
Recall from last time ...

y = b + mx

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

Credit: https://github.com/mattnedrich/GradientDescentExample/raw/master/gradient_descent_example.gif

h𝜃(x) = 𝜃0 + 𝜃1x y = b + mx

“Batch”: Each step of gradient descent uses all the
 training examples.

“Batch” Gradient Descent

repeat until convergence {

}

update ai and ai
simultaneously}

− −

− −

“Batch” Gradient Descent

“Batch”: Each step of gradient descent uses all the
 training examples.

“Batch” Gradient Descent

for i in range(nb_epochs):
 params_grad = evaluate_gradient(loss_function,data,params)
 params = params - learning_rate * params_grad

“Batch”: Each step of gradient descent uses all the
 training examples.

“Batch” Gradient Descent

for i in range(nb_epochs):
 params_grad = evaluate_gradient(loss_function,data,params)
 params = params - learning_rate * params_grad

Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.

Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.

Batch Size: Total number of training examples
present in a SINGLE batch.

Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.

Batch Size: Total number of training examples
present in a SINGLE batch.

Note: Batch size and number of batches are two different things.

Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.

Batch Size: Total number of training examples
present in a SINGLE batch.

Iterations: The number of batches needed to
complete ONE epoch.

Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.

Batch Size: Total number of training examples
present in a SINGLE batch.

Iterations: The number of batches needed to
complete ONE epoch.

Note: The number of batches is equal to number of iterations for one epoch.

Let’s say we have 10,000 training examples that we are
going to use.

We can divide the dataset of 10,000 examples into
batches of 16 then it will take 625 iterations to
complete 1 epoch.

Epochs & Batch size & Iterations

Each step of gradient descent uses one training example.

Stochastic Gradient Descent

repeat until convergence {

for i ≔ 1, …, m {

}
}

− −

− −

Each step of gradient descent uses one training example.

Stochastic Gradient Descent

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function,example,params)
 params = params - learning_rate * params_grad

Each step of gradient descent uses b training examples.

Mini-batch Gradient Descent

repeat until convergence {
for i ≔ 1, 11, 21…, 991 {

} }
− −

− −

Say b = 10, m = 1000.

Each step of gradient descent uses b training examples.

Mini-batch Gradient Descent

for i in range(nb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data,batch_size=16):
 params_grad = evaluate_gradient(loss_function,batch,params)
 params = params - learning_rate * params_grad

for i in range(nb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data,batch_size=16):
 params_grad = evaluate_gradient(loss_function,batch,params)
 params = params - learning_rate * params_grad

for i in range(nb_epochs):
 params_grad = evaluate_gradient(loss_function,data,params)
 params = params - learning_rate * params_grad

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function,example,params)
 params = params - learning_rate * params_grad

Batch vs. Stochastic vs. Mini-batch

● Momentum
● Nesterov
● Adagrad

● Adadelta
● RMSprop
● Adam

● AdaMax
● Nadam

http://ruder.io/optimizing-gradient-descent

Credit: Alec Radford: https://i.imgur.com/pD0hWu5.gif

Credit: Alec Radford: https://i.imgur.com/2dKCQHh.gif

https://i.imgur.com/2dKCQHh.gif

https://i.imgur.com/2dKCQHh.gif

https://medium.com/@lessw/new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b

Linear Regression
Machine Learning

MC886, August 19, 2019

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

(Largely based on slides from Andrew Ng)

REC D
reasoning for complex data

Today’s Agenda

● Linear Regression with One Variable
○ Model Representation

○ Cost Function

○ Gradient Descent

● Linear Regression with Multiple Variables
○ Gradient Descent for Multiple Variables

○ Feature Scaling

○ Learning Rate

○ Features and Polynomial Regression

○ Normal Equation

Feature Scaling

Idea: Make sure features are on similar scale.

E.g. = size (0−2000 feet2)
 = number of bedrooms (1−5)

Feature Scaling

●

Idea: Make sure features are on similar scale.

E.g. = size (0−2000 feet2)
 = number of bedrooms (1−5)

Feature Scaling

 size (feet2)
 2000=

number of bedrooms= 5

●

Idea: Make sure features are on similar scale.

E.g. = size (0−2000 feet2)
 = number of bedrooms (1−5)

Feature Scaling

 size (feet2)
 2000=

number of bedrooms= 5

●
●

●
●

●
●

Feature Scaling

Get every feature into approximately a −1 ≤ ≤ 1 range.

Replace with to make features have approximately
zero mean (do not apply to = 1).

E.g.

Mean Normalization
 −

 size − 1000
 2000=

#bedrooms − 2.5= 5

−0.5 ≤ ≤ 0.5

−0.5 ≤ ≤ 0.5

Replace with to make features have approximately
zero mean (do not apply to = 1).

E.g.

Mean Normalization
 −

 size − 1000
 2000=

#bedrooms − 2.5= 5

−0.5 ≤ ≤ 0.5

−0.5 ≤ ≤ 0.5

= =
− −

Learning Rate

● “Debugging” : How to make sure gradient descent is
working correctly.

● How to choose learning rate 𝛼.

 −

Gradient Descent

Making sure gradient descent is working correctly.

No. of iterations
0 100 200 300

Making sure gradient descent is working correctly.

No. of iterations

Example automatic
convergence test:

Declare convergence if
decreases by less than 10-3 in
one iteration.0 100 200 300

Making sure gradient descent is working correctly.

No. of iterations

Gradient descent not working.
Use smaller 𝛼.

Making sure gradient descent is working correctly.

No. of iterations

Gradient descent not working.
Use smaller 𝛼.

Making sure gradient descent is working correctly.

No. of iterations

No. of iterations

Gradient descent not working.
Use smaller 𝛼.

Making sure gradient descent is working correctly.

- For sufficiently small 𝛼, should decrease on every iteration.

No. of iterations

No. of iterations

Gradient descent not working.
Use smaller 𝛼.

Making sure gradient descent is working correctly.

- But if 𝛼 is too small, gradient descent can be slow to converge.

No. of iterations

No. of iterations

Gradient descent not working.
Use smaller 𝛼.

- If 𝛼 is too small: slow convergence.
- If 𝛼 is too large: may not decrease on every iteration;

may not converge.

To choose 𝛼, try
 …, 0.001, …, 0.01, …, 0.1, …, 1, …

Summary

Today’s Agenda

● Linear Regression with One Variable
○ Model Representation

○ Cost Function

○ Gradient Descent

● Linear Regression with Multiple Variables
○ Gradient Descent for Multiple Variables

○ Feature Scaling

○ Learning Rate

○ Features and Polynomial Regression

○ Normal Equation

Features and
Polynomial Regression

Housing prices prediction

= + × frontage + ×frontage depth

depth frontage

Housing prices prediction

= + × frontage + ×frontage depth

depth frontage

Housing prices prediction

= + × frontage + ×frontage depth

Area x = frontage depth×

depth frontage

Housing prices prediction

= + × frontage + ×frontage depth

Area x = frontage depth×
h𝜃(x) = 𝜃0 + 𝜃1x

depth frontage

Polynomial Regression

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

Polynomial Regression

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

+ +

Polynomial Regression

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

+ +

Polynomial Regression

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

+ +
+ + +

Polynomial Regression

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

+ +
+ + +

= + + +
= + size + size + size

= size
= size
= size

Polynomial Regression

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

+ +
+ + +

= + + +
= + size + size + size

= size :1−1,000

= size :1−1,000,000
= size :1−109

Choice of Features

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

= + + + = + size + size + size

Choice of Features

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

= + + + = + size + size + size

= + size + size

××
×
× ×
× ××× ××

×

Normal Equation

Gradient Descent

Normal equation: Method to solve analytically.

×××××××

ℝIntuition: If 1D ()

 = + +

ℝIntuition: If 1D ()

 = + +

 = = 0 Solve for

 = −

ℝIntuition: If 1D ()

Solve for = = 0

ℝ
 n+1

 = + +

 = = 0 Solve for

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

X =

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

X =

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

y = X =

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

y = X =

m ✕ (n+1) m

x0

Size
(feet2)

x1

Number of
bedrooms

x2

Number
of floors

x3

Age of home
(years)

x4

Price ($) in
1000’s

y

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

Examples: m = 4.

1
1
1
1

2104
1416
1534
852

5
3
3
2

1
2
2
1

45
40
30
36

460
232
315
178

y = X = =

m ✕ (n+1) m

m examples and n features

ℝ=

m examples and n features

ℝ= X =

m examples and n features

ℝ= X =

m examples and n features

ℝ= X =

m examples and n features

ℝ= X =

m examples and n features

ℝ= X =

 E.g. =

m examples and n features

ℝ= X =

 E.g. = X =
m ✕ 2

m examples and n features

X = =

=

=

=

is inverse of matrix .

=

is inverse of matrix .

Deriving the Normal Equation using matrix calculus …
👉 https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

=

is inverse of matrix .

Deriving the Normal Equation using matrix calculus …
👉 https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if is noninvertible?

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if is noninvertible?

The common causes might be having :

● Redundant features, where two features are very closely
related (i.e. they are linearly dependent).

● Too many features (e.g. m ≤ n). In this case, delete some
features or use “regularization”.

Gradient Descent

😞 Need to choose 𝛼.
😞 Needs many iterations.

Normal Equation

😃 No need to choose 𝛼.
😃 Don’t need to iterate.

m examples and n features

Gradient Descent

😞 Need to choose 𝛼.
😞 Needs many iterations.
😃 Works well even when n

is large.

Normal Equation

😃 No need to choose 𝛼.
😃 Don’t need to iterate.
😞 Need to compute
 → O(n3).
😞 Slow if n is very large.

m examples and n features

References

Machine Learning Books

● Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

● Pattern Recognition and Machine Learning, Chap. 3

Machine Learning Courses

● https://www.coursera.org/learn/machine-learning, Week 1 & 2

https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

