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Abstract—Industrial Internet-of-Things (IoT) massively de-
ploys intelligent computing in industrial production and manufac-
turing environments seeking automation, reliability, and control.
Machine Learning models provide intelligent decisions to drive
manufacturing systems to the next level of productivity, efficiency,
and safety. One of the critical challenges that must be faced
is the deployment of Machine Learning models at the network
edge to detect data anomalies caused by Industrial IoT hardware
failures, since industrial IoT devices are prone to errors and
failures. These anomalies can harm the industrial IoT system
by producing false alarms, consuming network resources, and
affecting productivity. Because of that, it is critical to rely on low
latency and high precision detection systems to verify the data
received from industrial IoT devices. In light of this, we assessed
key performance indicators of five machine learning models
running at edge computing, to provide in-depth discussions.
The performance results were obtained from an oil refinery
scenario using a real industrial IoT dataset. The performance
was measured in terms of (a) Accuracy, (b) Precision, (c) Recall,
(d) F1 score, (e) Training time, and (f) Response time.

Index Terms—Industrial Internet-of-Things; Machine Learn-
ing; Edge Computing.

I. INTRODUCTION

The emergence of the Internet-of-Things (IoT) in the in-
dustry is enabling a new industrial revolution [1], since IoT
enables smart monitoring [2] with efficient communication [3]
[4] [5] for a vast set of applications [6].

Machine learning in IoT is driving the industry to the
next generation of smart manufacturing, logistics, control,
and distribution. However, industrial IoT environments and
systems are sensitive to errors and faults occurring in IoT
devices. According to [7], faults are defined as deviations from
expected behaviour in the device output. The occurrence of
faults results in production halts, accidents, false alarms, and
equipment damage. Therefore, it is crucial to have precise and
fast mechanisms to detect and diagnose faults in industrial IoT
systems.

Edge computing has emerged as a paradigm to increase
the computational capability of IoT systems, providing extra
storage and processing. Edge computing devices are deployed
near the IoT devices to reduce the time necessary to complete
computationally demanding tasks.

Given the low latency requirement of industrial IoT appli-
cations and the capabilities of edge computing to provide that,
the objective of this paper is to assess the performance of
machine learning models running in edge computing devices
to detect failures in industrial Internet-of-Things. The consider
industrial scenario is a petrochemical power plant, where a
set of boilers produces energy for an oil refinery. This paper

proposes an algorithm to inject faults on the original dataset
and also presents key performance indicators applying five
machine learning models to identify faults. Besides, this work
presents the obtained computational time to train and test these
models, using an edge computing device.

The rest of this paper is organized as follows. Section II
presents the related work. The description of the industrial
scenario, which is a petrochemical power plant, is given in
Section III. Section IV presents the details related to the
machine learning models. Next, the evaluation, including the
performance metrics, settings, and the obtained results are
detailed in Section V. At the end, Section VI presents the
conclusions and future works.

II. RELATED WORK

There are in the literature, solutions which rely on machine
learning models to support smart decisions in industrial IoT
environments. Jan et al. [7] [8] design a distributed diagno-
sis system to detect sensor-fault for Internet-of-Things. The
authors consider devices with limited computation resources,
such as memory, processing, and energy. This solution is based
on a Support Vector Machine (SVM) model, where response
time is not the top priority for the application.

Saeed et al [9] propose a solution for fault detection and
diagnosis in sensors, considering a set of faults, namely erratic,
drift, hard-over, spike, and stuck faults. This work captured
real data from a temperature-to-voltage converter and the faults
were injected into the original dataset. The detection systems
apply a SVM model and the authors present a set of tuning
parameters able to improve the performance of fault detection.

Javaid et al [10] apply machine learning to detect a partic-
ular type of fault, called drift. In this faulty state, the output
of the device keeps increasing or decreasing linearly from the
normal state. The dataset used in this work was collected from
a digital relative temperature/humidity sensor (DHT22) and the
drift faults were inserted using an Arduino controller. The au-
thors compare the performance of the machine learning models
in terms of precision, recall, f1-score, and total accuracy.

Zidi et al [11] propose a SVM model to detect faults in
Wireless Sensor Networks. This work uses as the original
dataset a data collection from the University of South at
Greensboro [12] and injected the following type of faults:
Offset, Gain, Stuck-at, Out of bounds, and random fault.

Naimi et al [13] consider a nuclear power plant scenario,
where industrial IoT devices are prone to errors and faults.
The authors propose fault detection and diagnosis based on
neural networks and the K-nearest neighbour algorithm. The
proposed solution first detects the fault based on the neuralPreprint 2022 IEEE



network, then the K-nearest neighbour algorithm determines
the fault type. This work considers the following types of
faults: bias, drift, actuator saturation, and actuator offset.

Khodabaksh et al [14] present a comprehensive approach
for petrochemical power plants of an oil refinery. The authors
made available their dataset in [15]. This work uses ARMA
time-series as modelling technique and generates synthetic
datasets. Besides, it classifies four fault types of industrial
IoT devices, namely called Bias, Drift, Precision Degradation
and Failure using a complex decision tree, neural network,
and k-nearest neighbour algorithms. These faults were injected
into the original dataset and the performance of the detection
was measured in terms of Precision and Recall. This work
also evaluates the computational performance of the detection
algorithms, taking into consideration memory usage and time.

Summing up, the detection of a fault in Industrial IoT is
a time-sensitive application, so delays must be minimized.
However, many works related to fault detection in industrial
scenarios use SVM as their main building block and SVM
requires higher computation time. This is the case for Jan
et al. [7] [8] and Zidi et al [11]. Naimi et al [13] also
do not consider the necessary time to apply a two-phase
solution, based on SVM and K-nearest neighbour algorithm.
Therefore, the works in the literature do not evaluate the
machine learning models considering their performance in
edge computing hardware. The performance of the classifiers
is important and low computation time is also crucial for
industrial IoT scenarios.

III. DESCRIPTION OF THE SCENARIO: A PETROCHEMICAL
POWER PLANT

Industrial Internet-of-Things (IIoT) aims to interconnect
people, machines, and things. In IIoT, intelligent systems
must support the full connection among all devices, the
entire industry chain, and the entire value chain [16]. Oil
& gas businesses are one of the IIoT scenarios, demanding
monitoring of thousands of sensors inside and around their
physical systems [14]. In these environments, IIoT devices
continuously measure temperature, pressure, flow rate and O2,
located in drills, heaters, turbines, boilers, pumps, compressors,
and injectors.

Figure 1 illustrates the considered IIoT scenario, which is a
power plant located in an oil refinery. The major component
of this IIoT environment is a set of boilers and turbines.
The IIoT devices deployed in the power plant are sensors,
servers, processing and storage devices. Typically, a power
plant with 8 boilers produces 80 megawatts of electricity,
which is consumed by the rest of the refinery. The process
of electricity production is conducted by turning hot water
into super-heated and highly-pressurized vapor.

The produced vapor from the boilers is oriented to the set of
turbines. Each turbine has an alternator that transforms thermo-
kinectic energy into electrical energy. The flow rate in the input
and output of the boilers are monitored by a set of IIoT devices,
e.g. F_in#1 and F_out#1, as can be observed in Figure 1.

Figure 2 illustrates a power plant boiler and its IIoT devices.
The boiler receives as input water, air, fuel oil and fuel gas.
The boiler can control the desired stream pressure levels (low,
high, very-high). It also controls heating, cooling, recycling,
and condensing modes [14]. The implanted devices measure
the temperature, pressure, O2, and flow in the various critical
points of the boiler.

Fig. 1: IIoT Scenario: A Power Plant in a Oil Refinery [14].

Boiler

Fig. 2: Boiler in a power plant [14].

IV. MACHINE LEARNING FOR IIOT DEVICE FAILURE
DETECTION

IIoT devices are prone to errors and failures. These anoma-
lies can harm the IIoT system by producing false alarms, since
the failure of an IIoT device can indicate erroneous data. The
production is halted, based on these anomalous detections.
This work proposes the use of machine learning to detect IIoT
device failures. Section IV-A presents the dataset from Turkish
Petroleum Refineries Inc. (TUPRAS) that contains real IIoT
measurements. Section IV-B presents how the failures were
injected in the original dataset. Section IV-C describes the
applied machine learning models.

A. Dataset with Real Measurements

In this paper, we use an IIoT dataset provided by Khod-
abakhsh et al. [14], which provides real measurements of
more than 1,000 devices deployed in the Turkish Petroleum
Refineries Inc. (TUPRAS) power plant. This dataset is a
sample of real data measured every minute and it is made
available for academic use in [15].



Data used in these experiments are 200,000 records from
(Water, De-Super Heater, Vapor) flow sensors sampled every
60 seconds for about 5 months in the TUPRAS power plant.
This data was replicated 5 times to form 1 million lines to
better represent the real sensor loads. Every line has records
of 3 flow sensors in the power plant dataset and 17 flow sensors
in the petrochemical dataset.

B. Injection of Hardware Faults
According to [7], faults are defined as deviations from

expected behaviour in the device output. The faults are a data
corruption behaviour and it is related to the physical defects
of the devices and their operational conditions.

In this paper, a single type of fault has been considered,
namely Spike Fault. As can be observed in Figure 3, a spike
fault is an effect observed as a large-amplitude value occurring
at time intervals in sensor output. These errors occur due
to vibrations from other parts of the system affecting the
produced output.

Fig. 3: Spike Fault.

The original dataset with real measurements does not iden-
tify, i.e. label, any faults or errors. However, machine learning
models using supervised techniques must have labeled data
identifying the faults. Based on statistical analysis performed
on the dataset, we developed an algorithm to inject fault in
the dataset, inserting the respective labels for train and test.

Algorithm 1 presents the pseudo-code used to insert spike
faults in the original dataset.

Algorithm 1 Fault Injection Algorithm

1: Start
2: function FAULTVALUE(datasetValues, iStart)
3: windowSize ← 500;
4: data[windowSize];
5: for (i = iStart; i < iStart+windowSize; i++) do
6: data[i] ← datasetValues[i];
7: end for
8: mean ← data.mean();
9: min ← data.min();

10: max ← data.max();
11: maxVariance ← (mean - min) * (max - mean);
12: faultValue ← max+maxVariance;
13: return faultValue;
14: end function
15: indexNum ← datasetValues.size();
16: for (j = 0; j < indexNum*percentageFaults; j++) do
17: spike ← faultValue(datasetValues, indexNum);
18: datasetValues[random(0,indexNum)] ← spike;
19: end for
20: End

The input of this algorithm is the original values sensed by
the IIoT devices and its output is either the same original value
or a fault. The proportion of inserted faults can be controlled.

The faultValue function returns the value for a single spike
fault in a particular time. The faultValue function takes into
account the sum of the maximum variance (maxVariance)
and the maximum value (max) of a window with 500 values
(windowSize). The mean and the minimum value of the 500-
window are considered, as equation 1 shows. The fault is
inserted in the random index taken from a list, i.e. faultsList.
The original dataset value is replaced by a new spike value.

σ2
max = (mean−min)(max−min) (1)

C. Machine Learning Models
To detect the hardware faults of IIoT devices, the following

set of classifiers were used: Supported Vector Machine (SMV),
Decision Tree, Random Forest (RF), Gaussian Naive Bayes
(GNB), and Logistic Regression (LR).

The machine learning models are based on supervised learn-
ing, using a training set to adjust their models to compute the
output. SVM, Decision Tree, GNB, and RF are classifiers that
seek to recognize input within the dataset and compute how
those entities must be labelled or defined. LR is a regression-
based model, which means that it seeks to find the relationship
between dependent and independent variables.

V. PERFORMANCE ASSESSMENT

The goal of this section is to evaluate the machine learning
models using a comprehensive set of metrics, to present the
evaluation settings and environment, and to detail the ob-
tained results. This section is divided as follows: Section V-A
presents the metrics defined to evaluate the machine learning
performance. The performance related to edge computing is
shown in section V-B. Section V-C presents the settings of
the evaluation environment. Section V-D presents the obtained
results.

A. Metrics for Machine Learning Performance
The following set of metrics has been defined to measure

the performance of the machine learning models:
• Accuracy: Indicates the number of correct predictions

divided by the total number of predictions.
• Precision: It is represented by the ratio between the

number of correct positive classifications and the number
of total positives.

• Recall: It represents the number of true positives divided
by true positives and false negatives.

• F1 Score: It constitutes a harmonic mean between pre-
cision and recall. In this metric, 1.0 means excellent
performance.

B. Metrics for Edge Computing Performance
The performance of the machine learning running at the

edge computing is assessed by the following metrics:
• Train Time: This is the time to complete the machine

learning train in a particular edge computing hardware.
• Response Time: This is the time taken by the machine

learning algorithm to compute 13393 outputs, i.e. 30% of
the dataset.

It is important to notice that the training time is an important
metric, since the machine learning models must be updated
frequently in order to learn new behaviors. It means that the
machine learning models are likely to be trained over time.
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(a) Water Flow
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(b) Water Temp.
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(c) Water Pressure
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(d) Steam Flow
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(e) Steam Temp.
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(f) Steam Pressure

Fig. 4: Machine Learning performance.

C. Evaluation Settings
Table I shows the settings used to run the tests. The original

dataset has 44643 data values for six data types. The test
performance considers four proportions of injected spike faults,
as follows: 446 (1%), 2232 (5%), 4464 (10%), and 6696 (15%).
The dataset was divided in 70% for training and 30% for tests.

TABLE I: Parameters and Settings.

Parameter Value
Original Dataset 44643 data values. TUPRAS [14]
Data type Water flow, water temperature, water pressure

Steam flow, steam temperature, steam pressure
Type of Fault Spike
Injected Faults 446 (1%), 2232 (5%), 4464 (10%), 6696 (15%)
ML Models SVM, Decision Tree, RF, GNB, and LR
Implementation Python, scikit-learn library
Edge Computing Hardware: i7-8700 3.2GHz, 12GB RAM;

The machine learning models were implemented in Python,
using the scikit-learn library and running on Linux Operating
System. The hardware used for the tests seeks to reflect edge
computing hardware. For these tests, the following hardware
was used: i7-8700 3.2GHz, 12GB RAM.

D. Obtained Results
Figure 4 presents the results for the five machine learning

models and their performance in terms of Accuracy, Precision,
Recall, and F-1 score. As can be observed, all five machine
learning models have high performance for Water Flow and
Steam Flow, since all the models achieved more than 0.90,
considering all the performance metrics. In comparison, the
performance for Water Pressure and Steam Pressure shows
that the models have high performance in terms of accuracy.
However, their performance in terms of Precision, Recall, and
F1 Score is poor. This occurs because Accuracy is a percent
value of correct predictions, it is not recommended for an
unbalanced dataset. For instance, in a dataset with 1% of faults,
the Accuracy would be 99% if the model predicts zero faults.

The difference in performance between Flow and Pressure
is noticeable. It is important to observe that Water and Steam
Flow have a higher variance in their values than Water and
Steam Pressure. As the spike injection algorithm takes into
account the variance of the data, the spike fault for Flow is a
value more distance from the normal behavior than Pressure.
As the Pressure data is more stable, the spike fault, in this
case, is not so distant from the normal data.

Figure 5 presents the training and response time, considering
edge computing with i7-8700 3.2GHz, 12GB RAM. It is
possible to observe that SVM and Random Forest are the
machine learning models with the highest train time. Decision
Tree, GNB, and LR are the fastest approaches. It is possible to
observe that Decision Tree and GNB are more than ten times
fast than SVM. The fastest approach is able to save more than
4 seconds in training, and 1.5 second in response time (see
Fig. 5.c).

Taking into account the performance and time of all classi-
fiers involved, GNB and LR would be possible choices to be
deployed on typical edge hardware. Both provide precise and
fast classification. In terms of machine learning performance,
despite the GNB not having the best classification performance
in Water Temperature, its performance is one of the best. In
terms of time, GNB and LR show the best performance for
edge computing hardware. Based on the obtained results, if
there is a need to deal with new training and testing processes,
both would deal with it in a shorter time and the precision of
the predictions would be at a high level.

VI. CONCLUSION AND FUTURE WORKS

The revolution caused by the Internet-of-Things and ma-
chine learning algorithms applied to industrial environments
has gained relevance over the last years. Industrial Internet-of-
Things can benefit from machine learning by adding intelli-
gence to the continuous monitoring and controlling process
executed on manufacturing systems. In this context, edge
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Fig. 5: Train and Response Time on Edge Computing.

computing is another trend, mainly due to the necessity to
achieve low latency on computational tasks in industrial IoT
applications.

Industrial IoT environments are prone to faults occurring in
IoT devices. These faults represent a risk for the factory, since
they can result in dangerous events and can stop production.
So, it is essential to rely on precise and fast systems to detect
the occurrence of IoT faults.

This paper proposes the use of five machine learning models
to detect IoT device faults, using edge computing hardware to
run the classifiers. It uses a dataset with real industrial data and
proposes an algorithm to inject faults in the original dataset.
The performance analysis is conducted using six metrics,
measuring the precision of the machine learning models and
the computational time to train and produce the outputs.

In future work, the authors intend to use a comprehensive set
of edge computing hardware and implement communication
policies in case of fault detection.
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