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Today’s Agenda

● Regularization
○ The Problem of Overfitting

○ Diagnosing Bias vs. Variance

○ Cost Function

○ Regularized Linear Regression

○ Regularized Logistic Regression



The Problem of Overfitting
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The Bias/Variance
Tradeoff



A model’s generalization error can be expressed as the sum of 
three very different errors:

● Bias
● Variance
● Irreducible error
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A model’s generalization error can be expressed as the sum of 
three very different errors:

● Bias 
○ Due to wrong assumptions, such as assuming that the data is 

linear when it is actually quadratic. 
○ A high-bias model is most likely to underfit the training data. 

● Variance
● Irreducible error

The Bias/Variance Tradeoff



A model’s generalization error can be expressed as the sum of 
three very different errors:

● Bias
● Variance

○ Due to the model’s excessive sensitivity to small variations in 
the training data. 

○ A model with many degrees of freedom is likely to have high 
variance, and thus to overfit the training data.

● Irreducible error

The Bias/Variance Tradeoff



A model’s generalization error can be expressed as the sum of 
three very different errors:

● Bias
● Variance
● Irreducible error

○ Due to the noisiness of the data itself. 
○ The only way to reduce this part of the error is to clean up 

the data.

The Bias/Variance Tradeoff



Increasing a model’s complexity will typically increase its 
variance and reduce its bias. 

Reducing a model’s complexity increases its bias and reduces 
its variance. 

This is why it is called a tradeoff.

The Bias/Variance Tradeoff



Diagnosing
Bias vs. Variance
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Suppose your learning algorithm is performing less well than you were 
hoping:             is high. Is it a bias problem or a variance problem?

Bias (underfit):

Variance (overfit):

will be high
≈

will be low
≫



Diagnosing Bias vs. Variance
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Model complexity

Training error

Validation error

Underfitting Overfitting 

Just right 

Understanding the Bias-Variance Tradeoff: http://scott.fortmann-roe.com/docs/BiasVariance.html
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Suppose we penalize and make 𝜃3, 𝜃4 really small.

+ +−

𝜃3 ≈ 0
𝜃4  ≈ 0
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● “Simpler” hypothesis
● Less prone to overfitting



Regularization
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● “Simpler” hypothesis
● Less prone to overfitting

Housing 
● Features:  x0, x1, ..., x100
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Regularization

Small values for parameters 𝜃0, 𝜃1, ...,𝜃n 
● “Simpler” hypothesis
● Less prone to overfitting

Housing 
● Features:  x0, x1, ..., x100
● Parameters: 𝜃0, 𝜃1, 𝜃2, ..., 𝜃100
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Regularization

Regularization parameter

+−=

to fit the training 
data well

to keep the 
parameters small
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In regularized linear regression, we choose 𝜃 to minimize

What if 𝜆 is set to an extremely large value (perhaps for too large for 
our problem, say 𝜆 = 1010)? 
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In regularized linear regression, we choose 𝜃 to minimize

What if 𝜆 is set to an extremely large value (perhaps for too large for 
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Regularized Linear 
Function
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Regularized Logistic 
Function
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Gradient Descent 

repeat {
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References

Machine Learning Books

● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 4

● Pattern Recognition and Machine Learning, Chap. 3

Machine Learning Courses

● https://www.coursera.org/learn/machine-learning, Week  3 & 6


