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Friends don’t let friends
use testing data
for training
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kx2-fold Cross Validation

k=5

k times = kx2 folds
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Evaluation Metrics

How well is my model doing?
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Model: All transactions are fraudulent.

Problem: I'm accidently catching all the good ones!
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Out of all the patients, how
many did we classify correctly?
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Accuracy =
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= 80%
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Out of all the data, how many
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Correctly Classified Points
All points
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Accuracy =
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Overall (Normalized) Accuracy
Accuracy = 90%

Diagnosis Overall Accuracy =
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Sick Healthy many were actually sick?
Precision =
1,000
=55.7%
1,000 + 800
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Diagnosis Recall:
. : Out of all the sick patients,
Diagnosed Diagnosed how many did we correctly
SIck A diagnose as sick?
Recall =
1,000
= 83.39
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4 Recall:
Out of all the points labelled positive,
how many did we correctly predict?

Recall =

True Positives
True Positives + False Negatives

5
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=85.7%
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One Score?

Medical Model Spam Detector
Precision: 55.7% Precision: 76.9%
Recall: 83.3% Recall: 37%

Average = 69.5% Average = 56.9%
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Model: All transactions are fraudulent.
Precision = 472 =0.016% Recall = 472 = 100%

284,807 472
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X

F1 Score = Harmonic Mean (Precision, Recall)



F1 Score

Precision: 55.7%
Recall: 83.3%
Average = 69.5%
F1 Score = 66.8%

Medical Model
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F1 Score

Precision: 75%
Recall: 85.7%
Average = 80.3%
F1 Score = 80%
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F_9 precison-recall
I precision + recall

F_(1s precison-recall
p= (L P7) (°-precision) + recall
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