All transactions are fraudulent.

Problem: I’m accidently catching all the good ones!



Medical Model

Health Sick



Spam Classifier Model

Not Spam Spam
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Type I Error
(False Positive)

Type II Error
(False Negative)

You’re pregnant.

You’re not pregnant.



Diagnosed 
Sick

Diagnosed 
Healthy

Sick 1000 200

Healthy 800 8000

Confusion Matrix Table

Diagnosis

Pa
ti
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ts

10,000 
patients



Confusion Matrix Table

Sent to Spam 
Folder

Sent to Inbox

Spam

Not Spam

True 
Positive

False 
Negative

True 
Negative

False 
Positive



Spam Folder Inbox

Spam 100 170

Not Spam 30 700

Confusion Matrix Table

Folder

Em
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l

1,000 
emails
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Negative
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6

True positives
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Guessed 
Class 1  

Guessed 
Class 2

Guessed 
Class 3

Class 1 5 2 1

Class 2 3 6 0

Class 3 0 1 7
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Accuracy = 

Diagnosis
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ts

Accuracy: 
Out of all the patients, how 
many did we classify correctly?

1,000 + 8,000
10,000  = 90%
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Accuracy: 
Out of all the emails, how 
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Accuracy

Accuracy = 

Accuracy: 
Out of all the emails, how 
many did we classify correctly?

100 + 700
1,000  = 80%

Spam Folder Inbox

Spam 100 170

Not Spam 30 700
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Accuracy

Accuracy = 

Accuracy: 
Out of all the data, how many 
points did we classify correctly?

Correctly Classified Points
All points

11
11 + 3  = 78.57%



Accuracy

Accuracy = 

Accuracy: 
Out of all the transactions, 
how many did we classify 
correctly?

0 + 284,335
284,807  = 99.83%
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Fraudulent 0 472
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Fraudulent

0 284,335
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284,335 + 0
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Spam Folder Inbox

Spam 100 170

Not Spam 30 700
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2  = 66.5% 
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Overall (Normalized) Accuracy
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8000
8000 + 800

 = 

1000
1000 + 200
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83.3 + 90.9
2  = 87.1% 

 Accuracy = 90%

TP
TP + FN
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Evaluation Metrics

Medical Model

False positives ok
False negatives NOT ok

Spam Detector

False positives NOT ok
False negatives ok



Evaluation Metrics

Medical Model

False positives ok
False negatives NOT ok

High Recall

Spam Detector

False positives NOT ok
False negatives ok

High Precision
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Out of all the patients we 
diagnosed with illness, how 
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1,000
1,000 + 800  = 55.7%



Precision

Precision: 
Out of all the emails sent to the 
spam inbox, how many did 
were actually spam?

Spam Folder Inbox

Spam 100 170

Not Spam 30 700

Folder
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Precision

Precision = 

Precision: 
Out of all the emails sent to the 
spam inbox, how many did 
were actually spam?

100
100 + 300  = 76.9%

Spam Folder Inbox

Spam 100 170

Not Spam 30 700

Folder
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Precision: 
Out of all the points we’ve predicted 
to be positive, how many are correct?
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Precision

Precision = 

Precision: 
Out of all the points we’ve predicted 
to be positive, how many are correct?

True Positives
True Positives + False Positives
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Sick 1,000 200

Healthy 800 8,000
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Recall = 

Diagnosis

Pa
ti

en
ts

Recall: 
Out of all the sick patients, 
how many did we correctly 
diagnose as sick?

1,000
1,000 + 200  = 83.3%



Recall

Recall: 
Out of all the spam emails, 
how many were correctly sent 
to the spam folder?

Spam Folder Inbox

Spam 100 170

Not Spam 30 700

Folder

Em
ai

l



Recall

Recall = 

Recall: 
Out of all the spam emails, 
how many were correctly sent 
to the spam folder?

100
100 + 170  = 37%

Spam Folder Inbox

Spam 100 170

Not Spam 30 700

Folder

Em
ai

l
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Recall: 
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how many did we correctly predict?
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Recall = 

True Positives
True Positives + False Negatives

Recall: 
Out of all the points labelled positive, 
how many did we correctly predict?



Recall

Recall = 

True Positives
True Positives + False Negatives

6
6 + 1  = 85.7%

Recall: 
Out of all the points labelled positive, 
how many did we correctly predict?



Precision and Recall

Medical Model

Precision: 55.7%
Recall: 83.3%

Spam Detector

Precision: 76.9%
Recall: 37%



One Score?

Medical Model

Precision: 55.7%
Recall: 83.3%

Average = 69.5%

Spam Detector

Precision: 76.9%
Recall: 37%

Average = 56.9%
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Credit Card Fraud

! ! !

284,335 472

Model: All transactions are fraudulent.

Recall = 
472
472  = 100%Precision = 

472
284,807  = 0.016%
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Precision: 1
Recall: 0
Average = 0.5
Harmonic Mean = 0

y

x

Arithmetic Mean =

Harmonic Mean = 

x + y
2

2xy
x + y

Precision: 0.2
Recall: 0.8
Average = 0.5
Harmonic Mean = 0.32

F1 Score = Harmonic Mean (Precision, Recall)



F1 Score

Medical Model

Precision: 55.7%
Recall: 83.3%
Average = 69.5%
F1 Score = 66.8%



F1 Score

Spam Detector

Precision: 76.9%
Recall: 37%
Average = 56.9%
F1 Score = 50.0%



F1 Score

Precision: 75%
Recall: 85.7%
Average = 80.3%
F1 Score = 80%
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