

Testing and Error Metrics Machine Learning

(Largely based on slides from Luis Serrano)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, August 28, 2019

How well is my model doing?

Today's Agenda

- Testing and Error Metrics
 - Training, Testing
 - Accuracy

_ __ __

- Precision
- Recall
- F-Score

Which model is better?

Which model is better?

Which model is better?

Friends don't let friends use testing data for training

Training Validation

k = 5

 \mathbf{k} times = $\mathbf{k} \times 2$ folds

MO850A: Tópicos Avançados em Ciência da Computação I — Scientific Methodology Prof. Jacques Wainer (IC/Unicamp)

Evaluation Metrics

How well is my model doing?

284,335 472

Model: All transactions are good.

284,335 472

Model: All transactions are good.

$$Correct = \frac{284,335}{284,807} = 99.83\%$$

284,335 472

Model: All transactions are good.

Problem: I'm not catching any of the bad ones!

XXXX X X 284,335 472

Model: All transactions are fraudulent.

X XXX X 284,335 472

Model: All transactions are fraudulent.

Problem: I'm accidently catching all the good ones!

Medical Model

Spam Classifier Model

Not Spam

Spam

	Diagnosed Sick	Diagnosed Healthy
Sick		
Healthy		

Type I Error (False Positive)

Type II Error (False Negative)

Folder

Confusion Matrix Table (*n* classes)

ass

Frue

Predicted Class

	Guessed Class 1	Guessed Class 2	Guessed Class 3
Class 1			
Class 2			
Class 3			

Class 3: •

Confusion Matrix Table (*n* classes)

ass

Irue

Predicted Class

	Guessed Class 1	Guessed Class 2	Guessed Class 3
Class 1	5	2	1
Class 2	3	6	0
Class 3	0	1	7

Confusion Matrix Table (*n* classes)

Accuracy: Out of all the **patients**, how many did we classify correctly?

Accuracy: Out of all the **patients**, how many did we classify correctly?

Accuracy =

1,000 + 8,000

Accuracy: Out of all the **patients**, how many did we classify correctly?

Accuracy =

$$\frac{1,000 + 8,000}{10,000} = 90\%$$

Accuracy: Out of all the **emails**, how many did we classify correctly?

Accuracy: Out of all the **emails**, how many did we classify correctly?

Accuracy =

Accuracy:

Out of all the **data**, how many points did we classify correctly?

Accuracy:

Out of all the **data**, how many points did we classify correctly?

Accuracy =

Correctly Classified Points All points

Accuracy:

Out of all the **data**, how many points did we classify correctly?

Accuracy =

Correctly Classified Points All points

$$\frac{11}{11+3} = 78.57\%$$

Accuracy: Out of all the transactions, how many did we classify correctly?

Accuracy =

		Prediction	
		Fraudulent	Not Fraudulent
ctions	Fraudulent	0	472
Transa	Not Fraudulent	0	284,335

Accuracy = 80%

	Diagnosed Sick	Diagnosed Healthy
Sick	True Positive	False Negative
Healthy	False Positive	True Negative

	Diagnosed Sick	Diagnosed Healthy
Sick		False Negative
Healthy	False Positive	

	Sent to Spam Folder	Sent to Inbox
Spam	True Positive	False Negative
Not Spam	False Positive	True Negative

	Sent to Spam Folder	Sent to Inbox
Spam		False Negative
Not Spam	False Positive	

Evaluation Metrics

Medical Model

False positives ok False negatives **NOT** ok Spam Detector

False positives **NOT** ok False negatives ok

Evaluation Metrics

Medical Model

False positives ok False negatives **NOT** ok **High Recall** Spam Detector

False positives **NOT** ok False negatives ok **High Precision**

Precision:

Out of all the patients we diagnosed with illness, how many were actually sick?

Precision:

Out of all the patients we diagnosed with illness, how many were actually sick?

Precision: Out of all the patients we diagnosed with illness, how many were actually sick?

Precision =

$$\frac{1,000}{1,000+800} = 55.7\%$$

Precision:

Out of all the emails sent to the spam inbox, how many did were actually spam?

Precision: Out of all the emails sent to the spam inbox, how many did were actually spam?

Precision =

$$\frac{100}{100 + 300} = 76.9\%$$

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision =

True Positives

True Positives + False Positives

Recall:

Out of all the sick patients, how many did we correctly diagnose as sick?

Patients

Recall:

Out of all the sick patients, how many did we correctly diagnose as sick?

Recall:

Out of all the sick patients, how many did we correctly diagnose as sick?

Recall =

$$\frac{1,000}{1,000+200} = 83.3\%$$

Recall:

Out of all the spam emails, how many were correctly sent to the spam folder?

Recall:

Out of all the spam emails, how many were correctly sent to the spam folder?

Recall =

$$\frac{100}{100 + 170} = 37\%$$

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall =

True Positives

True Positives + False Negatives

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall =

True Positives

True Positives + False Negatives

$$\frac{6}{6+1} = 85.7\%$$

Precision and Recall

Medical Model

Precision: 55.7% **Recall: 83.3%** Spam Detector **Precision: 76.9%** Recall: 37%
One Score?

Medical Model

Precision: 55.7% **Recall: 83.3%** Average = 69.5%

Spam Detector **Precision: 76.9%** Recall: 37% Average = 56.9%

Credit Card Fraud

XXXX X X 284,335 472

Model: All transactions are fraudulent.

Credit Card Fraud

Model: All transactions are fraudulent.

$$Precision = \frac{472}{284,807} = 0.016\%$$

Credit Card Fraud

Model: All transactions are fraudulent.

Precision =
$$\frac{472}{284,807}$$
 = 0.016% Recall = $\frac{472}{472}$ = 100%

Harmonic Mean

Arithmetic Mean = $\frac{x + y}{2}$ Harmonic Mean = $\frac{2xy}{x+y}$ - Precision: 1 Recall: 0 Average = 0.5 Harmonic Mean = 0

Harmonic Mean

Arithmetic Mean = $\frac{x + y}{2}$ Harmonic Mean = $\frac{2xy}{x+y}$

Precision: 1 Recall: 0 Average = 0.5Harmonic Mean = 0Precision: 0.2 Recall: 0.8 Average = 0.5Harmonic Mean = 0.32

Harmonic Mean

F1 Score

Medical Model

Precision: 55.7% Recall: 83.3% Average = 69.5% F1 Score = 66.8%

F1 Score

Spam Detector

Precision: 76.9% Recall: 37% Average = 56.9% F1 Score = 50.0%

F1 Score

Precision: 75% Recall: 85.7% Average = 80.3% F1 Score = 80%

Precision

Precision F0.5 Score F1 Score F2 Score

Precision F0.5 Score F1 Score F2 Score

Precision F0.5 Score F1 Score F2 Score

Precision F0.5 Score F1 Score F2 Score

$$F_{\beta}$$
 Score

$$F_1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$$

References

- https://en.wikipedia.org/wiki/Precision_and_recall
- https://en.wikipedia.org/wiki/Binary_classification
- https://en.wikipedia.org/wiki/F1_score
- https://www.quora.com/What-is-an-intuitive-explanation-of-F-score
- "Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms", Neural Computation, p. 1895-1923, 1998 https://www.mitpressjournals.org/doi/10.1162/089976698300017197

Machine Learning Courses

• Luis Serrano: https://www.youtube.com/watch?v=aDW44NPhNw0