Recall from last time ...

y = b + mx

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

 $h_{\theta}(x) = \theta_0 + \theta_1 x \implies y = b + mx$

Credit: https://github.com/mattnedrich/GradientDescentExample/raw/master/gradient_descent_example.gif

"Batch": Each step of gradient descent uses all the training examples.

repeat until convergence {

$$\begin{aligned} \theta_0 &:= \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \\ \theta_1 &:= \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} \end{aligned} \right\} \text{ update } \theta_0 \text{ and } \theta_1 \\ \text{ simultaneously} \end{aligned}$$

"Batch": Each step of gradient descent uses all the training examples.

```
for i in range(nb_epochs):
    params_grad = evaluate_gradient(loss_function,data,params)
    params = params - learning_rate * params_grad
```

"Batch": Each step of gradient descent uses all the training examples.

Batch Size: Total number of training examples present in a **SINGLE** batch.

Batch Size: Total number of training examples present in a **SINGLE** batch.

Note: Batch size and number of batches are two different things.

Batch Size: Total number of training examples present in a **SINGLE** batch.

Iterations: The number of batches needed to complete **ONE** epoch.

Batch Size: Total number of training examples present in a **SINGLE** batch.

Iterations: The number of batches needed to complete **ONE** epoch.

Note: The number of batches is equal to number of iterations for one epoch.

Epochs & Batch size & Iterations

Let's say we have 10,000 training examples that we are going to use.

We can divide the dataset of 10,000 examples into **batches of 16** then it will take **625 iterations** to complete **1 epoch**.

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

repeat until convergence {

for
$$i = 1, ..., m$$
 {
 $\theta_0 := \theta_0 - \alpha(h_\theta(x^{(i)}) - y^{(i)})$
 $\theta_1 := \theta_1 - \alpha(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}$
}

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function,example,params)
        params = params - learning rate * params grad
```

Mini-batch Gradient Descent

Each step of gradient descent uses *b* training examples.

Say b = 10, m = 1000. repeat until convergence {

for
$$i = 1, 11, 21..., 991$$
 {
 $\theta_0 := \theta_0 - \alpha \frac{1}{10} \sum_{\substack{i=k \ i+9}}^{i+9} (h_\theta(x^{(k)}) - y^{(k)})$
 $\theta_1 := \theta_1 - \alpha \frac{1}{10} \sum_{\substack{i=k \ i=k}}^{i=k} (h_\theta(x^{(k)}) - y^{(k)}) x^{(k)}$

Mini-batch Gradient Descent

Each step of gradient descent uses *b* training examples.

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for batch in get_batches(data,batch_size=16):
        params_grad = evaluate_gradient(loss_function,batch,params)
        params = params - learning_rate * params_grad
```

```
for i in range(nb_epochs):
    params_grad = evaluate_gradient(loss_function,data,params)
    params = params - learning rate * params grad
```

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function,example,params)
        params = params - learning rate * params grad
```

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for batch in get_batches(data,batch_size=16):
        params_grad = evaluate_gradient(loss_function,batch,params)
        params = params - learning_rate * params_grad
```

Batch vs. Stochastic vs. Mini-batch

http://ruder.io/optimizing-gradient-descent

Sebastian Ruder

I'm a PhD student in Natural Language Processing and a research scientist at AYLIEN. I blog about Machine Learning, Deep Learning, NLP, and startups.

> Blog About Papers News Newsletter FAQ Progress

An overview of gradient descent optimization algorithms 🕊

Credit: Alec Radford: https://i.imgur.com/pD0hWu5.gif

Credit: Alec Radford: https://i.imgur.com/2dKCQHh.gif

https://medium.com/@lessw/new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b

Medium Machine Learning

New State of the Art AI Optimizer: Rectified Adam (RAdam). Improve your AI accuracy instantly versus Adam, and why it works.

A new paper by Liu, Jian, He et al introduces **RAdam**, or "Rectified Adam". It's a new variation of the classic Adam optimizer that provides an automated, dynamic adjustment to the adaptive learning rate based on their detailed study into the effects of variance and momentum during training. RAdam holds the promise of immediately improving every AI architecture compared to vanilla Adam as a result:

Linear Regression Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, August 19, 2019

Today's Agenda

- Linear Regression with One Variable
 - Model Representation
 - Cost Function

- Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation

Feature Scaling

Feature Scaling

Idea: Make sure features are on similar scale.

E.g. $x_1 = \text{size} (0-2000 \text{ feet}^2)$ χ_2 = number of bedrooms (1–5) θ_2 $J(\theta)$

Feature Scaling Idea: Make sure features are on similar scale.

Feature Scaling Idea: Make sure features are on similar scale.

Feature Scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\rightarrow -0.5 \le x_1 \le 0.5$
 $x_2 = \frac{\#\text{bedrooms} - 2.5}{5}$ $\rightarrow -0.5 \le x_2 \le 0.5$

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\rightarrow -0.5 \le x_1 \le 0.5$
 $x_2 = \frac{\#\text{bedrooms} - 2.5}{5}$ $\rightarrow -0.5 \le x_2 \le 0.5$
 $x_1 = \frac{x_1 - \mu_1}{s_1}$ $x_2 = \frac{x_2 - \mu_2}{s_2}$

Learning Rate

Gradient Descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging" : How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Gradient descent not working. Use smaller α .

Gradient descent not working. Use smaller α .

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.

- But if α is too small, gradient descent can be slow to converge.

Summary

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

```
To choose \alpha, try ..., 0.001, ..., 0.01, ..., 0.1, ..., 1, ...
```

Today's Agenda

- Linear Regression with One Variable
 - Model Representation
 - Cost Function

_ _

- Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation

Features and Polynomial Regression

 $h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \quad x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \quad x_2$$

Area x = frontage \times depth

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \quad x_2$$

Area $x = \text{frontage} \times \text{depth}$ $h_{\theta}(x) = \theta_0 + \theta_1 x$

 $\theta_0 + \theta_1 x + \theta_2 x^2$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Choice of Features

Choice of Features

Normal Equation

Normal equation: Method to solve θ analytically.

Intuition: If 1D ($\theta \in \mathbb{R}$)

$$J(\theta) = a\theta^2 + b\theta + c$$

Intuition: If 1D ($heta \in \mathbb{R}$)

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \dots = 0$$
 Solve for θ

Intuition: If 1D ($heta \in \mathbb{R}$)

1

С

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \dots = 0 \quad \text{Solve for } \theta$$

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0 \quad \text{Solve for } \theta_0, \theta_1, \dots, \theta_n$$

Size (feet ²) x_1	Number of bedrooms x ₂	Number of floors x ₃	Age of home (years) x_4	Price (\$) in 1000's <i>y</i>
2104	5	1	45	460
1/16	3	2	40	232
1524	5	2	40	252
1534	3	Z	30	315
852	2	1	36	178

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	У
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
	Size (feet ²) <i>x</i> ₁ 2104 1416 1534 852	Size (feet²)Number of bedrooms x_1 x_2 2104514163153438522	Size (feet²)Number of bedroomsNumber of floors x_1 x_2 x_3 21045114163215343285221	Size (feet²)Number of bedroomsNumber of floorsAge of home (years) x_1 x_2 x_3 x_4 2104514514163240153432308522136

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
<i>x</i> ₀	<i>x</i> ₁	X_2	<i>x</i> ₃	<i>x</i> ₄	<u> </u>
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's	
x_0	<i>x</i> ₁	x ₂	x	x_4	<u> </u>	
1	2104	5	1	45	460	
1	1416	3	2	40	232	
1	1534	3	2	30	315	
1	852	2	1	36	178	
	[1 210	04 5 1 43	5]			
V-	1 141	16 3 2 4	C			
Λ –	1 153	34 3 2 30	C			
	1 85	2 2 1 3	6			

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
X =	$\begin{bmatrix} 1 & 210 \\ 1 & 141 \\ 1 & 153 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		

 $\begin{bmatrix} 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
X=	$\begin{bmatrix} 1 & 210 \\ 1 & 141 \\ 1 & 153 \\ 1 & 85 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 5\\0\\0\\6 \end{bmatrix} \qquad $	$= \begin{bmatrix} 460\\232\\315\\178 \end{bmatrix}$	

<i>x</i> ₀	Size (feet ²) x ₁	Number of bedrooms x ₂	Number of floors x ₃	Age of home (years) x_4	Price (\$) in 1000's <i>y</i>
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
X=	$\begin{bmatrix} 1 & 210 \\ 1 & 141 \\ 1 & 153 \\ 1 & 85 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 5 \\ 0 \\ 0 \\ 6 \end{bmatrix} \begin{bmatrix} y \\ m \times (n+1) \end{bmatrix}$	$= \begin{bmatrix} 460\\ 232\\ 315\\ 178 \end{bmatrix}_{m}$	

<i>x</i> ₀	Size (feet ²) x ₁	Number of bedrooms x ₂	Number of floors x ₃	Age of home (years) x ₄	Price (\$) in 1000's <i>y</i>
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
X=	$\begin{bmatrix} 1 & 210 \\ 1 & 141 \\ 1 & 153 \\ 1 & 85 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 5 \\ 0 \\ 0 \\ 6 \end{bmatrix} \begin{bmatrix} y \\ m \times (n+1) \end{bmatrix}$	$= \begin{bmatrix} 460\\ 232\\ 315\\ 178 \end{bmatrix}_{m}$	$\theta = (X^T X)^{-1} X^T y$

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$ and *n* features

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$ and *n* features

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$ and *n* features

E.g.
$$x^{(i)} = \begin{bmatrix} \mathbf{1} \\ x_1^{(i)} \end{bmatrix}$$

m examples
$$(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$$
 and *n* features

 $\theta = (X^T X)^{-1} X^T y$

 $\theta = (X^T X)^{-1} X^T y$

 $\theta = (X^T X)^{-1} X^T y$

$(X^T X)^{-1}$ is inverse of matrix $X^T X$.

 $\theta = (X^T X)^{-1} X^T y$

 $(X^T X)^{-1}$ is inverse of matrix $X^T X$.

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

 $\theta = (X^T X)^{-1} X^T y$

 $(X^T X)^{-1}$ is inverse of matrix $X^T X$.

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if $X^T X$ is noninvertible?

What if $X^T X$ is noninvertible?

The common causes might be having :

- Redundant features, where two features are very closely related (i.e. they are linearly dependent).
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization".

Gradient Descent

- \sim Need to choose α .
- Needs many iterations.

Normal Equation

- $\stackrel{\textbf{U}}{=}$ No need to choose α .
- 😃 Don't need to iterate.

m examples and *n* features

Gradient Descent

- \mathbf{R} Need to choose α .
- Needs many iterations.
- Works well even when n is large.

m examples and n features

Normal Equation

- $\stackrel{\textbf{U}}{=}$ No need to choose α .
- 😃 Don't need to iterate.
- $\stackrel{\scriptstyle{\scriptstyle \sim}}{\scriptstyle{\scriptstyle \sim}} \quad \text{Need to compute} \\ (X^T X)^{-1} \rightarrow \mathcal{O}(n^3).$
- \triangleleft Slow if *n* is very large.

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4 <u>https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html</u>
- Pattern Recognition and Machine Learning, Chap. 3

Machine Learning Courses

• https://www.coursera.org/learn/machine-learning, Week 1 & 2