Testing and Error Metrics Machine Learning

(Largely based on slides from Luis Serrano)

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, August 28, 2019

How well is my model doing?

Today's Agenda

- Testing and Error Metrics
- Training, Testing
- Accuracy
- Precision
- Recall
- F-Score

Which model is better?

Which model is better?

Which model is better?

Why validating?

-० Training Why validating?

○○ Validation

-० Training Why validating?
 ○○ Validation

Why validating?

-० Training Why validating?
 ○○ Validation

Why validating?

Friends don't let friends use testing data for training

Data

あ V

k-fold Cross Validation

Training
Test

k-fold Cross Validation

$$
k=5
$$

k-fold Cross Validation

$$
k=5
$$

k-fold Cross Validation

$k=5$

k-fold Cross Validation

Training
Validation
$k=5$

k-fold Cross Validation

Training
Validation
$k=5$

k-fold Cross Validation

Training
Validation

$$
k=5
$$

k×2-fold Cross Validation

$$
k=5
$$

k×2-fold Cross Validation

$$
k=5
$$

\square

k×2-fold Cross Validation

Validation

$$
k=5
$$

k×2-fold Cross Validation

$$
k=5
$$

k×2-fold Cross Validation

Training
Validation

$$
k=5
$$

randomized

k×2-fold Cross Validation

Training
Validation

$$
k=5
$$

k×2-fold Cross Validation

Training
Validation

$$
k=5
$$

k×2-fold Cross Validation

$k=5$

k times $=k \times 2$ folds

Randomizing in Cross Validation

Training
Validation

$$
00000000000000
$$

Randomizing in Cross Validation

Training
Validation

$$
00000000000000
$$

Randomizing in Cross Validation

Validation

-0000000000000

Randomizing in Cross Validation

00000000000000

 00000000000000 00000000000000
Randomizing in Cross Validation

-0000000000000

00000000000000

00000000000000

Randomizing in Cross Validation

00000000000000 00000000000000

00000000000000

00000000000000

00000000000000

M0850A: Tópicos Auançados em Ciência da Computação I - Scientific Methodology
Prof. Jacques Wainer (IC/Unicamp)

Eualuation Metrics

How well is my model doing?

Credit Card Fraud

Credit Card Fraud

Credit Card Fraud

Model: All transactions are good.

Credit Card Fraud

Model: All transactions are good.
Correct $=\frac{284,335}{284,807}=99.83 \%$

Credit Card Fraud

Model: All transactions are good.
Problem: I'm not catching any of the bad ones!

Credit Card Fraud

Credit Card Fraud

Model: All transactions are fraudulent.

Credit Card Fraud

Model: All transactions are fraudulent.
Problem: I'm accidently catching all the good ones!

Medical Model

Health

Sick

Spam Classifier Model

Not Spam

Spam

Confusion Matrix Table

Sick	Diagnosed	Diagnosed Healthy
Healk		
Healthy		

Confusion Matrix Table

Sick	Diagnosed Sick	Diagnosed Healthy
Positive		
Healthy		

Confusion Matrix Table

Confusion Matrix Table

Sick	Diagnosed Sick	Diagnosed Healthy
Hesitive	False Negative	
Healthy		True Negative

Confusion Matrix Table

Sick	Diagnosed Sick	Diagnosed Healthy
Hesitive	False False Positive	True Negative

Type I Error
(False Positive)

Type II Error
(False Negative)

Confusion Matrix Table

Class 1: $\boldsymbol{\Delta} \quad$ Confusion Matrix Table (\boldsymbol{n} classes)
Class 2:
Class 3:

Class 1: \quad Confusion Matrix Table (\boldsymbol{n} classes)

Class 2:
Class 3:

Predicted Class

	Guessed Class 1	Guessed Class 2	Guessed Class 3
Class 1	5	2	1
Class 2	3	6	0
	0	1	7

Confusion Matrix Table (n classes)

Accuracy

Accuracy

Accuracy:
Out of all the patients, how many did we classify correctly?

Accuracy

Accuracy:
Out of all the patients, how many did we classify correctly?

Accuracy $=$

$$
1,000+8,000
$$

Accuracy

Accuracy:
Out of all the patients, how many did we classify correctly?

Accuracy $=$

$$
\frac{1,000+8,000}{10,000}=90 \%
$$

Accuracy

Accuracy:
Out of all the emails, how many did we classify correctly?

Accuracy

Out of all the emails, how many did we classify correctly?

Accuracy =

$$
\frac{100+700}{1,000}=80 \%
$$

Accuracy:

Accuracy

Accuracy:

Out of all the data, how many points did we classify correctly?

Accuracy

Accuracy:

Out of all the data, how many points did we classify correctly?

Accuracy =
Correctly Classified Points
All points

Accuracy

Accuracy:

Out of all the data, how many points did we classify correctly?

Accuracy =
$\frac{\text { Correctly Classified Points }}{\text { All points }}$
$\frac{11}{11+3}=78.57 \%$

Accuracy

Overall (Normalized) Accuracy

Overall (Normalized) Accuracy

Overall (Normalized) Accuracy

Overall Accuracy =

$\frac{0}{0+472}+\frac{284,335}{284,335+0}$

Overall (Normalized) Accuracy

Overall (Normalized) Accuracy

Accuracy $=80 \%$

Overall Accuracy $=$

$$
\frac{\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}+\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}}{2}=
$$

$$
\begin{aligned}
& \frac{\frac{100}{100+170}+\frac{700}{700+30}}{2} \\
& \frac{37.0+95.9}{2}=66.5 \%
\end{aligned}
$$

Overall (Normalized) Accuracy

Sick	Diagnosed Sick	Diagnosed Healthy
Hesitive	False False Pesitive	True Negative

Sick	Diagnosed Sick	Diagnosed Healthy
Healthy	False False Negative	

Evaluation Metrics

Medical Model
False positives ok False negatives NOT ok

Spam Detector
False positives NOT ok False negatives ok

Evaluation Metrics

Medical Model
False positives ok False negatives NOT ok High Recall

Spam Detector
False positives NOT ok False negatives ok High Precision

Precision

Precision

Precision:
Out of all the patients we diagnosed with illness, how many were actually sick?

Precision

Precision:
Out of all the patients we diagnosed with illness, how many were actually sick?

Precision

Precision:
Out of all the patients we diagnosed with illness, how many were actually sick?

Precision =

$$
\frac{1,000}{1,000+800}=55.7 \%
$$

Precision

Precision:

Out of all the emails sent to the spam inbox, how many did were actually spam?

Precision

Precision:
Out of all the emails sent to the spam inbox, how many did were actually spam?

Precision =

$$
\frac{100}{100+300}=76.9 \%
$$

Precision

Precision:
Out of all the points we've predicted to be positive, how many are correct?

Precision

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision =
True Positives
True Positives + False Positives

Recall

Recall

Recall:
Out of all the sick patients, how many did we correctly diagnose as sick?

Recall

Recall:
Out of all the sick patients, how many did we correctly diagnose as sick?

Recall

Recall:
Out of all the sick patients, how many did we correctly diagnose as sick?

Recall $=$

$$
\frac{1,000}{1,000+200}=83.3 \%
$$

Recall

Recall:
Out of all the spam emails, how many were correctly sent to the spam folder?

Recall

Recall:
Out of all the spam emails, how many were correctly sent to the spam folder?

Recall $=$
$\frac{100}{100+170}=37 \%$

Recall

Recall:
Out of all the points labelled positive, how many did we correctly predict?

Recall

Recall:
Out of all the points labelled positive, how many did we correctly predict?

Recall

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall =

True Positives
True Positives + False Negatives

Recall

Recall:
Out of all the points labelled positive, how many did we correctly predict?

Recall =
True Positives
True Positives + False Negatives
$\frac{6}{6+1}=85.7 \%$

Precision and Recall

Medical Model
Precision: 55.7\%
Recall: 83.3\%

Spam Detector
Precision: 76.9\%
Recall: 37\%

One Score?

Medical Model
Precision: 55.7\%
Recall: 83.3\%
Average $=69.5 \%$
Spam Detector
Precision: 76.9\%
Recall: 37\%
Average $=56.9 \%$

Credit Card Fraud

Model: All transactions are fraudulent.

Credit Card Fraud

Model: All transactions are fraudulent.
Precision $=\frac{472}{284,807}=0.016 \%$

Credit Card Fraud

Model: All transactions are fraudulent.

$$
\text { Precision }=\frac{472}{284,807}=0.016 \% \quad \text { Recall }=\frac{472}{472}=100 \%
$$

Harmonic Mean

F1 Score = Harmonic Mean (Precision, Recall)

F1 Score

Precision: 55.7\%
Recall: 83.3\%
Average $=69.5 \%$
F1 Score = 66.8\%
Medical Model

F1 Score

Spam Detector

Precision: 76.9\%
Recall: 37\%
Average $=56.9 \%$
F1 Score = 50.0\%

F1 Score

Precision: 75\%
Recall: 85.7\%
Average $=80.3 \%$
F1 Score = 80\%
F_{β} Score

F_{β} Score

F_{β} Score

Precision

F0.5 Score F1 Score
F2 Score

Recall

F_{β} Score

Precision
F0.5 Score F1 Score
F2 Score
Recall

F_{β} Score

F_{β} Score

F_{β} Score

F1 Score = Harmonic Mean (Precision, Recall)

F_{β} Score

F1 Score = Harmonic Mean (Precision, Recall)

$$
H=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}}
$$

F_{β} Score

F1 Score = Harmonic Mean (Precision, Recall)

$$
\begin{aligned}
& H=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} \\
& F_{1}=2 \frac{1}{\frac{1}{\text { recall }}+\frac{1}{\text { precision }}}=2 \frac{\text { precison } \cdot \text { recall }}{\text { precision }+ \text { recall }}
\end{aligned}
$$

F_{β} Score

$$
F_{1}=2 \frac{\text { precison } \cdot \text { recall }}{\text { precision }+ \text { recall }}
$$

$$
F_{\beta}=\left(1+\beta^{2}\right) \frac{\text { precison } \cdot \text { recall }}{\left(\beta^{2} \cdot \text { precision }\right)+\text { recall }}
$$

References

- https://en.wikipedia.org/wiki/Precision_and_recall
- https://en.wikipedia.org/wiki/Binary_classification
- https://en.wikipedia.org/wiki/F1_score
- https://www.quora.com/What-is-an-intuitive-explanation-of-F-score
- "Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms", Neural Computation, p. 1895-1923, 1998 https://www.mitpressjournals.org/doi/10.1162/089976698300017197

Machine Learning Courses

- Luis Serrano: https://www.youtube.com/watch?v=aDW44NPhNw0

