Recall from last time ...




Error = 370.77

15

y=>b+ mx

m =-8.00 b =-8.00

10}

-2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/



line slope (M)
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Gradient Search

hyx= 05+ O x myp y=>b+mx

Points and Line

line y-intercept (B)

Credit: https://github.com/mattnedrich/GradientDescentExample/raw/master/gradient_descent_example.gif



“Batch” Gradient Descent

“Batch™ Each step of gradient descent uses all the
training examples.



“Batch” Gradient Descent

repeat until convergence {

m

I o
6, = 0, - A Z(he(xﬁ) I0)
=1 } update 6, and 0,
1 < l. o simultaneously
0, .= 0, - aA— - Z(hg(xo) _ y@y 5@

=1



“Batch” Gradient Descent

“Batch™ Each step of gradient descent uses all the
training examples.

for 1 in range (nb_ epochs) :
params grad = evaluate gradient (loss function,data,params)

params = params - learning rate * params grad




“Batch” Gradient Descent

“Batch™ Each step of gradient descent uses all the
training examples.

for 1 in range (nb epochs) :
params grad—= adient (loss function,data,params)

params = params - learning rate * params grad




Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.
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Epochs: One epoch is usually defined to be ONE
complete run through ALL of the training data.

Batch Size: Total number of training examples
present in a SINGLE batch.

Iterations: The number of batches needed to
complete ONE epoch.

Note: The number of batches is equal to number of iterations for one epoch.



Epochs & Batch size & Iterations

Let's say we have 10,000 training examples that we are
going to use.

We can divide the dataset of 10,000 examples into
batches of 16 then it will take 625 iterations to
complete 1 epoch.



Stochastic Gradient Descent

Each step of gradient descent uses one training example.

repeat until convergence {
fori=1,...,m{
0p:= 60,— a(hy(x"") - y?)
0,:= 6, - a(h,(x") - yD)x"



Stochastic Gradient Descent

Each step of gradient descent uses one training example.

for 1 in range (nb epochs):
np.random.shuffle (data)
for example in data:
params grad = evaluate gradient (loss function,example,params)
params = params - learning rate * params grad




Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

Say b =10, m = 1000.
repeat until convergence {

fori=1,11,21...,991{
1 i+9
0= 0= aqg ) (@) = y*)
| 159
- 0, :=6,- a5 ;(hg(x(k))— APt



Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

for 1 in range (nb epochs) :
np.random.shuffle (data)
for batch in get batches(data,batch size=16):
params grad = evaluate gradient (loss function,batch,params)
params = params - learning rate * params grad




for 1 in range (nb epochs) :
params grad = evaluate gradient (loss function,data,params)
params = params - learning rate * params grad

for 1 in range (nb epochs) :
np.random.shuffle (data)
for example in data:
params grad = evaluate gradient (loss function,example,params)
params = params - learning rate * params grad

for 1 in range (nb_ epochs) :
np.random.shuffle (data)
for batch in get batches(data,batch size=16):
params grad = evaluate gradient (loss function,batch,params)
params = params - learning rate * params grad




Batch vus. Stochastic us. Mini-batch

38 s w Stochastic
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3.4 | ==e Batch
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http://ruder.io/optimizing-gradient-descent

Sebastian Ruder

I'm a PhD student in Natural Language
Processing and a research scientist at
AYLIEN. | blog about Machine Learning,

Deep Learning, NLP, and startups.
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SGD
Momentum
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Adagrad
Adadelta
Rmsprop
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Credit: Alec Radford: https://i.imgur.com/pDOhWub.gif



SGD

- Momentum
- NAG
- Adagrad
—— Adadelta
—  Rmsprop
2
0

Credit: Alec Radford: https://i.imgur.com/2dKCQHh.gif



https://medium.com/@lessw/new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b

Medium Machine Learning

New State of the Art AI Optimizer:
Rectified Adam (RAdam). Improve

your Al accuracy instantly versus
Adam, and why it works.

/_\ Less Wright [ Follow |
A~ Aug15 - 5 min read *

A new paper by Liu, Jian, He et al introduces RAdam, or “Rectified Adam”.
It’s a new variation of the classic Adam optimizer that provides an
automated, dynamic adjustment to the adaptive learning rate based on their
detailed study into the effects of variance and momentum during training.
RAdam holds the promise of immediately improving every Al architecture

compared tovanilla Adam as a result:

RAdam Adam Sensitive to the choice ~ SGD
of the learning rate.

2 T I S —— @ / a2 \ [ ——————————



Linear Regression
Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, August 19, 2019



Today’s Agenda

e Linear Regression with One Variable

o Model Representation
o Cost Function

o Gradient Descent
e Linear Regression with Multiple Variables

o Gradient Descent for Multiple Variables
o Feature Scaling

o Learning Rate

o Features and Polynomial Regression

o  Normal Equation



Feature Scaling
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E.g. x,= size (0-2000 feet?)
X->»=number of bedrooms (1-5)

04 J(0)

> 0,
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Feature Scaling

|ldea: Make sure features are on similar scale.

: 2
E.g. x,= size (0-2000 feet?) X = Slzezgggt )
X->»=number of bedrooms (1-5)
__ number of bedrooms
0,4 Xy = 3
J(0)
0,4

J(6)

_ 91 91




Feature Scaling

Get every feature into approximately a -1 < x.<1 range.



Mean Normalization

Replace x; with x.— u. to make features have approximately
zero mean (do not apply to x,=1).
size — 1000

Eg X1 = 5000 > -0.5< X1= 0.5

_ #bedrooms — 2.5
5




Mean Normalization

Replace x; with x.— u. to make features have approximately
zero mean (do not apply to x,=1).

Eg. X, = S|ze2601(§)oo =) —0.5<X,<0.5
xzz#bedroosms—z.S = —0.5<X,<0.5

Xi— Xn —
X = Hi X, = 2 — Mo

S AN



Learning Rate



Gradient Descent

0
00,

0, =0, — a—o—J(0)

“Debugging” : How to make sure gradient descent is
working correctly.

e How to choose learning rate .



Making sure gradient descent is working correctly.

4 minJ(0)

4 4 4 =
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No. of iterations




Making sure gradient descent is working correctly.

A min J(0)
’ Example automatic

convergence test:

Declare convergence if J(60)
decreases by less than 107 in
one iteration.

4 4 4 =
0 100 200 300

No. of iterations
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Making sure gradient descent is working correctly.
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Making sure gradient descent is working correctly.

J(0) i Gradient descent not working.
Use smaller .
> A
No. of iterations J()
J(O) 4

\NNN

No. of iterations 0

- For sufficiently small a, J(0) should decrease on every iteration.



Making sure gradient descent is working correctly.

J(0) i Gradient descent not working.
Use smaller .
> A
No. of iterations J()
J(O) 4

\NNN

No. of iterations 0

- Butif a is too small, gradient descent can be slow to converge.



Summary

- If a is too small: slow convergence.

- If ais too large: J(0) may not decrease on every iteration;
may not converge.

To choose &, try
..., 0.001,...,0.01,...,0.1, ..., 1, ...



Today’s Agenda

e Linear Regression with One Variable

o Model Representation
o Cost Function

o Gradient Descent
e Linear Regression with Multiple Variables

o Gradient Descent for Multiple Variables
o Feature Scaling

o Learning Rate

o Features and Polynomial Regression

o  Normal Equation



Features and
Polynomial Regression



Housing prices prediction
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Housing prices prediction

ho(x)=6,+ 0, x frontage + 6, x depth

! !

Area x = frontage X depth



Housing prices prediction

ho(x)=6,+ 0, x frontage + 6, x depth

! !

Area x = frontage X depth
hy(xF 05+ 0,x



Polynomial Regression

X
x X xX
. X x Xx X X
Price L ¢ X X
) X
X 5 XX
X

'Size ()



Polynomial Regression
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Polynomial Regression
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Polynomial Regression

0+ 0,x+0,x"

Price L

v) 0, +0,x+0,x°+0:x°




Polynomial Regression

2
orice | 0,+ 60, x+0,x
v) 0, +0,x+0,x°+0:x°
Size (x) X ,= (size)
hy(X)= 0, + 0%+ 0,2+ 03x 4 X,= (size)’

=0, + 0,(size) +0,(size) + O;(size)’  X3= (size)’



Polynomial Regression

2
orice | 0,+ 60, x+0,x
v) 0, +0,x+0,x°+0:x°
Size (x) x,= (size) :1-1,000
hy(x)= 0y + 0,x,+ 0,x,+ 05, X,= (size)” :1-1,000,000

=0, + 0,(size) +0,(size) + O;(size)’  X3= (size)’ :1-10°



Choice of Features

X
X X
Price 1 XX >2<
) X
X X X
Size (x)

ho(x)= 6, + 0,(size) +0,( size )’



Choice of Features

Price L

)

ISize (x)l

ho(x)= 6, + 0,(size) +0,( size )’
hg(x) = (90 + 91( size) + 92 A/ (size)



Normal Equation



J(0)

Gradient Descent

Normal equation: Method to solve @ analytically.



Intuition: If 1D (0 E R) A
J(0)

J(0) = a0’ +bO + ¢




Intuition: If 1D (0 E R) A

J(0)
J(0) = a0’ +bO + ¢ U

d B _ [
WJ(H)_”'_O Solve for 6 0




Intuition: If 1D (0 E R) A
J(0)

J(0) = abd’+ bl + ¢

d _ >
WJ(H) =...=0 Solve for 6 0

n+ 1 S I l
HER 1 J(H()agla°°'99n):WZ(h9(x())_y())2

i=1

O J@)=...=0 Solvefor 6, ..., 0

00,

n



Examples: m = 4.

Size Number of | Number | Age of home | Price ($) in
(feet?) | bedrooms | of floors (years) 1000’s
X, X, X, X, y
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
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Examples: m = 4.

Size Number of | Number | Age of home | Price ($) in
(feet?) | bedrooms | of floors (years) 1000’s
X, X, X, X, X, y
1 2104 5 1 45 460
1 1416 3 2 40 232
1 1534 3 2 30 315
1 852 2 1 36 178
(1 2104 5 1 45 460 |
1 1416 3 2 40 1232
X 1 1534 3 2 30 ~ |315
1 852 2 1 36 | 178 ]
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Examples: m = 4.

Size Number of | Number | Age of home | Price ($) in
(feet?) | bedrooms | of floors (years) 1000’s
xO xl x2 X3 )C4 Y
1 2104 5 1 45 460
1 1416 3 2 40 232
1 1534 3 2 30 315
1 852 2 1 36 178
(1 2104 5 1 45 (460
1 1416 3 2 40 1232 B i
X=11 1534 3 2 30 ~ 315 =X X) Xy
1 852 2 1 36 | 178

“m x (n+1) m
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0=X"X) X'y
(XTX)_1 is inverse of matrix X' X.



0=X"X)"X"y
(XTX)_1 is inverse of matrix X' X.

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1alb16f65dda



https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

0=X"X)"X"y
(XTX)_1 is inverse of matrix X' X.

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1alb16f65dda

What if X X is noninvertible?


https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if X! X is noninvertible?

The common causes might be having :
e Redundant features, where two features are very closely

related (i.e. they are linearly dependent).

e Too many features (e.g. m < n). In this case, delete some

features or use “regularization”.



Gradient Descent Normal Equation

> Need to choose a. < No need to choose a.
> Needs many iterations. < Don’t need to iterate.

m examples and n features



Gradient Descent Normal Equation

- Need to choose a. No need to choose a.

> Needs many iterations. < Don’t need to iterate.
< Works well even when n - Need to compute
-1
is large. X'X)" — o).

-~ Slow if nis very large.

m examples and n features
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