Recall from last time ...

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} x \Rightarrow y=b+m x
$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

"Batch" Gradient Descent

repeat until convergence \{

$$
\left.\begin{array}{l}
\theta_{0}:=\theta_{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \\
\theta_{1}:=\theta_{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
\end{array}\right\} \begin{aligned}
& \text { update } \theta_{0} \text { and } \theta_{1} \\
& \text { simultaneously }
\end{aligned}
$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

```
for i in range(nb_epochs):
    params_grad = evaluate_gradient(loss_function,data,params)
    params = params - learning_rate * params_grad
```


"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

```
for i in ranqe(nb_epochs):
    params_grad - evaluate_yradient(loss_function,data,params)
    params = params - learning_rate * params_grad
```

Epochs: One epoch is usually defined to be ONE complete run through ALL of the training data.

Epochs: One epoch is usually defined to be ONE complete run through ALL of the training data.

Batch Size: Total number of training examples present in a SINGLE batch.

Epochs: One epoch is usually defined to be ONE complete run through ALL of the training data.

Batch Size: Total number of training examples present in a SINGLE batch.

Note: Batch size and number of batches are two different things.

Epochs: One epoch is usually defined to be ONE complete run through ALL of the training data.

Batch Size: Total number of training examples present in a SINGLE batch.

Iterations: The number of batches needed to complete ONE epoch.

Epochs: One epoch is usually defined to be ONE complete run through ALL of the training data.

Batch Size: Total number of training examples present in a SINGLE batch.

Iterations: The number of batches needed to complete ONE epoch.

Note: The number of batches is equal to number of iterations for one epoch.

Epochs \& Batch size \& Iterations

Let's say we have 10,000 training examples that we are going to use.

We can divide the dataset of 10,000 examples into batches of 16 then it will take 625 iterations to complete 1 epoch.

Stochastic Gradient Descent

Each step of gradient descent uses one training example.
repeat until convergence \{

$$
\begin{aligned}
& \text { for } i:=1, \ldots, m\{ \\
& \qquad \begin{array}{l}
\theta_{0}:=\theta_{0}-\alpha\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \\
\theta_{1}:=\theta_{1}-\alpha\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
\end{array}
\end{aligned}
$$

\}

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad
```


Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.
Say $b=10, m=1000$. repeat until convergence \{ for $i=1,11,21 \ldots, 991$ \{

$$
\begin{aligned}
& \theta_{0}:=\theta_{0}-\alpha \frac{1}{10} \sum_{i=k}^{i+9}\left(h_{\theta}\left(x^{(k)}\right)-y^{(k)}\right) \\
& \theta_{1}:=\theta_{1}-\alpha \frac{1}{10} \sum_{i=k}^{i+9}\left(h_{\theta}\left(x^{(k)}\right)-y^{(k)}\right) x^{(k)}
\end{aligned}
$$

Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

```
for i in range(nb epochs):
    np.random.shuffle(data)
    for batch in get_batches(data,batch_size=16):
        params_grad = evaluate_gradient(loss_function,batch,params)
        params = params - learning_rate * params_grad
```

for i in range(nb_epochs):
params_grad = evaluate_gradient(loss_function,data, params) params = params - learning_rate * params_grad
for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:
params_grad = evaluate_gradient(loss_function, example, params)
params = params - learning_rate * params_grad
for i in range(nb_epochs):
np.random.shuffle (data)
for batch in get_batches(data,batch_size=16):
params_grad = evaluate_gradient(loss_function,batch, params)
params = params - learning_rate * params_grad

Batch us. Stochastic us. Mini-batch

http://ruder.io/optimizing-gradient-descent

Sebastian Ruder
m a PhD student in Natural Language Processing and a research scientist at AYLIEN. I blog about Machine Learning, Deep Learning, NLP, and startups.

An overview of gradient descent optimization algorithms

Credit: Alec Radford: https://i.imgur.com/pD0hWu5.gif

Credit: Alec Radford: https://i.imgur.com/2dKCQHh.gif

New State of the Art AI Optimizer: Rectified Adam (RAdam). Improve your AI accuracy instantly versus Adam, and why it works.

Less Wright Follow
Aug 15.5 min read \star

[^0]
Linear Regression
 Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila
Institute of Computing (IC/Unicamp)

MC886, August 19, 2019

Today's Agenda

- Linear Regression with One Variable
- Model Representation
- Cost Function
- Gradient Descent
- Linear Regression with Multiple Variables
- Gradient Descent for Multiple Variables
- Feature Scaling
- Learning Rate
- Features and Polynomial Regression
- Normal Equation

Feature Scaling

Feature Scaling

Idea: Make sure features are on similar scale.
E.g. $x_{1}=\operatorname{size}\left(0-2000\right.$ feet $\left.^{2}\right)$
$x_{2}=$ number of bedrooms (1-5)

Feature Scaling

Idea: Make sure features are on similar scale.
E.g. $x_{1}=\operatorname{size}\left(0-2000\right.$ feet $\left.^{2}\right)$
$x_{2}=$ number of bedrooms (1-5)

$$
\begin{aligned}
& x_{1}=\frac{\text { size }^{\left(\text {feet }^{2}\right)}}{2000} \\
& x_{2}=\frac{\text { number of bedrooms }}{5}
\end{aligned}
$$

Feature Scaling

Idea: Make sure features are on similar scale.
E.g. $x_{1}=$ size $\left(0-2000\right.$ feet $\left.^{2}\right)$
$x_{2}=$ number of bedrooms (1-5)

$$
x_{1}=\frac{\text { size }\left(\text { feet }^{2}\right)}{2000}
$$

$$
x_{2}=\frac{\text { number of bedrooms }}{5}
$$

Feature Scaling

Get every feature into approximately a $-1 \leq x_{i} \leq 1$ range.

Mean Normalization

Replace x_{i} with $x_{i}-\mu_{i}$ to make features have approximately zero mean (do not apply to $x_{0}=1$).
E.g. $\quad x_{1}=\frac{\text { size }-1000}{2000}$
$\Rightarrow-0.5 \leq x_{1} \leq 0.5$

$$
x_{2}=\frac{\# \text { bedrooms }-2.5}{5} \Rightarrow-0.5 \leq x_{2} \leq 0.5
$$

Mean Normalization

Replace x_{i} with $x_{i}-\mu_{i}$ to make features have approximately zero mean (do not apply to $x_{0}=1$).
E.g. $\quad x_{1}=\frac{\text { size }-1000}{2000}$

$$
\Rightarrow-0.5 \leq x_{1} \leq 0.5
$$

$$
x_{2}=\frac{\# \text { bedrooms }-2.5}{5} \Rightarrow-0.5 \leq x_{2} \leq 0.5
$$

$$
x_{1}=\frac{x_{1}-\mu_{1}}{s_{1}} \quad x_{2}=\frac{x_{2}-\mu_{2}}{s_{2}}
$$

Learning Rate

Gradient Descent

$$
\theta_{j}:=\theta_{\mathrm{j}}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)
$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α.

Making sure gradient descent is working correctly.

No. of iterations

Making sure gradient descent is working correctly.

No. of iterations

> Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

Gradient descent not working.
Use smaller α.

Making sure gradient descent is working correctly.

Gradient descent not working.
Use smaller α.

Making sure gradient descent is working correctly.

Gradient descent not working.

Use smaller α.

Making sure gradient descent is working correctly.

Gradient descent not working.
Use smaller α.

- For sufficiently small $\alpha, J(\theta)$ should decrease on every iteration.

Making sure gradient descent is working correctly.

Gradient descent not working.
Use smaller α.

- But if α is too small, gradient descent can be slow to converge.

Summary

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α, try

$$
\ldots, 0.001, \ldots, 0.01, \ldots, 0.1, \ldots, 1, \ldots
$$

Today's Agenda

- Linear Regression with One Variable
- Model Representation
- Cost Function
- Gradient Descent
- Linear Regression with Multiple Variables
- Gradient Descent for Multiple Variables
- Feature Scaling
- Learning Rate
- Features and Polynomial Regression
- Normal Equation

Features and Polynomial Regression

Housing prices prediction

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} \times \text { frontage }+\theta_{2} \times \text { depth }
$$

Housing prices prediction

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} \times \text { frontage }+\theta_{2} \times \text { depth }
$$

$$
\begin{array}{ll}
x_{1} & \downarrow \\
x_{2}
\end{array}
$$

Housing prices prediction

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} \times \text { frontage }+\theta_{2} \times \text { depth }
$$

Area $x=$ frontage \times depth

Housing prices prediction

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} \times \text { frontage }+\theta_{2} \times \text { depth }
$$

\qquad

Area $x=$ frontage \times depth

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} x
$$

Polynomial Regression

Polynomial Regression

Polynomial Regression

Polynomial Regression

Polynomial Regression

$$
\begin{aligned}
& x_{1}=(\text { size }) \\
& h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3} \\
& x_{2}=(\text { size })^{2} \\
& =\theta_{0}+\theta_{1}(\text { size })+\theta_{2}(\text { size })^{2}+\theta_{3}(\text { size })^{3} \\
& x_{3}=(\text { size })^{3}
\end{aligned}
$$

Polynomial Regression

$$
\begin{aligned}
& \begin{array}{l}
\theta_{0}+\theta_{1} x+\theta_{2} x^{2} \\
\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}
\end{array} \\
& h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3} \\
& x_{1}=(\text { size }): 1-1,000 \\
& x_{2}=(\text { size })^{2}: 1-1,000,000 \\
& =\theta_{0}+\theta_{1}(\text { size })+\theta_{2}(\text { size })^{2}+\theta_{3}(\text { size })^{3} \\
& x_{3}=(\text { size })^{3}: 1-10^{9}
\end{aligned}
$$

Choice of Features

Choice of Features

$$
\begin{aligned}
& \text { Price } \\
&(y) \\
& \text { Size }(x) \\
& h_{\theta}(x)=\theta_{0}+\theta_{1}(\text { size })+\theta_{2}(\text { size })^{2}
\end{aligned}
$$

Normal Equation

Gradient Descent

Normal equation: Method to solve θ analytically.

Intuition: If $1 \mathrm{D}(\theta \in \mathbb{R})$

$$
J(\theta)=a \theta^{2}+b \theta+c
$$

Intuition: If $1 \mathrm{D}(\theta \in \mathbb{R})$

$$
\begin{aligned}
& J(\theta)=a \theta^{2}+b \theta+c \\
& \quad \frac{d}{d \theta} J(\theta)=\ldots=0 \quad \text { Solve for } \theta
\end{aligned}
$$

Intuition: If $1 \mathrm{D}(\theta \in \mathbb{R})$

$$
\begin{aligned}
& J(\theta)=a \theta^{2}+b \theta+c \\
& \frac{d}{d \theta} J(\theta)=\ldots=0 \quad \text { Solve for } \theta
\end{aligned}
$$

$$
\begin{aligned}
& \theta \in \mathbb{R}^{n+1} \quad J\left(\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& \frac{\partial}{\partial \theta_{j}} J(\theta)=\ldots=0 \quad \text { Solve for } \theta_{0}, \theta_{1}, \ldots, \theta_{n}
\end{aligned}
$$

Examples: $m=4$.

Size $\left(\right.$ feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in $\mathbf{1 0 0 0}$'s y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Examples: $m=4$.

Size					
x_{0}	(feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in $\mathbf{1 0 0 0}$'s y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

Examples: $m=4$.

x_{0}	Size (feet ${ }^{2}$) \qquad	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in 1000's y
- 1	$\overline{210} \overline{4}$	5	1	$\overline{4} 5$	460
\| 1	1416	3	2	40 1	232
1	1534	3	2	30	315
11	852	2	1	361	178

Examples: $m=4$.

x_{0}	Size (feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in 1000's y
1	2104	5	1	$\overline{4} \overline{5}$	460
1	1416	3	2	40 I	232
1	1534	3	2	30	315
1	852	2	1	36	178
$X=\left[\begin{array}{ccccc} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{array}\right]$					

Examples: $m=4$.

Size					
x_{0}	(feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in 1000's y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$
X=\left[\begin{array}{ccccc}
1 & 2104 & 5 & 1 & 45 \\
1 & 1416 & 3 & 2 & 40 \\
1 & 1534 & 3 & 2 & 30 \\
1 & 852 & 2 & 1 & 36
\end{array}\right]
$$

Examples: $m=4$.

x_{0}	Size (feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price (\$) in 1000's y
1	2104	5	1	45	
1	1416	3	2	40	1 232
1	1534	3	2	30	, 315
1	852	2	1	36	178
	$\left[\begin{array}{cc}1 & 2 \\ 1 & 1 \\ 1 & 15 \\ 1 & 8\end{array}\right.$	$\begin{array}{llll}4 & 5 & 1 & 45 \\ 6 & 3 & 2 & 40 \\ 4 & 3 & 2 & 30 \\ 2 & 2 & 1 & 36\end{array}$		$y=\left[\begin{array}{l}460 \\ 232 \\ 315 \\ 178\end{array}\right]$	

Examples: $m=4$.

Size					
x_{0}	(feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price $(\$)$ in 1000's y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$
X=\left[\begin{array}{ccccc}
1 & 2104 & 5 & 1 & 45 \\
1 & 1416 & 3 & 2 & 40 \\
1 & 1534 & 3 & 2 & 30 \\
1 & 852 & 2 & 1 & 36
\end{array}\right]_{m \times(n+1)} y=\left[\begin{array}{l}
460 \\
232 \\
315 \\
178
\end{array}\right]_{m}
$$

Examples: $m=4$.

Size					
x_{0}	(feet ${ }^{2}$) x_{1}	Number of bedrooms x_{2}	Number of floors x_{3}	Age of home (years) x_{4}	Price $(\$)$ in 1000's y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$
X=\left[\begin{array}{ccccc}
1 & 2104 & 5 & 1 & 45 \\
1 & 1416 & 3 & 2 & 40 \\
1 & 1534 & 3 & 2 & 30 \\
1 & 852 & 2 & 1 & 36
\end{array}\right]_{m \times(n+1)} y=\left[\begin{array}{l}
460 \\
232 \\
315 \\
178
\end{array}\right]_{m} \quad \theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1}
$$

m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1} \quad X=
$$

m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1} \quad X=\left[\square\left(x^{(1)}\right)^{\mathrm{T}}-\right]
$$

m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1} \quad X=\left[\begin{array}{l}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\end{array}\right]
$$

m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1} \quad X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right]
$$

m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1} \quad X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right]
$$

E.g. $\quad x^{(i)}=\left[\begin{array}{c}1 \\ x_{1}^{(i)}\end{array}\right]$
m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
x^{(i)}=\left[\begin{array}{c}
x_{0}^{(i)} \\
x_{1}^{(i)} \\
x_{2}^{(i)} \\
\vdots \\
x_{n}^{(i)}
\end{array}\right] \in \mathbb{R}^{n+1} \quad X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right]
$$

E.g. $\quad x^{(i)}=\left[\begin{array}{c}1 \\ x_{1}^{(i)}\end{array}\right] \quad X=\left[\begin{array}{cc}1 & x_{1}^{(1)} \\ \vdots & \vdots \\ 1 & x_{m}^{(1)}\end{array}\right]_{m \times 2}$
m examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)$ and n features

$$
X=\left[\begin{array}{c}
-\left(x^{(1)}\right)^{\mathrm{T}}- \\
-\left(x^{(2)}\right)^{\mathrm{T}}- \\
\vdots \\
-\left(x^{(m)}\right)^{\mathrm{T}}-
\end{array}\right] \quad y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)}
\end{array}\right]
$$

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

$\theta=\left(X^{T} X\right)^{-1} X^{T} y$
$\theta=\left(X^{T} X\right)^{-1} X^{T} y$
$\left(X^{T} X\right)^{-1}$ is inverse of matrix $X^{T} X$.
$\theta=\left(X^{T} X\right)^{-1} X^{T} y$
$\left(X^{T} X\right)^{-1}$ is inverse of matrix $X^{T} X$.

Deriving the Normal Equation using matrix calculus ...
https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

$$
\begin{aligned}
& \theta=\left(X^{T} X\right)^{-1} X^{T} y \\
& \left(X^{T} X\right)^{-1} \text { is inverse of matrix } X^{T} X .
\end{aligned}
$$

Deriving the Normal Equation using matrix calculus ...

What if $X^{T} X$ is noninvertible?

What if $X^{T} X$ is noninvertible?

The common causes might be having :

- Redundant features, where two features are very closely related (i.e. they are linearly dependent).
- Too many features (e.g. $m \leq n$). In this case, delete some features or use "regularization".

Gradient Descent

Need to choose α.
Needs many iterations.

Normal Equation

-) No need to choose α.
: $:$ Don't need to iterate.

Gradient Descent

Normal Equation

;) No need to choose α.
: $:$ Don't need to iterate. Need to compute $\left(X^{T} X\right)^{-1} \rightarrow \mathrm{O}\left(n^{3}\right)$.
\Leftrightarrow Slow if n is very large.

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 \& 4
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
- Pattern Recognition and Machine Learning, Chap. 3

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 1 \& 2

[^0]: A new paper by Liu, Jian, He et al introduces RAdam, or "Rectified Adam". It's a new variation of the classic Adam optimizer that provides an automated, dynamic adjustment to the adaptive learning rate based on their detailed study into the effects of variance and momentum during training. RAdam holds the promise of immediately improving every AI architecture compared to vanilla Adam as a result:

