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Abstract—In Low-Power Internet-of-Things (IoT), energy pro-
visioning is often heterogeneous, meaning that nodes with
rechargeable and non-rechargeable batteries coexist and collab-
orate to support data communication. Non-rechargeable nodes
pose the requirement of minimum energy consumption for max-
imizing their network lifetime. Nodes powered by rechargeable
batteries, in turn, must foster neutral energy consumption to
avoid battery depletion and overflow. In this context, keeping
one subset of nodes in neutral consumption and another subset
in minimum consumption while maintaining proper network
operation is a complex challenge to solve. To tackle this problem,
we propose in this paper the Dual Energy COnsumption for
interNet-of-thiNgs (DECONN). DECONN is a distributed solu-
tion designed to combine minimum and neutral consumption
for IoT networks with heterogeneous energy provision. Using
DECONN, nodes with the lowest amount of energy determine
the energy consumption of the nodes located in the communica-
tion path. We compare DECONN with current IoT low-power
standard protocols, such as RPL and CoAP. The results achieved
provide evidence that DECONN may outperform standard proto-
cols regarding the amount of saved energy for non-rechargeable
and time in neutral operation for rechargeable nodes.

Index Terms—Internet-of-Things; Energy Sources; Renewable;

I. INTRODUCTION

A massive number of Internet-of-Things (IoT) devices have
been deployed to provide data monitoring to many IoT ap-
plications, such as smart metering, e-health, Industry 4.0, and
precision agriculture [1]. For many years, the main research
challenge in terms of power provision was to save energy
and extend the network lifetime of non-rechargeable battery-
powered devices [2], [3]. In recent years, a new era for IoT
power provision based on energy harvesting [4] emerged.
Energy harvesting replenishes energy for the IoT device by
extracting energy from solar power, ambient radio frequency,
and thermal energy. The harvested energy is stored in the
nodes’ rechargeable battery. Since the harvested energy is
renewable, it may be a sustainable and greener solution in
comparison to the traditional non-rechargeable batteries [5].

Given the large number of deployed IoT devices using non-
rechargeable batteries, a tendency when deploying IoT devices

with rechargeable batteries is to make them inter-operate.
It means that nodes with rechargeable and non-rechargeable
energy provision will be online in the same network, handling
communication channels for transferring data generated by the
IoT devices. In this context, devices powered by renewable and
non-renewable sources must collaborate and coexist for data
communication. However, combining these two energy sources
in the same network is challenging since they follow different
energy consumption strategies. Traditional devices, i.e., non-
rechargeable, seek to minimize energy consumption since they
have a limited energy supply. On the other hand, rechargeable
devices aim to achieve neutral consumption, which means the
node must consume the same amount of energy that has been
harvested to avoid battery overflow and depletion.

Most of the current approaches do not propose solutions
considering both energy sources in the same network. There
are proposals for controlling the parent selection and data
aggregation levels to optimize the energy consumption and
achieve a long-term neutral operation for a low-power IoT
network. However, all nodes have batteries replenished by
energy harvesting [6], [7] . Despite the benefits of energy
harvesting, it is not realistic to assume only renewable energy
sources for low-power IoT networks.

To address this challenge, we propose in this paper the Dual
Energy COnsumption for interNet-of-thiNgs (DECONN). DE-
CONN is designed to tackle the problem of having renewable
and non-renewable energy sources in the same IoT Network.
It can reduce energy consumption for non-rechargeable nodes
and seek neutral operation for rechargeable IoT devices, ap-
plying data aggregation and computing tree-oriented routing
schemes. With regard to routing, DECONN takes into account
the energy type, i.e., renewable or non-renewable, and the
level of the batteries in the paths. Using DECONN, the node
with the lowest amount of energy determines the energy
consumption of the nodes in the communication path.

The contributions of this paper are threefold: (i) It proposes
a distributed solution for tree-based routing that combines
minimum and neutral energy consumption in the same net-
work; (ii) It extends the Routing Protocol for Low-Power
Lossy Networks (RPL) [8] and Constrained Application Pro-Preprint - 2022 IFIP



tocol (CoAP) [9] protocols to embed the DECONN code
in emulated real low-power IoT devices; (iii) It evaluates
traditional and renewable nodes using a non-linear battery
model in an evaluation environment that replicates actual
indoor light measurements as a source of energy harvesting.

The remainder of this paper is organized as follows. We
discuss related work in Section II. We introduce and discuss
DECONN, our solution for combining minimum and neutral
energy consumption in IoT in Section III. We describe our
experimental evaluation in Section IV and discuss the results
achieved. Finally, we close the paper in Section V with con-
cluding remarks and prospective directions for future research.

II. RELATED WORK

Nguyen et al. [7] proposed the Energy-Harvesting-Aware
Routing Algorithm (EHARA), a solution that chooses the
best routes by using two different cost metrics defined as
combinations of the consumed energy, the harvested energy,
and the residual energy at nodes. Their work considers a
network where the nodes have heterogeneous energy har-
vesting sources, including solar, movement, and RF-based.
Similar to DECONN, EHARA selects the routes based on the
residual energy on the batteries in the upward path. However,
EHARA does not consider a network with rechargeable and
non-renewable nodes.

Said et al. [10] proposed Energy Management
Scheme (EMS), a solution that considers heterogeneous
types of energy-constrained nodes. EMS applies data
aggregation to control the volume of data sent over the
network to regulate energy consumption. EMS also proposes
schedule and fault tolerance for the IoT environment, and
considers heterogeneous energy sources, including traditional
and renewable batteries. EMS focuses on providing different
fault-tolerance strategies based on the energy source type.
Besides, EMS is centralized and is evaluated in NS2, which
does not emulate real low-power IoT devices.

Gambı́n et al. [11] addressed a smart-city scenario in which
the IoT Gateways (GWs) are connected to an electrical grid
and equipped with a backup battery to provide resilience to
power network outages. In this scenario, IoT devices have
energy harvesting capabilities, but they are not satisfactorily
served by energy harvesting due to the instability of ambient
energy arrivals. The authors formulated a convex optimization
problem that finds the optimal solution to allocate energy,
including the possibility of transferring energy from the GWs
to the IoT devices with scarce energy resources.

In [12], [13], Tipantuna et al. proposed solutions involving
renewable energy and IoT. In their work, the IoT network pro-
vide the communication infrastructure for a response-demand
architecture that promotes the interaction between generators
and consumers of an urban electric system. Therefore, their
focus is not to optimize the energy consumption of the IoT but
to seek efficient management of renewable and non-renewable
energy sources in an urban electric grid system.

Sadek et al. [14] proposed Hybrid Protocol for heteroge-
neous devices in IoT (Hy-IoT). The Hy-IoT solution considers

the nodes may have renewable and non-renewable energy
sources. This solution divides the network into superior and
regular regions. The regular region is composed of sensors,
actuators, and RFIDs. The superior region has mobile phones
and smart controllers. Hy-IoT uses the following cluster-
based algorithms: Stable Election Protocol (SEP) and Low
Energy Adaptive Clustering Hierarchy (LEACH). Cluster-head
selection is carried out in the superior region by LEACH, while
nodes in the regular region compute the cluster-head using
SEP. Although Hy-IoT considers nodes with rechargeable
batteries, these nodes are not charged by an energy harvesting
process, such as solar or vibration. The rechargeable devices
are smartphones, which have batteries with high capacity and
are recharged regularly using the electric grid. Therefore, Hy-
IoT does not address the challenge of combining IoT nodes
powered ambient energy harvesting and traditional batteries in
the same network.

To sum up, the existing literature does not cover the problem
of having renewable and non-rechargeable batteries providing
energy for nodes in the same low-power IoT network. This
is a relevant open issue, not only from the point of view of
energy efficiency, but also for the environment to support the
integration of both energy sources. This is a more feasible ap-
proach for handling legacy networks than promoting a massive
replacement of devices with non-rechargeable batteries.

III. DECONN: DUAL ENERGY CONSUMPTION FOR
INTERNET-OF-THINGS

In this section we present our solution for Dual Energy
COnsumption for interNet-of-thiNgs (DECONN). We begin
with an overview in Section III-A. In Section III-B, we
introduce the DECONN parent selection process and in Sec-
tion III-C we discuss data aggregation. Finally, we provide
implementation details of DECONN in Section III-D.

A. Overview

Figure 1 depicts an overview of DECONN, considering a
network with heterogeneous (renewable and traditional) nodes.
The renewable nodes are equipped with hardware that can do
energy harvesting (e.g., solar panels). The traditional nodes
have only non-renewable batteries. The illustrated network
executes a tree-based routing, where each node selects one
parent node to create a route towards the IoT gateway (GW).

The primary objective of DECONN is to select the parent
toward the GW that maximizes the minimum energy available
energy on the path, giving preference for full renewable routes
over traditional batteries. For instance, the red box in Figure 1
shows the parent selection executed by node X. Node X has
two possible parents towards GW. If node X chooses Y, it is
a path where all the nodes have renewable energy. If node
X selects W, it is not a full renewable path since node Z is
a traditional node. Therefore, node X must select node Y as
a parent because DECONN prefers routes where all node is
renewable nodes. When a node has multiple full renewable
paths to choose from, it selects the parent that leads to the
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Fig. 1: A conceptual overview of DECONN.

route with the maximum value among the minimum energy
available on the route.

After the parent selection, the produced traffic flows towards
the GW from the nodes. Each node can apply data aggregation
to the routed traffic. DECONN computes the data aggregation
level for each route according to the minimum energy available
on the route and the type of energy source. For instance,
the route from A to GW includes the nodes B, C, and D.
Among these nodes, node D is the one that has the minimum
energy available on the route, and it is a full renewable
path. So, DECONN sets the aggregation level for this route
at 40% (the actual computation of this number is shown in
Section III-B). Let us consider another route, from E to GW.
This route includes F, G, and D. Among these nodes, node
D has the minimum energy available, with 61%, but node
G is a traditional node with 70% of battery charge. In this
case, DECONN sets the data aggregation level in 100%, i.e.,
maximum. The maximum data aggregation level for this case
is since node G will deplete its battery before node D since
it cannot recharge its battery, considering similar consumption
for both. With the maximum data aggregation level in this
route, the lifetime of node G will be prolonged.

B. DECONN Parent Selection

Algorithm 1 presents the DECONN algorithm for parent
selection. To illustrate, consider node A running this algorithm.
DECONN stores in A the pathEnergy information received
from the set of parent candidates. The received pathEnergy
reveals what is the minimum energy level on the path for each
candidate. In case pathEnergy is zero, there is at least one
node in the path that has a non-rechargeable battery. For node

A, DECONN selects as a parent the candidate with maximum
pathEnergy. In the end of this process, node A has to announce
its pathEnergy to other nodes which are considering A as a
parent candidate. Before this announcement, Node A assigns
zero to pathEnergy if it uses traditional battery. Besides, the
announced value is the minimum value between the maximum
pathEnergy and the residual energy on the node’s A battery.

Algorithm 1 Parent Selection.

1: Start
2: while (Rx from candidate set) do
3: PathEnergy[ ] ← Receive msg with PathEnergy
4: end while
5: Select p with max(PathEnergy[ ])
6: maxPathEnergy ← max(PathEnergy[ ])
7: Announce(maxPathEnergy)
8: AjustDataAgg(maxPathEnergy)
9: End

10:
11: procedure ANNOUNCE(maxPathEnergy)
12: if my Battery type == Traditional then
13: my Energy ← zero
14: end if
15: newPathEnergy ← min(my Energy, maxPathEnergy)
16: Send msg with newPathEnergy
17: end procedure
18:
19: procedure AJUSTDATAAGG(maxPathEnergy)
20: Normalize maxPathEnergy
21: DataAggLevel ← function(Normalized maxPathEn-

ergy)
22: end procedure

When a node is executing Algorithm 1, after knowing what
is the maximum pathEnergy for its selected parent, DECONN
adjusts the data aggregation of the node. DECONN normalizes
the maximum pathEnergy, i.e., computing the percentage, and
transforms it to a data aggregation level that is executed on
the network traffic flowing through that particular node.

C. DECONN Data Aggregation

Figure 2 illustrates how the data traffic is aggregated in a
particular node. As can be observed, the input data considered
for aggregation can be received from a neighbour (Label 1.a),
or it can be produced by the node itself (label 1.b). In the
application layer, the input data is stored (label 2). When the
data aggregation timer expires, the input data is aggregated
according to the level set by the Algorithm 1 (Label 3).
After the aggregated message is produced (Label 4), it passes
through the communication layer to be transmitted (Label 5).

Algorithm 2 presents further details on how a node com-
putes the data aggregation. As can be noticed, not all traffic is
aggregated. So, when a new message arrives, the node must
check if the code in the message’s header indicates it is an
application data message, e.g., CoAP or Message Queuing
Telemetry Transport (MQTT). If the traffic is an application



Fig. 2: Data Aggregation approach to control the data traffic.

Algorithm 2 Data Aggregation Algorithm

1: Start
2: function NEW PACKET ARRIVES(msg)
3: typeCode ← parseCode(msg)
4: address ← parseAddrs(msg)
5: if isDataTrafic(typeCode) and notMyAdd(address)

then
6: buffer(msg)
7: if timer not set() then
8: set aggregation timer()
9: end if

10: end if
11: end function
12:
13: function TIMEOUT AGGREGATION TIMER( )
14: buffer(data produced)
15: p num ← count payloads(buffer)
16: p data ← extractPayloads(buffer)
17: DataAggLevel ← getAggLevel()
18: newPayloadLen ← (DataAggLevel -1) * p num
19: if newPayloadLen == 0 then
20: newPayloadLen == 1
21: end if
22: newPayload ← assembly(p data, newPayloadLen)
23: forward next layer(header, newPayload)
24: end function
25: End

layer and it is not the final destination, the node stores it and
sets a data aggregation timer.

When the timer expires, the node counts the number of
stored payloads, including self-produced, and extracts them.
Then, it computes the number of payloads the aggregated mes-
sage must have, using the aggregation level set in Algorithm 1.
Then, Algorithm 2 processes the input payloads, applying data
aggregation operations, to obtain as an outcome the aggregated
payloads. After that, the aggregated payload is inserted in a

new application layer message and forwarded.

D. Implementation

We used Contiki [15] – an operating system for tiny and
low-power IoT devices – to implement DECONN. The main
functionalities were implemented in the routing and applica-
tion layers. The Constrained Application Protocol (CoAP) [9]
and Low-Power Lossy Networks (RPL) [8] were selected for
DECONN, as they are standard protocols designed for IoT
devices with memory and processing constraints.

RPL is a suitable protocol to implement DECONN’s parent
selection. It adopts a proactive protocol that establishes a
Destination Oriented Directed Acyclic Graph (DODAG) based
at a single destination. The RPL DODAG Information Ob-
ject (DIO) message informs the neighbour nodes about the
parent candidates. The RPL code responsible for sending and
receiving DIO messages was modified to carry pathEnergy
information in Algorithm 1. To enable the pathEnergy in-
formation, we have implemented the Kinetic Battery Model
(KiBaM) [16], which is a non-linear battery model. This
module allows each node to know its residual battery level.

With regard to data aggregation, extra code was required
in the IPv6 layer running the IPv6 over Low-Power Wireless
Personal Area Networks (6LowPan) protocol. It was necessary
to inspect the header information in the messages to identify
the CoAP messages. Every CoAP message in the IPv6 layer
is checked. If the message is not in its destination, it goes to
the application layer to be stored for aggregation.

We implemented the following data aggregation components
in the application layer: (i) Buffer for CoAP messages, (ii)
data aggregation timer, and (iii) extraction and computing
aggregated payloads. We have considered the following proto-
col stack: IEEE 802.15.4, 6LowPAN, RPL, UDP, and CoAP.
Figure 3 shows how many bytes were used for each protocol
header and describes the format for aggregated payloads.

Fig. 3: Header and Payload Format for Aggregated CoAP
message.

As can be observed in Figure 3, the payload in the aggre-
gated message uses 2 bytes to indicate the data type and 2
bytes to store the data. Using this specific protocol stack, it
was possible to insert up to 17 payloads in the same CoAP
message without causing 6LowpAN fragmentation.

IV. PERFORMANCE EVALUATION

Next, we present the experiments carried out to evaluate
DECONN. Section IV-A introduces the testing settings and
metrics, and Section IV-B shows the obtained results.



TABLE I: Parameter Settings.

Parameter Value
Protocol IEEE 802.15.4, 6LowPAN,
Stack RPL, UDP, CoAP
Model for
(Non-)Rechargeable Batteries Kinetic Model
Energy harvesting Trace Columbia University’s [18]
Total Number of nodes 80
Number of Rechargeable nodes 72
Number of Non-Rechargeable nodes 8
Simulated Time 72h
Battery Capacity 1000000 microAh

A. Environment Settings and Performance Metrics

DECONN has been implemented in Contiki OS and tested
in the Cooja simulator [17]. Table I presents the main settings
used for the evaluation tests.

Cooja embeds Contiki code emulating real IoT hardware.
The emulated hardware was the following: MSP430 series 5,
which has a MicroController Unit (MCU) of 16 bits with 16kB
internal RAM and 128kB Flash. The transceiver is TI CC2520
(2.4GHz), compatible with IEEE 802.15.4 and 6LoWPAN.

The Kinetic Battery Model (KiBaM) was set to measure
the residual energy on the battery, supporting rechargeable and
non-rechargeable nodes. The rechargeable nodes read a data-
trace that contains indoor radiant light measurements collected
by the Columbia University’s [18]. The theoretical solar panel
with 170 cm2 provides an input electric current for KiBaM at
5v. The conversion efficiency is set to 20%. Regarding energy
consumption, it is based on Powertrace [19] functionalities,
which can measure energy consumption related to Transmit,
Receive, Idle Listen, Active CPU, and Low Power CPU.

The objective of this evaluation is to measure the perfor-
mance of DECONN mainly in terms of (i) Residual Energy
(RE) in the battery; and (ii) Energy Consumption. RE is a
metric to measure the performance of the rechargeable nodes,
and the energy consumption is an evaluation metric for non-
renewable nodes.

In this evaluation, DECONN is compared to the Standard
Protocol Stack (SPS), which uses the standard version of RPL
and does not execute any data aggregation on the network
traffic. Besides, SPS uses Minimum Rank with Hysteresis
Objective Function as metric for parent selection [20].

Two simulation scenarios have been set to represent a
network with Low and High Residual Energy. These scenarios
are detailed as follows.

• Low RE Scenario: This scenario was set up to simulate
a situation where the nodes have low energy on their
batteries. To achieve that, at the beginning of the simula-
tion, we set all the batteries with 50000 microAh, which
represents 5% of the battery capacity. Besides, each node
produces and sends 30 CoAP messages per minute.

• High RE Scenario: In this scenario, the nodes have abun-
dant energy in their batteries. In this case, the batteries
begin the simulation with 85000 microAh, which is 85%
of the battery capacity. Besides, each node produces and
sends 120 CoAP messages per minute.
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Fig. 4: Heat Map of Residual Energy. a) DECONN in High
RE Scenario; b) SPS in High RE Scenario; c) DECONN in
Low RE Scenario; d) SPS in Low RE Scenario.

B. Obtained Results

The obtained results shown in this section were computed
with a confidence interval of 95% and based on 30 samples.

Figure 4 displays the residual energy for DECONN and
SPS at the end of the simulations. Figure 4.a and 4.b depict
the High RE scenario. The Low RE scenario is presented in
Figure 4.c and 4.d. Visually, it is possible to notice a slight
advantage for DECONN, mainly for Low RE scenario. To
provide further analysis in High RE scenario, Figure 5 shows
the probability distribution function of the residual energies
in the network, at the end of the simulation. Based on the
data supplied by Figure 5, it is possible to find out the
percentage of nodes that have at least a certain amount of
residual energy. According to these results, it is possible to
notice a superior performance of DECONN. For instance, the
SPS probability for residual energy of ≤ 0.97 is 100% and
DECONN probability for this same value is around 60%.

Figures 6 and 7 introduce the results in terms of residual
energy over time. Figure 6 and 7 are the obtained results for
scenarios Low RE and High RE, respectively. In Figure 6,
there is a trend line to indicate the tendency of the results.
The trend line was computed using the Least Square Method
(LSM). It is possible to notice that DECONN tendency is
negative at the beginning of day 1. However, at the end of
day 3, DECONN has a positive tendency, which indicates that
the balance between the harvested and consumed energy is
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positive. This positive tendency benefits the nodes because it
indicates that the rechargeable batteries will not deplete in the
short-term, which means an extended neutral operation time.
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Fig. 6: Residual Energy Over Time of Rechargeable Nodes in
Low RE Scenario.

On the other hand, a negative tendency is observed for SPS.
Regarding Figure 7, both solutions are discharging the batter-
ies, as expected. If the solutions do not present this behaviour,
the batteries will overflow after some days, representing a
waste of energy.

So far, the results have focused on residual energy, showing
the results for nodes with rechargeable batteries. Figure 8 and 9
present the energy consumption for non-rechargeable batteries.

As can be observed, in both scenarios, DECONN enables
lower energy consumption than SPS. This energy consumption
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Fig. 8: Energy Consumption of Non-Rechargeable Nodes in
High RE Scenario.

reduction prolongs the lifetime of the nodes.
Table II presents the average data aggregation executed by

DECONN. This percentage represents the amount of CoAP
messages aggregated using data aggregation operations such
as average, maximum, minimum, or sum. It is possible to
notice that in the Low RE scenario, the aggregation level
is 31% on average for three days. In High RE, the average
data aggregation percentage is 11%. The results of Table II is
expected since, in the Low RE scenario, the nodes have %5
of charge, which means that the network has to save energy
by applying higher data aggregation on the traffic.
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DECONN Data Aggregation Statistics
Low RE High RE

day 1 36.35% 13.94%
day 2 29.33% 10.99%
day 3 28.96% 10.99%

TABLE II: Data Aggregation performed by DECONN.

V. CONCLUSIONS

While the industry promotes low-cost IoT devices that
present interesting trade-offs between resource consumption
and effectiveness, environmental issues related to power provi-
sioning in IoT devices can not be neglected. The massive num-
ber of nodes powered by non-disposable and non-rechargeable
batteries has to be replaced gradually with renewable energy
sources. In the meantime, traditional and renewable IoT de-
vices must cooperate to support IoT data monitoring.

To promote the coexistence of renewable and non-renewable
energy sources in the same IoT network, we presented and
discussed in this paper the Dual Energy COnsumption for
interNet-of-thiNgs (DECONN). DECONN is a distributed so-
lution designed to combine minimum and neutral consumption
for IoT networks with heterogeneous energy provision. From
our experimental evaluation, we observed that DECONN can
reduce the energy consumption of traditional nodes and extend
the neutral operation of the renewable nodes. As prospective
direction for future work, we intend to perform practical
experiments in a testbed to validate DECONN and highlight
its potential benefits.
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