Recall from last time ...

Linear Regression

Feature Scaling

Feature Scaling

Idea: Make sure features are on similar scale.

Features and Polynomial Regression

Housing prices prediction

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} \times \text { frontage }+\theta_{2} \times \text { depth }
$$

\qquad

Area $x=$ frontage \times depth

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} x
$$

Normal Equation

Examples: $m=4$.

x_{0}	Size (feet ${ }^{2}$) \qquad	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in 1000's y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
$X=$ features/variables			$\boldsymbol{y}=$ target $\boldsymbol{\theta}$		$\theta=$ parameters

$$
X=\left[\begin{array}{ccccc}
1 & 2104 & 5 & 1 & 45 \\
1 & 1416 & 3 & 2 & 40 \\
1 & 1534 & 3 & 2 & 30 \\
1 & 852 & 2 & 1 & 36
\end{array}\right]_{m \times(n+1)} y=\left[\begin{array}{l}
460 \\
232 \\
315 \\
178
\end{array}\right]_{m} \quad \theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
\pm :

Essence of linear algebra
14 videos - 3,671,987 views • Last updated on Aug 1, 2018

3BLUE1BROWN SERIES S1•E12
Change of basis | Essence of linear algebra, chapter 12
3Blue1Brown

3Blue1Brown

A geometric understanding of matrices, determinants, eigen-stuffs and more.

3BLUE1BROWN SERIES S1•E10
Cross products | Essence of linear algebra,
Chapter 10
3Blue1Brown

3BLUE1BROWN SERIES S1•E11
Cross products in the light of linear
transformations | Essence of linear algebra
3Blue1Brown

3BLUE1BROWN SERIES S1•E13
Eigenvectors and eigenvalues | Essence of linear algebra, chapter 13

3Blue1Brown

Gradient Descent

\rightleftharpoons Need to choose α.
\Rightarrow Needs many iterations.
(:) Works well even when n is large.

Normal Equation

;) No need to choose α.
: : Don't need to iterate.
:- Don't need to scale. Need to compute $\left(X^{T} X\right)^{-1} \rightarrow \mathrm{O}\left(n^{3}\right)$.
\approx Slow if n is very large.

Categorical/Nominal Variables

Size (feet 2)	Number of bedrooms x_{1}	x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Color x_{5}	Price (\$) in 1000's y
2104	5	1	45	blue	460	
1416	3	2	40			
1534	3	2	30	white	232	
852	2	1	36	pink	315	
green	178					

Categorical/Nominal Variables

Dummy coding \& One-hot encoding
http://www.statisticssolutions.com/dummy-coding-the-how-and-why/
https://en.wikiversity.org/wiki/Dummy_variable_(statistics)

Categorical/Nominal Variables

Dummy coding \& One-hot encoding

- blue $=1$, white $=2$, pink $=3$, and green $=4$.
http://www.statisticssolutions.com/dummy-coding-the-how-and-why/
https://en.wikiversity.org/wiki/Dummy_variable_(statistics)

Categorical/Nominal Variables

Dummy coding \& One-hot encoding

color	blue	white	pink	green
blue	1	0	0	0
white	0	1	0	0
pink	0	0	1	0
green	0	0	0	1

In this simplified data set, if we know that color is not Blue, not White, and not Pink, then it is Green.

So we only need to use three of these four.

Logistic Regression Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, August 21, 2019

Today's Agenda

- Logistic Regression
- Classification
- Hypothesis Representation
- Decision Boundary
- Cost Function
- Simplified Cost Function and

Gradient Descent

- Multiclass Classification

Classification

Spam Filtering

Bad Cures fast and effective! - Canadian *** Pharmacy \#1 Internet Inline Drugstore Viagra Cheap Our price \$1.99 ...

Good Interested in your research on graphical models - Dear Prof., I have read some of your papers on probabilistic graphical models. Because I...

Sensitive Content Classification (Elsagate)

Skin Cancer Classification

Melanomas (top row) and benign skin lesions (bottom row)

Classification

Email: Spam / Not Spam?
Content Video: Sensitive / Non-sensitive?
Skin Lesion: Malignant / Benign?

Classification

Email: Spam / Not Spam?

Content Video: Sensitive / Non-sensitive?
Skin Lesion: Malignant / Benign?

$$
y \in\{0,1\} \begin{array}{ll}
\text { 0: "Negative Class" (e.g., Benign skin lesion) } \\
\text { 1: "Positive Class" (e.g., Malignant skin lesion) }
\end{array}
$$

Threshold classifier output $h_{\theta}(x)$ at 0.5 :
If $h_{\theta}(x) \geq 0.5$, predict " $y=1$ "
If $h_{\theta}(x)<0.5$, predict " $y=0$ "

Threshold classifier output $h_{\theta}(x)$ at 0.5 :
If $h_{\theta}(x) \geq 0.5$, predict " $y=1$ "
If $h_{\theta}(x)<0.5$, predict " $y=0$ "

Threshold classifier output $h_{\theta}(x)$ at 0.5 :
If $h_{\theta}(x) \geq 0.5$, predict " $y=1$ "
If $h_{\theta}(x)<0.5$, predict " $y=0$ "

Threshold classifier output $h_{\theta}(x)$ at 0.5 :
If $h_{\theta}(x) \geq 0.5$, predict " $y=1$ "
If $h_{\theta}(x)<0.5$, predict " $y=0$ "

Threshold classifier output $h_{\theta}(x)$ at 0.5 :
If $h_{\theta}(x) \geq 0.5$, predict " $y=1$ "
If $h_{\theta}(x)<0.5$, predict " $y=0$ "

Classification: $y=0$ or $y=1$

$$
h_{\theta}(x) \text { can be }>1 \text { or }<0
$$

Logistic Regression: $0 \leq h_{\theta}(x) \leq 1$

Hypothesis Representation

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

$$
h_{\theta}(x)=\theta^{\mathrm{T}} x
$$

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

$$
h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right)
$$

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& \quad g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Sigmoid Function
Logistic Function

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

$$
h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{\mathrm{T}} x}}
$$

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& \quad g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Sigmoid Function
Logistic Function

Logistic Regression Model

Want $0 \leq h_{\theta}(x) \leq 1$

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Sigmoid Function
Logistic Function
Sigmoid Function
Logistic Function

$$
h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{\mathrm{T}} x}}
$$

Interpretation of Hypothesis Output

$h_{\theta}(x)=$ estimated probability that $y=1$ on input x

Interpretation of Hypothesis Output

$h_{\theta}(x)=$ estimated probability that $y=1$ on input x
Example: If $x=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]=\left[\begin{array}{c}1 \\ \text { tumorSize }\end{array}\right] \quad h_{\theta}(x)=0.7$
Tell patient that 70\% chance of tumor being malignant

Interpretation of Hypothesis Output

$h_{\theta}(x)=$ estimated probability that $y=1$ on input x
Example: If $x=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]=\left[\begin{array}{c}1 \\ \text { tumorSize }\end{array}\right] \quad h_{\theta}(x)=0.7$
Tell patient that 70\% chance of tumor being malignant

$$
h_{\theta}(x)=P(y=1 \mid x ; \theta)
$$

Interpretation of Hypothesis Output

$h_{\theta}(x)=$ estimated probability that $y=1$ on input x
Example: If $x=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]=\left[\begin{array}{c}1 \\ \text { tumorSize }\end{array}\right] \quad h_{\theta}(x)=0.7$
Tell patient that 70\% chance of tumor being malignant

$$
h_{\theta}(x)=P(y=1 \mid x ; \theta)
$$

Interpretation of Hypothesis Output

$h_{\theta}(x)=$ estimated probability that $y=1$ on input x
Example: If $x=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]=\left[\begin{array}{c}1 \\ \text { tumorSize }\end{array}\right] \quad h_{\theta}(x)=0.7$
Tell patient that 70\% chance of tumor being malignant

$$
\begin{aligned}
& P(y=0 \mid x ; \theta)+P(y=1 \mid x ; \theta)=1 \\
& P(y=1 \mid x ; \theta)=1-P(y=0 \mid x ; \theta)
\end{aligned}
$$

"probability that $y=1$, given x, parameterized by $\theta "$

Decision Boundary

Logistic Regression

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Logistic Regression

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Suppose predict " $y=1$ " if $h_{\theta}(x) \geq 0.5$
predict " $y=0$ " if $h_{\theta}(x)<0.5$

Logistic Regression

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Suppose predict " $y=1$ " if $h_{\theta}(x) \geq 0.5$
$g(z) \geq 0.5$ when $z \geq 0$

$$
\text { predict " } y=0 \text { " if } h_{\theta}(x)<0.5
$$

Logistic Regression

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta^{\mathrm{T}} x\right) \\
& g(z)=\frac{1}{1+\mathrm{e}^{-z}}
\end{aligned}
$$

Suppose predict " $y=1$ " if $h_{\theta}(x) \geq 0.5$
$g(z) \geq 0.5$ when $z \geq 0$

$$
\text { predict " } y=0 \text { " if } h_{\theta}(x)<0.5 \quad g(z)<0.5 \text { when } z<0
$$

Decision Boundary

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Decision Boundary

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Decision Boundary

$$
\begin{array}{cccc}
x_{2} \\
3
\end{array}
$$

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Predict " $y=1$ " if $-3+x_{1}+x_{2} \geq 0$

Decision Boundary

$$
\begin{array}{cccc}
x_{2} \\
3
\end{array}
$$

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Predict " $y=1$ " if $-3+x_{1}+x_{2} \geq 0$ $x_{1}+x_{2} \geq 3$

Decision Boundary

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

$$
\begin{gathered}
\text { Predict " } y=1 \text { " if }-3+x_{1}+x_{2} \geq 0 \\
x_{1}+x_{2} \geq 3
\end{gathered}
$$

Decision Boundary

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

> Predict " $y=1$ " if $-3+x_{1}+x_{2} \geq 0$ $x_{1}+x_{2} \geq 3$

Decision Boundary

$$
y=0
$$

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Predict " $y=1$ " if $-3+x_{1}+x_{2} \geq 0$ $x_{1}+x_{2} \geq 3$

$$
y=0, x_{1}+x_{2}<3
$$

Decision Boundary

$$
y=0
$$

$$
h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)
$$

Predict " $y=1$ " if $-3+x_{1}+x_{2} \geq 0$

$$
x_{1}+x_{2} \geq 3 \quad y=0, x_{1}+x_{2}<3
$$

Non-linear Decision Boundaries

Non-linear Decision Boundaries

Non-linear Decision Boundaries

Non-linear Decision Boundaries

$$
\begin{aligned}
& \text { Predict " } y=1 \text { " if }-1+x_{1}^{2}+x_{2}^{2} \geq 0 \\
& x_{1}^{2}+x_{2}^{2} \geq 1
\end{aligned}
$$

Non-linear Decision Boundaries

$$
\begin{aligned}
& \text { Predict " } y=1 \text { " if }-1+x_{1}^{2}+x_{2}^{2} \geq 0 \\
& x_{1}^{2}+x_{2}^{2} \geq 1
\end{aligned}
$$

Non-linear Decision Boundaries

$$
\begin{aligned}
& h_{\theta}(x)=g\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\theta_{4} x_{2}^{2}\right) \\
& -1
\end{aligned}
$$

$$
x_{1}^{2}+x_{2}^{2} \geq 1
$$

Non-linear Decision Boundaries

$$
\begin{aligned}
& \text { Predict " } y=1 \text { " if }-1+x_{1}^{2}+x_{2}^{2} \geq 0 \\
& x_{1}^{2}+x_{2}^{2} \geq 1
\end{aligned}
$$

Today's Agenda

- Logistic Regression
- Classification
- Hypothesis Representation
- Decision Boundary
- Cost Function
- Simplified Cost Function and

Gradient Descent

- Multiclass Classification

Cost Function

Training set: $\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$

$$
h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{\mathrm{T}} x}} \quad x \in\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad x_{0}=1, y \in\{0,1\}
$$

How to choose parameters θ ?

Cost Function

Linear regression: $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$

Cost Function

$\operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
Linear regression: $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2 i}$
$\operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)=\frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$

Cost Function

$\operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
Linear regression: $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2 i}$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)=\frac{1}{2}\left(h_{\theta}(x)-y\right)^{2}$

Cost Function

$\operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
Linear regression: $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2!}$
Logistic
$\operatorname{Cost}\left(h_{\theta}(x), y\right)=\frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \quad h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{\top} x}}$

Cost Function

$\operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
Logistic regression: $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)=\frac{1}{2}\left(h_{\theta}(x)-y\right)^{2}$

$$
h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{T} x}}
$$

Derivative of Logistic Function

$$
\begin{aligned}
g^{\prime}(z) & =\frac{d}{d z} \frac{1}{1+\mathrm{e}^{-z}} \\
& =\frac{0 \cdot\left(1+\mathrm{e}^{-z}\right)-1 \cdot\left(-\mathrm{e}^{-z}\right)}{\left(1+\mathrm{e}^{-z}\right)^{2}} \quad \text { (quotient rule) } \\
& =\frac{\mathrm{e}^{-z}}{\left(1+\mathrm{e}^{-z}\right)^{2}} \\
& =\left(\frac{1}{1+\mathrm{e}^{-z}}\right)\left(1-\frac{1}{1+\mathrm{e}^{-z}}\right) \\
& =g(z)(1-g(z))
\end{aligned}
$$

Logistic Regression Cost Function

$$
\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}
$$

Logistic Regression Cost Function

$$
\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}
$$

$$
\text { Cost }=0 \text { if } y=1, h_{\theta}(x)=1
$$

But as $h_{\theta}(x) \rightarrow 0$
Cost $\rightarrow \infty$

Logistic Regression Cost Function

$$
\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}
$$

Captures intuition that if $h_{\theta}(x)=0$, (predict $P(y=1 \mid x ; \theta)=0$), but $y=1$, we'll penalize learning algorithm by a very large cost.

Logistic Regression Cost Function

$\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$

Simplified Cost Function and Gradient Descent

Logistic Regression Cost Function

$$
J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)
$$

$\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$

Logistic Regression Cost Function

$J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)=-y \log \left(h_{\theta}(x)\right)-(1-y) \log \left(1-h_{\theta}(x)\right)$

Logistic Regression Cost Function

$J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$
$\left.\operatorname{Cost}\left(h_{\theta}(x), y\right)=-y \log \left(h_{\theta}(x)\right)-(1-y) 1-\quad \pi_{\theta}(x)\right)$

$$
y=1
$$

Logistic Regression Cost Function

$J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)= \begin{cases}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{cases}$
$\operatorname{Cost}\left(h_{\theta}(x), y\right)=-y$) $)-(1-y) \log \left(1-h_{\theta}(x)\right)$

$$
y=0
$$

Logistic Regression Cost Function

$$
\begin{aligned}
J(\theta) & =\frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right) \\
& =-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
\end{aligned}
$$

Logistic Regression Cost Function

$$
\begin{aligned}
J(\theta) & =\frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right) \\
& =-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
\end{aligned}
$$

To fit parameters $\theta: \min _{\theta} J(\theta)$

Logistic Regression Cost Function

$$
\begin{aligned}
J(\theta) & =\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right) \\
& =-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
\end{aligned}
$$

To fit parameters $\theta: \min _{\theta} J(\theta)$
To make a new prediction given new x : Output $h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{\mathrm{T} x}}}$

Gradient Descent

$$
J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
$$

Want $\min J(\theta):$

$$
\theta
$$

repeat \{

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)
$$

\} (simultaneously update θ_{j} for $j=0,1, \ldots, n$)

Gradient Descent

$$
J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
$$

Want $\min J(\theta):$
repeat \{

$$
\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)
$$

\} (simultaneously update θ_{j} for $j=0,1, \ldots, n$)

Gradient Descent

https://math.stackexchange.com/questions/477207 /derivative-of-cost-function-for-logistic-regrssion

Want $\min J(\theta):$
θ
repeat \{

$$
\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)
$$

\} (simultaneously update θ_{j} for $j=0,1, \ldots, n$)

Gradient Descent

$$
J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
$$

Want $\min J(\theta):$
θ
repeat \{

$$
\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

\} (simultaneously update θ_{j} for $j=0,1, \ldots, n$)

Gradient Descent

$$
J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]
$$

Want $\min J(\theta)$:
θ
repeat \{

$$
\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

\} (simultaneously update θ_{j} for $j=0,1, \ldots, n$)
Algorithm looks identical to linear regression!

Gradient Descent

$J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]$
Want $\min J(\theta)$:

$$
h_{\theta}(x)=\theta^{T} x \mapsto h_{\theta}(x)=\frac{1}{1+\mathrm{e}^{-\theta^{T} x}}
$$

repeat \{

$$
\theta_{j}:=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

\} (simultaneously update θ_{j} for $j=0,1, \ldots, n$)
Algorithm looks identical to linear regression!

Multiclass Classification: One-us-all

Classification

Email tagging: Work, Friends, Family

Skin Lesion: Melanoma, Carcinoma, Nevus, Keratosis

Video: Pornography, Violence, Gore scenes, Child abuse

Classification

Email tagging: Work, Friends, Family

$$
y=1 \quad y=2 \quad y=3
$$

Skin Lesion: Melanoma, Carcinoma, Nevus, Keratosis

$$
y=1 \quad y=2 \quad y=3 \quad y=4
$$

Video: Pornography, Violence, Gore scenes, Child abuse

Binary Classification

Multi-class Classification

One-us-All (One-us-Rest)

Class 1: $\boldsymbol{\Delta}$
Class 2:
Class 3:

One-us-All (One-us-Rest)

Class 1: $\boldsymbol{\Delta}$
Class 2:
Class 3:

One-us-All (One-us-Rest)

Class 1: $\boldsymbol{\Delta}$
Class 2:
Class 3:

One-us-All (One-us-Rest)

Class 1: $\boldsymbol{\Delta}$
Class 2:
Class 3:

One-us-All (One-us-Rest)

Class 1: $\boldsymbol{\Delta}$
Class 2:
Class 3:

$$
h_{\theta}^{(i)}(x)=P(y=i \mid x ; \theta) \quad(i=1,2,3)
$$

One-us-All (One-us-Rest)

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that $y=i$.

One a new input x, to make a prediction, pick the class i that maximizes

$$
\max _{i} h_{\theta}^{(i)}(x)
$$

Logistic Regression - The Math of Intelligence (Week 2) by Siraj Raval https://youtu.be/D8alok2P468

```
 - YouTube
Search \(\quad 0\)
```


Logistic Regression - The Math of Intelligence (Week 2)
47,532 views63 413 35 SHARE

The Math of Intelligence
Siraj Raval - $4 / 19$

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 4
- Pattern Recognition and Machine Learning, Chap. 4

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 3
- Logistic Regression - The Math of Intelligence (Week 2): https://youtu.be/D8alok2P468
- http://cs229.stanford.edu/notes/cs229-notes1.pdf

