Regularization Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, August 26, 2019

Today's Agenda

- Regularization
- The Problem of Overfitting
- Diagnosing Bias vs. Variance
- Cost Function
- Regularized Linear Regression
- Regularized Logistic Regression

The Problem of Ouerfitting

Example: Linear Regression

Example: Linear Regression

Example: Linear Regression

Underfitting
High bias

Example: Linear Regression

$$
\theta_{0}+\theta_{1} x+\theta_{2} x^{2} \quad \theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}
$$

Underfitting
High bias

Example: Linear Regression

Size

$$
\theta_{0}+\theta_{1} x+\theta_{2} x^{2} \quad \theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}
$$

Underfitting
High bias

Example: Linear Regression

$\theta_{0}+\theta_{1} x$
Underfitting
High bias

$\theta_{0}+\theta_{1} x+\theta_{2} x^{2} \quad \theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}$

Size

Overfitting
High variance

Example: Logistic Regression

$$
\begin{aligned}
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right) \\
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\right. \\
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}+\right. \\
& \left.+\theta_{4} x_{2}^{2}+\theta_{5} x_{1} x_{2}\right) \\
& +\theta_{3} x_{1}^{2} x_{2}+\theta_{4} x_{1}^{2} x_{2}^{2}+ \\
& +\theta_{5} x_{1}^{2} x_{2}^{3}+\ldots \text {) }
\end{aligned}
$$

Example: Logistic Regression

$$
g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Underfitting

$$
\begin{aligned}
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\right. \\
& \left.+\theta_{4} x_{2}^{2}+\theta_{5} x_{1} x_{2}\right)
\end{aligned}
$$

$$
g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}+\right.
$$

High bias

$$
\begin{aligned}
& +\theta_{3} x_{1}^{2} x_{2}+\theta_{4} x_{1}^{2} x_{2}^{2}+ \\
& \left.+\theta_{5} x_{1}^{2} x_{2}^{3}+\ldots\right)
\end{aligned}
$$

Example: Logistic Regression

$g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)$
Underfitting

$$
\begin{aligned}
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\right. \\
& \left.+\theta_{4} x_{2}^{2}+\theta_{5} x_{1} x_{2}\right)
\end{aligned}
$$ High bias

$$
g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}+\right.
$$

$g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}+\right.$
$+\theta_{3} x_{1}^{2} x_{2}+\theta_{4} x_{1}^{2} x_{2}^{2}+$ $\left.+\theta_{5} x_{1}^{2} x_{2}^{3}+\ldots\right)$

Example: Logistic Regression

Overfitting
High variance

$g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)$
Underfitting

$$
\begin{aligned}
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\right. \\
& \left.+\theta_{4} x_{2}^{2}+\theta_{5} x_{1} x_{2}\right)
\end{aligned}
$$

High bias

$$
\begin{aligned}
& g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{1}^{2}+\right. \\
& +\theta_{3} x_{1}^{2} x_{2}+\theta_{4} x_{1}^{2} x_{2}^{2}+ \\
& \left.+\theta_{5} x_{1}^{2} x_{2}^{3}+\ldots\right)
\end{aligned}
$$

The Bias/Variance Tradeoff

The Bias/Variance Tradeoff

A model's generalization error can be expressed as the sum of three very different errors:

- Bias
- Variance
- Irreducible error

The Bias/Variance Tradeoff

A model's generalization error can be expressed as the sum of three very different errors:

- Bias
- Due to wrong assumptions, such as assuming that the data is linear when it is actually quadratic.
- A high-bias model is most likely to underfit the training data.
- Variance
- Irreducible error

The Bias/Variance Tradeoff

A model's generalization error can be expressed as the sum of three very different errors:

- Bias
- Variance
- Due to the model's excessive sensitivity to small variations in the training data.
- A model with many degrees of freedom is likely to have high variance, and thus to overfit the training data.
- Irreducible error

The Bias/Variance Tradeoff

A model's generalization error can be expressed as the sum of three very different errors:

- Bias
- Variance
- Irreducible error
- Due to the noisiness of the data itself.
- The only way to reduce this part of the error is to clean up the data.

The Bias/Variance Tradeoff

Increasing a model's complexity will typically increase its variance and reduce its bias.

Reducing a model's complexity increases its bias and reduces its variance.

This is why it is called a tradeoff.

Diagnosing
Bias us. Variance

Bias/Variance

Size

Underfitting
High bias

Overfitting
High variance

Bias/Variance

$\theta_{0}+\theta_{1} x+\theta_{2} x^{2} \quad \theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}$
Underfitting
High bias
Overfitting
High variance

Bias/Variance

Training error: $J_{\text {train }}(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
Cross-validation error: $J_{c v}(\theta)=\frac{1}{2 m_{c v}} \sum_{i=1}^{m_{\nu}}\left(h_{\theta}\left(x_{c v}^{(i)}\right)-y_{c v}^{(i)}\right)^{2}$

Bias/Variance

Training error: $J_{\text {train }}(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
Cross-validation error: $J_{c v}(\theta)=\frac{1}{2 m_{c v}} \sum_{i=1}^{m_{v}}\left(h_{\theta}\left(x_{c v}^{(i)}\right)-y_{c v}^{(i)}\right)^{2}$

Bias/Variance

Training error: $J_{\text {train }}(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
Cross-validation error: $J_{c v}(\theta)=\frac{1}{2 m_{c v}} \sum_{i=1}^{m_{v}}\left(h_{\theta}\left(x_{c v}^{(i)}\right)-y_{c v}^{(i)}\right)^{2}$

Diagnosing Bias us. Variance

Suppose your learning algorithm is performing less well than you were hoping: Jiş foigh. Is it a bias problem or a variance problem?

Diagnosing Bias us. Variance

Suppose your learning algorithm is performing less well than you were hoping: Jiş foigh. Is it a bias problem or a variance problem?

Diagnosing Bias us. Variance

Suppose your learning algorithm is performing less well than you were hoping: $\quad J$ surgh. Is it a bias problem or a variance problem?

Diagnosing Bias us. Variance

Suppose your learning algorithm is performing less well than you were hoping: Jiş kugh. Is it a bias problem or a variance problem?

Bias (underfit):
$J_{\text {train }}(\theta)$ will be high

$$
J_{c v}(\theta) \approx J_{t r a i n}(\theta)
$$

Variance (overfit):

Diagnosing Bias us. Variance

Suppose your learning algorithm is performing less well than you were hoping: $\quad J$ surgh. Is it a bias problem or a variance problem?

Bias (underfit):
$J_{\text {train }}(\theta)$ will be high

$$
J_{c v}(\theta) \approx J_{\text {train }}(\theta)
$$

Variance (overfit):
$J_{\text {train }}(\theta)$ will be low
$J_{c v}(\theta) \gg J_{t r a i n}(\theta)$

Diagnosing Bias us. Variance

Underfitting
Overfitting

Cost Function

Intuition

Intuition

Suppose we penalize and make θ_{3}, θ_{4} really small.

$$
\min _{\theta} \frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Intuition

Suppose we penalize and make θ_{3}, θ_{4} really small.

$$
\min _{\theta} \frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+1000 \theta_{3}^{2}+1000 \theta_{4}^{2}
$$

Intuition

Suppose we penalize and make θ_{3}, θ_{4} really small.

$$
\min _{\theta} \frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+1000 \theta_{3}^{2}+1000 \theta_{4}^{2}
$$

Regularization

Small values for parameters $\theta_{0}, \theta_{1}, \ldots, \theta_{n}$

- "Simpler" hypothesis
- Less prone to overfitting

Regularization

Small values for parameters $\theta_{0}, \theta_{1}, \ldots, \theta_{n}$

- "Simpler" hypothesis
- Less prone to overfitting

Housing

- Features: $x_{0}, x_{1}, \ldots, x_{100}$
- Parameters: $\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{100}$

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Regularization

Small values for parameters $\theta_{0}, \theta_{1}, \ldots, \theta_{n}$

- "Simpler" hypothesis
- Less prone to overfitting

Housing

- Features: $x_{0}, x_{1}, \ldots, x_{100}$
- Parameters: $\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{100}$

$$
J(\theta)=\frac{1}{2 m}\left[\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right]
$$

Regularization

$$
J(\theta)=\frac{1}{2 m}[\underbrace{\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}}_{\begin{array}{c}
\text { to fit the training } \\
\text { data well }
\end{array}}+\underbrace{\text { Regularization parameter }}_{\begin{array}{c}
\text { to keep the } \\
\text { parameters small }
\end{array}}
$$

In regularized linear regression, we choose θ to minimize

$$
J(\theta)=\frac{1}{2 m}\left[\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right]
$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

In regularized linear regression, we choose θ to minimize

$$
J(\theta)=\frac{1}{2 m}\left[\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right]
$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\left.\lambda=10^{10}\right)$?

In regularized linear regression, we choose θ to minimize

$$
J(\theta)=\frac{1}{2 m}\left[\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right]
$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

Regularized Linear Function

Gradient Descent

repeat \{
$\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}$
(simultaneously update θ_{j} for $j=0,1, \ldots, n$)
\}

Gradient Descent

repeat \{

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)} \\
& \theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

\} (simultaneously update θ_{j} for $j=\mathbf{K} 1, \ldots, n$)

Gradient Descent

repeat \{
$\theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)}$
$\theta_{j}:=\theta_{j}-\alpha\left[\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{()^{(i)}+} \frac{\lambda^{--}}{m} \theta_{j_{1}^{\prime}}^{i}\right]$
\} (simultaneously update θ_{j} for $\left.j=\mathbf{K} 1, \ldots, n\right)$

Gradient Descent

repeat \{

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)} \\
& \theta_{j}:=\theta_{j}-\alpha\left[\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}+\frac{\lambda}{m} \theta_{j}\right]
\end{aligned}
$$

\} (simultaneously update θ_{j} for $\left.j=1, \ldots, n\right)$

$$
\theta_{j}:=\theta_{j}\left(1-\alpha \frac{\lambda}{m}\right)-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Gradient Descent

repeat \{

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)} \\
& \theta_{j}:=\theta_{j}-\alpha\left[\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}+\frac{\lambda}{m} \theta_{j}\right]
\end{aligned}
$$

\} (simultaneously update θ_{j} for $\left.j=1, \ldots, n\right)$

$$
\theta_{j}:=\theta_{j_{1}^{\prime}}^{\stackrel{-}{1}}\left(1-\alpha \frac{\lambda}{m}\right)-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Normal Equation

$$
X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
- \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right] \quad y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)}
\end{array}\right] \quad \theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

Normal Equation

$$
X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right] y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)}
\end{array}\right] \quad \theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

$$
\theta=\int X^{T} X
$$

Normal Equation

$$
X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right] y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)}
\end{array}\right] \quad \theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

$$
\theta=\left(X^{T} X+\lambda\left[\begin{array}{llllll}
0 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right]\right)^{-1} X^{T} y
$$

http://melvincabatuan.github.io/Machine-Learning-Activity-4/

http://melvincabatuan.github.io/Machine-Learning-Activity-4/

http://melvincabatuan.github.io/Machine-Learning-Activity-4/

Regularized Logistic Function

Gradient Descent

repeat \{

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)} \\
& \theta_{j}:=\theta_{j}-\alpha\left[\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}+\frac{\lambda}{m} \theta_{j}\right]
\end{aligned}
$$

\} (simultaneously update θ_{j} for $\left.j=1, \ldots, n\right)$

$$
\theta_{j}:=\theta_{j}\left(1-\alpha \frac{\lambda}{m}\right)-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Gradient Descent

$$
h_{\theta}(x)=\theta^{T} x \Rightarrow h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{T} x}}
$$

repeat \{

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{0}^{(i)} \\
& \theta_{j}:=\theta_{j}-\alpha\left[\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}+\frac{\lambda}{m} \theta_{j}\right]
\end{aligned}
$$

\} (simultaneously update θ_{j} for $j=\boldsymbol{X}_{1, \ldots, n)}$

$$
\theta_{j}:=\theta_{j}\left(1-\alpha \frac{\lambda}{m}\right)-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

http://melvincabatuan.github.io/Machine-Learning-Activity-4/

http://melvincabatuan.github.io/Machine-Learning-Activity-4/

http://melvincabatuan.github.io/Machine-Learning-Activity-4/

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 4
- Pattern Recognition and Machine Learning, Chap. 3

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 3 \& 6

