
Recall from last time ...



y = b + mx

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/



Credit: https://github.com/mattnedrich/GradientDescentExample/raw/master/gradient_descent_example.gif

h𝜃(x) = 𝜃0 + 𝜃1x y = b + mx



“Batch”: Each step of gradient descent uses all the
               training examples.
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repeat until convergence {

}

update ai and ai 
simultaneously}

−                              −                              

−                              −                              
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Epochs: One epoch is usually defined to be ONE 
complete run through ALL of the training data.

Batch Size: Total number of training examples 
present in a SINGLE batch.

Iterations: The number of batches needed to 
complete ONE epoch.

Note: The number of batches is equal to number of iterations for one epoch.



Let’s say we have 10,000 training examples that we are 
going to use.

We can divide the dataset of 10,000 examples into 
batches of 16 then it will take 625 iterations to 
complete 1 epoch.

Epochs & Batch size & Iterations



Each step of gradient descent uses one training example.

Stochastic Gradient Descent

repeat until convergence {

for i ≔ 1, …, m {

}
}

−                              −                              

−                              −                              



Each step of gradient descent uses one training example.

Stochastic Gradient Descent

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function,example,params)
    params = params - learning_rate * params_grad



Each step of gradient descent uses b training examples.

Mini-batch Gradient Descent

repeat until convergence {
for i ≔ 1, 11, 21…, 991 {

}    }
−                              −                              

−                              −                              

Say b = 10, m = 1000.



Each step of gradient descent uses b training examples.

Mini-batch Gradient Descent

for i in range(nb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data,batch_size=16):
    params_grad = evaluate_gradient(loss_function,batch,params)
    params = params - learning_rate * params_grad



for i in range(nb_epochs):
  np.random.shuffle(data)
  for batch in get_batches(data,batch_size=16):
    params_grad = evaluate_gradient(loss_function,batch,params)
    params = params - learning_rate * params_grad

for i in range(nb_epochs):
  params_grad = evaluate_gradient(loss_function,data,params)
  params = params - learning_rate * params_grad

for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params_grad = evaluate_gradient(loss_function,example,params)
    params = params - learning_rate * params_grad



Batch vs. Stochastic vs. Mini-batch



● Momentum
● Nesterov 
● Adagrad

● Adadelta
● RMSprop
● Adam

● AdaMax
● Nadam

http://ruder.io/optimizing-gradient-descent



Credit: Alec Radford: https://i.imgur.com/pD0hWu5.gif



Credit: Alec Radford: https://i.imgur.com/2dKCQHh.gif

https://i.imgur.com/2dKCQHh.gif



https://i.imgur.com/2dKCQHh.gif

https://medium.com/@lessw/new-state-of-the-art-ai-optimizer-rectified-adam-radam-5d854730807b
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Today’s Agenda

● Linear Regression with One Variable
○ Model Representation

○ Cost Function

○ Gradient Descent

● Linear Regression with Multiple Variables
○ Gradient Descent for Multiple Variables

○ Feature Scaling

○ Learning Rate

○ Features and Polynomial Regression

○ Normal Equation



Feature Scaling



Idea: Make sure features are on similar scale.

E.g.      = size (0−2000 feet2)                          
             = number of bedrooms (1−5)
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Feature Scaling

Get every feature into approximately a −1 ≤      ≤ 1 range.



Replace     with             to make features have approximately 
zero mean (do not apply to      = 1).

E.g.

Mean Normalization
   −      
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Replace     with             to make features have approximately 
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Mean Normalization
   −      

 size − 1000
 2000=
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− −



Learning Rate



● “Debugging” : How to make sure gradient descent is 
working correctly.

● How to choose learning rate 𝛼.

   −      

Gradient Descent



Making sure gradient descent is working correctly.

No. of iterations
0          100       200       300



Making sure gradient descent is working correctly.

No. of iterations

Example automatic 
convergence test:

Declare convergence if  
decreases by less than 10-3 in 
one iteration.0          100       200       300
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Making sure gradient descent is working correctly.

- For sufficiently small 𝛼,         should decrease on every iteration.

No. of iterations

No. of iterations

Gradient descent not working.
Use smaller 𝛼. 



Making sure gradient descent is working correctly.

- But if 𝛼 is too small, gradient descent can be slow to converge.

No. of iterations

No. of iterations

Gradient descent not working.
Use smaller 𝛼. 



- If 𝛼 is too small: slow convergence.
- If 𝛼 is too large:         may not decrease on every iteration; 

may not converge.

To choose 𝛼, try
                 …, 0.001, …, 0.01, …, 0.1, …, 1, …

Summary
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Features and 
Polynomial Regression
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Area x = frontage    depth×
h𝜃(x) = 𝜃0 + 𝜃1x
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Polynomial Regression
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Choice of Features

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

=      +         +         +     =      +       size   +     size   +      size



Choice of Features

×Price
(y)

× ×××××

× ×
× ××× ××

× ××
××

×
Size (x)

=      +         +         +     =      +       size   +     size   +      size

=      +       size   +          size  

××
×
× ×
× ××× ××

×



Normal Equation



Gradient Descent

Normal equation: Method to solve     analytically.

×××××××
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ℝIntuition: If 1D (              )  

Solve for       =      = 0      

ℝ
    n+1

 =        +            + 
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Deriving the Normal Equation using matrix calculus …
👉 https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda
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Deriving the Normal Equation using matrix calculus …
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What if           is noninvertible?

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda


What if           is noninvertible?

The common causes might be having :

● Redundant features, where two features are very closely 
related (i.e. they are linearly dependent).

● Too many features (e.g. m ≤ n). In this case, delete some 
features or use “regularization”. 



Gradient Descent 

😞 Need to choose 𝛼.
😞 Needs many iterations.

Normal Equation 

😃 No need to choose 𝛼.
😃 Don’t need to iterate.

m examples and n features



Gradient Descent 

😞 Need to choose 𝛼.
😞 Needs many iterations.
😃 Works well even when n 

is large.

Normal Equation 

😃 No need to choose 𝛼.
😃 Don’t need to iterate.
😞 Need to compute 
                   → O(n3).
😞 Slow if n is very large.

m examples and n features
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