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Abstract—The efficient design of SFC-enabled eHealth appli-
cations requires an accurate provision of the underlying infras-
tructure. This provision requires both computing and networking
resources to meet stringent QoS requirements under any condi-
tions of service demand. Cloud providers often offer automatic
elasticity strategies based on monitoring specific metrics that lead
to a waste of resources, time/energy consumption, and the prob-
lem of starvation with competing services. Our findings provide
evidence that proactive-based elasticity overcomes these issues,
when assisted by Machine Learning (ML) methods for predicting
Internet traffic load. An optimal autoscaling algorithm depends
on high precision and fast predictions to provide accurate results.
Thus, this paper assesses ML algorithms to support SFC-enabled
eHealth vertical applications. The experimental results suggest
that the evaluated models achieved similar accuracy metrics, with
an MLP architecture delivering the best performance in terms
of time training and average prediction time.

Index Terms—Service Chaining, eHealth, Machine Learning,
proactive autoscaling

I. INTRODUCTION

The healthcare landscape has changed significantly with
the emergence of an electronic Health (eHealth) computing
paradigm. In eHealth, non-digital healthcare platforms harness
Internet-based electronic systems driven by the crucial support
of the Internet of Things (IoT), Cloud/Edge Computing, Big
Data, and other enabling technologies [1]. In such an ecosys-
tem, many eHealth applications empower medical teams in
different ways, ranging from real-time biometrics to intelligent
data processing. This can result in precise diagnostics and
therapeutic conduct, along with advanced decisions on treat-
ment/supervision of patients. This is made possible through
the integration of Artificial Intelligence (AI) techniques. In
AI-enabled eHealth applications, intelligent systems can track
eHealth activities, analyze and learn health data in real-time,
and predict the future occurrence of diseases by allowing
the early adoption of new treatments. However, the mission-
critical eHealth services impose several stringent computing
(processing, memory, and storage) and networking (band-
width, limited delay/loss, and others) requirements that must
be met by the infrastructure at runtime.

Infrastructures that adopt Service Function Chaining
(SFC) [2] provide a means of tackling the aforementioned

stringent requirements. In a general way, SFC allows the
desired integration between the different service-forming com-
ponents to be achieved, by enabling chains of services to
be provided that combine virtualized functions and legacy
systems. Together, all these actors operate in an integrated way
to provide the desired eHealth service application. However,
the efficient design of SFC-supported eHealth applications
requires the accurate provision of the underlying infrastructure
of both computing and networking resources. Resource provi-
sioning is of paramount importance to meet the requirements
of eHealth applications during the entire lifecycle to avoid per-
formance degradation, especially in critical procedures (e.g.,
telesurgery or even during long/short-term interruptions).

Regardless of the architecture adopted, cloud-like services
are continually being assessed in light of Quality of Service
(QoS) requirements. These requirements are driven by differ-
ent Key Performance Indicators (KPIs), which are established
by Service Level Agreements (SLA) (e.g., efficiency, availabil-
ity, and reliability) [3]. In the context of the eHealth vertical
application, it is essential to provide services to patients,
doctors, and researchers that meet strict QoS KPIs under
any conditions of service demand [4]. For this reason, elastic
management of virtualized infrastructures is a key factor, since
it can automatically adapt (autoscaling) current patterns of
energy to meet new changes in service demands.

Cloud providers offer reactive elasticity techniques that
monitor resource utilization data and service performance
KPIs to trigger autoscaling to reach minimum or maximum
thresholds. The resource reservation system usually follows
a staggered approach, which means scaling-up current values
two-fold, to meet the new projected demand. If the first cycle
is not enough, the autoscaling process repeats until it reaches
the required amount [5]. This leads to an unassertive resource
computing-staggered distribution scheme, where the response
time of the reactive algorithm increases exponentially when
applied to an infrastructure that approaches resource-depletion.
In the eHealth scenario, this reactive stagger-based autoscaling
is unsuitable, since the same service’s successive autoscaling
cycles are time/energy-consuming, can jeopardize QoS and
impair user satisfaction, as well as resulting in starvation [6].



An optimal autoscaling algorithm depends on the ability
to compute, in the first processing cycle, the final amount of
resources that need to be scaled-up. The level of effectiveness
and performance associated with the calculation task depends
on the assertiveness of the autoscaling algorithm [7]. Such
high-precision means the ability to meet projected service
resource demands. A proactive-based elasticity approach paves
the way to overcome the issues of reactive autoscaling ap-
proaches. One of the main goals of this work is to exploit
the ability to predict future Internet traffic loads, so that
accomplishing anticipated elasticity functions, and enable as-
sertive autoscaling taking the predicted patterns as input. The
time series analysis stands as the most traditional prediction
method, since it can detect variation patterns of repetitive
service demands.

Our findings from the bibliographical research analysis
provide evidence of the prominence of Multilayer Perceptron
(MLP), Long Short-Term Memory (LSTM), and Convolutional
Neural Networks (CNN) algorithms for Internet traffic pre-
diction in different use cases. Our hypothesis is that feed-
forward artificial neural network architectures (e.g., MLP) will
be feasible to meet the goals of SFC-enabled eHealth. The
reason is on its ability to provide satisfactory outcomes in
predicting traffic associated with an optimized training time
caused by low computational complexity [8]. Thus, we expect
that this promising precision and agility can be used to face the
challenges of this research in tackling assertive and proactive
autoscaling for SFC-based eHealth scenarios.

To the best of our knowledge, the literature lacks evidence
ML-based solutions that support proactive autoscaling deci-
sions in SFC-based eHealth services and use cases. In light
of this, this paper seeks to fill the gaps referred to above
by making the following research contributions: (i) providing
a comprehensive analysis of the most appropriate algorithms
tailored to SFC-based eHealth mission-critical services and use
cases; and (ii) evaluating the performance of prominent ML-
Based techniques for predicting time-series data to support
elastic SFC-enabled eHealth services.

This paper is structured as follows. Section II outlines
the most significant works in ML-based resource prediction.
Section III describes the neural network architectures utilized
in our evaluations. Section IV describes the methodology and
setup of the experiments. Section V examines the results
and discusses of the experiments. Section VI summarizes the
findings of our research and provides some recommendations
for future research.

II. RELATED WORK

In cloud/edge-native infrastructures, the support of the re-
source elasticity capability of the virtualization paradigm is a
key factor in provisioning both the computing and network-
ing parameters of targeting containers and virtual machine
instances in an automatic fraction. Our state-of-the-art analysis
found that the currently adopted elasticity solutions design
mostly follow a reactive decision-making approach to meet

the optimal rate. For instance, the notable Kubernetes1 tool
can be exploited for autoscaling active containers and virtual
machines. The Kubernetes approach proceeds by reconfigur-
ing the running parameters (e.g., CPU cycles or incoming
bandwidth) by doubling current patterns. If it is not enough,
Kubernetes repeats the same workload until it reaches the
desired demand, if it is possible.

Our previous work, designated as elaSticity in cLOud-
neTwork Slices (SLOTS) [5], introduces a statistically-based
autoscaling solution to overcome the complexity of the com-
puting approach that Kubernetes imposes. Although the exper-
imental evaluation of SLOTS reveals impressive improvements
over Kubernetes, it also deploys a reactive approach, which
means it will be possible to detect a virtual application faces
quality degradation caused by resource depletion.

There are several different schemes for Internet traffic
prediction in the literature. However, the approaches can be
grouped in two distinct ways: (i) statistically-based methods
and (ii) machine learning-aided schemes. The integrated au-
toregressive moving average (ARIMA) is the most common
statistical method. It can capture short-range dependencies, but
not long-range ones, which means it has a poor performance
when used for this purpose.

Some variations of these statistical methods, such as the
Fractional ARIMA (FARIMA), can enable both dependencies
to be described. They can also provide similar results to the
artificial neural network schemes [9]. However, they are char-
acterized by being subject to severe limitations in estimating
the fractional differentiation parameter d, which is responsible
for establishing the degree of differentiation necessary to form
a second-order stationary time series.

Models of Artificial Neural Networks (ANN) have been
widely used to design machine learning-based schemes and
also specifically for Internet traffic prediction [9, 10]. For
example, [8] compared the performance of four different ANN
architectures (i.e., Sparse Autoencoder – SAE, RNN, and two
variations of the MLP) for predicting network traffic. The
authors suggested that MLP and RNN are the most appropriate
methods for predicting network traffic because of their rapid
data training capabilities.

LSTM is widely adopted as alternative to simple recurrent
units to form a holistic recurrent neural network and learn
complicated information within sequential data. In [11], an
LSTM neural network model is designed to predict network
traffic that shows non-linear trends and contains uncertain
random factors, which may prevent the flow model with linear
characteristics from being predicted accurately. Authors of
[12] evaluated the performance of various RNNs, including
a stacked LSTM within real-world data, to identify the op-
timal network parameters and network structure to achieve
optimized predictions.

The use of CNNs to forecast short-term changes in the
amount of traffic crossing a data center network is put forward
in [13]. The proposed scheme outperformed ARIMA by an

1http://kubernetes.io/



increasingly significant margin as the forecasting granularity is
above the 16-second resolution. In [14], the authors predicted
network throughput to improve the adaptive streaming of the
algorithm’s performance using a dataset from which the net-
work throughput could be extracted over different timescales.

Despite this range of works that employ ML-based Internet
prediction, the literature lacks evidences about works that
devote analyzing ML algorithms to support proactive autoscal-
ing decisions in SFC-based eHealth use cases. Therefore, we
provide a comprehensive analysis of the most appropriate
algorithms tailored to this scenario. Aside from that, in this
paper we study the performance of the main ML techniques
founded in the literature to predict time series (e.g., MLP,
LSTM, and CNN). The study’s central premise lay in the
characteristic traffic data that SFC-enabled eHealth use case
yield, seeking to support its chained functions’ proactive
elasticity. We describe these architectures in more detail in
Section III.

III. PREDICTING MODELS

We propose the use of four models derived from MLP,
LSTM and CNN architectures to carry out demand predic-
tion based on Artificial Neural Networks (ANN). ANNs are
processing systems separated into strongly connected nodes
known as artificial neurons. Each neuron has a synaptic
weight, and is responsible for storing acquired knowledge.
They are arranged into layers and capable of working in
parallel to process and store data and knowledge and infer new
data through learning processes. The learning process occurs
during the network training, where the synaptic weights are
modified until they reach the desired level of learning.

A. Multilayer Perceptron – MLP

Multilayer Perceptrons (MLP) are feed-forward artificial
neural networks in which all the neurons in the same layer
are connected to all the neurons of the next layer, but not
in the same layer. The training algorithm used for MLP is
backpropagation, which is a supervised learning algorithm,
where the MLP learns the desired output from various data
entries. However, backpropagation suffers the problem of the
magnitude of a partial derivative, which makes it either too
large or too small. This causes many fluctuations in the learn-
ing process by slowing the convergence time or making the
network stuck in its local minimum. To avoid this problem, we
will use Rprop, which has a dynamic learning rate, and updates
the learning rate of every neural connection, by reducing the
error for each neuron separately.

B. Long Short-Term Memory – LSTM

A Long Short-Term Memory (LSTM) neural network is a
variant of a Recurrent Neural Network (RNN). RNN employs
a method different from the traditional feed-forward neural
network by introducing the recurrent structure in the network.
It also establishes the neural network’s connection to itself,
where neurons store information from the previous period in
the neural network and influence the current stage and output.

We also employed another architecture that combines two
LSTM layers which will be referred to as Stacked. Multiple
hidden LSTM layers can be stacked on top of another, and
this is referred to as a stacked LSTM model. As an LSTM
layer requires a three-dimensional input and LSTMs by default
produce a two-dimensional output, we addressed this problem
by having the LSTM output a value for each time step in the
input data and the hidden output state for each input time step.
This allows us to have 3D output from the hidden LSTM layer
as input for the next layer.

C. CNN-LSTM Model

We also employ a Convolutional Neural Network (CNN)
combined with a LSTM layer as in [15]. CNN can provide
models for data with a meaningful topology efficiently, which
are widely used for image recognition, but can be adapted
for time series prediction. CNN is a specialized type of
ANN featuring convolutional layers. These types of layers use
convolutional filters, which are linear functions applied to the
input data in a sliding-window fashion.

In our implementation, the CNN-LSTM architecture con-
sists of one convolutional layer of 64 filters, followed by
a pooling layer, an LSTM layer with 50 neurons and an
output layer of one neuron. A flattening layer is used between
the pooling layer and the LSTM layer to reduce the feature
maps to a single one-dimensional vector. The CNN does not
view the data as having time steps. Instead, it is treated as a
sequence over which convolutional operations for reading can
be performed, such as a one-dimensional image.

IV. METHODOLOGY

This work assumes that the SFC-enabled eHealth service
will be subject to workloads that must go through the entire
chain to be served [16] at random. However, they allow
variations to be observed on demand throughout the day form
the perspective of time windows of different sizes.

This means that, a dataset recommended for this context
must start from individual requests that occur at any time.
Different time windows can be derived from them that enable
proactive decisions to be made for different time scales, from
the representative statistical value for each window as input,
to the decision of the mechanism of elasticity. In light of this,
the evaluation here will be guided by a dataset of the lowest
granularity that allows different time windows to be derived
(as performed by [14]).

The traffic data has been extracted from point of presence
of an Internet Service Provider (ISP) from Italy [17], during
the period of 57 months. The dataset is available for download
at the research dissemination page2. In particular, the dataset
consists of HTTP requests from the provider’s customers in
a specific category of web pages. Thus, we believe that the
variation in the number of requests captured, will represent
the variation in the traffic demand for the eHealth use case of
a chained patient data consultation service.

2https://mplanestore.polito.it:5001/sharing/b73FXl4KC



A. Data preparation

The raw data of the chosen dataset are originally arranged
in the form of timestamps that contain the information of the
day and time when each HTTP request has been made . In
an attempt to transform the data series into a time series that
represents variation in demand over time, we extracted the
number of requests per second from the original data.

Once in possession of this time series, we divided it into 5
minute windows in order to configure the dataset in a format
in which the prediction model could take action by carrying
out the demand forecasting for the next five minutes. For
this reason, as a statistical value to describe each window
interval, we chose the average interval (mid-range) between
the minimum and maximum per second requests that were
made within the time interval. Figure 1 illustrates a time
interval that corresponds to four days, as already configured
in five-minute windows.

Fig. 1. Number of requests per window, where the number of requests is
given by the midrange value in each window

B. Evaluating Performance of Models

To quantitatively evaluate the predictions of our models, we
used the following metrics of the Mean Absolute Error (MAE),
the Mean Squared Error (MSE), and the Median Absolute
Error (MedAE). MAE, MSE and MedAE are respectively
defined by the equations (1), (2) and (3):

MAE =
1

n

n∑
i=1

|ŷ1 − yi| (1)

MSE =
1

n

n∑
i=1

(ŷ1 − yi)
2 (2)

MedAE(y, ŷ) = median(|y − ŷ1|, ..., |y − ŷn|) (3)

where n is the number of predictions, while ŷ and y mean
the amount predicted, together with its actual corresponding
value. These are consolidated metrics utilized in forecasting
problems which are used to measure a) the average of the
forecast error values (Eq. 1), b) the average of the squared

forecast error values (Eq. 2), which has the effect of putting
more weight on large errors and c) the median of the absolute
errors (Eq. 3), which is a measure of statistical dispersion that
is more resilient to outliers than the standard deviation.

Additionally, we measured the performance of each fore-
casting model in terms of time for training and average
prediction time. Both metrics combined with the performance
prediction metrics are aimed at helping to choose the model
that is most useful for proactive autoscaling, i.e., which offers
faster and more accurate predictions.

C. Experimental Setup

The neural networks were implemented using the Python
Keras3 library, together with TensorFlow4. All the experiments
were performed on a VM set with 64GB RAM, a 20-core Intel
Xeon E5 2.0 GHz CPU, and running Ubuntu 18.04 LTS.

The quadratic mean error was used as the loss function that
was employed during the training phase, which is needed to
estimate model loss and optimize the iteration process. The
number of training epochs was set to 10 as the results showed
no improvement for higher values. The dataset consisted of
208.437 samples and normalized. Half of the dataset was
used for training and the other half for validation. During the
validation phase, when the model was already trained, we used
three input samples at a time to compare the predictor output
with the expected output and thus evaluate the accuracy of the
models. Figure 2 depicts the obtained LSTM prediction for a
period of one week.

Fig. 2. LSTM prediction for a one week period

V. RESULTS AND DISCUSSION

The results of the four models examined in this work were
very close to each other, as illustrated in Figures 3, 4, and 5.
In the case of MAE, the results were around 3.5×10−1, with
3× 10−1 for MedAE, and 2× 10−1 for MSE.

The neural network architecture and model parameters, as
the number of neurons and epochs were set empirically, the
chosen metrics were unable to distinguish the model from the
others in terms of accuracy, without displaying a significant

3https://keras.io
4https://www.tensorflow.org/



difference of values in the prediction of the same dataset
employed. Nevertheless, the results for any of the evaluated
models can be considered satisfactory both in terms of the
average error from the actual measured value as in terms
of their ability to reflect the demand variations. Thus, it
indicates that an eHealth autoscaling mechanism supplied by
one of these models will be able to adapt its resources with
a five-minute anticipation (as the time window utilized in the
experiments) and according to predicted values with a mean
absolute error close to zero when handling with traffic with
the same features.

Fig. 3. Mean Absolute Error (MAE)

Fig. 4. Median Absolute Error (MedAE)

Figure 6 illustrates the results obtained from the training
time that each algorithm took in the same dataset. The results
showed the MLP model with training time approximately four
times faster than the LSTM and CNN models, and approx-
imately seven times faster than the Stacked LSTM model.
This can be explained by the greater simplicity of the MLP
architecture compared with the others, with one layer less
than CNN and Stacked, and with more simplified neurons than
LSTM units.

Once again, our empirical parameterization of setup of
the architectures does not ensure that one model has an
advantage over another in therms of accuracy. However, the
results confirm the expectations about the MLP model and

Fig. 5. Mean Squared Error (MSE)

its time efficiency and establish it as a potential model for
the autoscaling of eHealth applications. This is because the
automatic decisions will be made more quickly as it takes
less time to start making predictions owing to the fact that the
training phase is faster.

Fig. 6. Training time

Figure 7 illustrates the obtained results with regard to the
time needed to obtain a new prediction value from the last
three captured demand values. We intend to measure the speed
with which the model can obtain new predictions in order to
determine its impact on a eHealth real-time system. The results
showed that once trained, the two-layer models and the LSTM
model achieved results of approximately 4 × 10−3 seconds
and the MLP again had an advantage, with a value below 1×
10−3 seconds. Although all the models presented an average
prediction time in millisecond fraction of seconds, MLP again
emerged as a potential predictor for the eHealth domain, where
it could lead to even more anticipated autoscaling decisions.

VI. CONCLUSION

In this paper, we evaluated ML algorithms aimed at sup-
porting the elasticity of eHealth applications offered through
service function chaining, proactively. Four different neural
network models (MLP, LSTM, Stacked LSTM and CNN-
LSTM) were utilized with a dataset representative of an
SFC-based eHealth workload, which require to be resized



Fig. 7. Prediction time

in accordance with predicted demands. For this reason, the
accuracy of the predictor is of great importance to drive
proactive autoscaling decisions.

The four models had accuracy metrics that were close to
each other. This enables the decision to be made about the
best model as being the one that requires the least time for
training and obtaining prediction results, and which is most
suitable to SFC-based eHealth real-time systems. The MLP
architecture achieved the best results for time training and
average prediction time (time to obtain a prediction with the
model already trained). This can be attributed to its simpler
architecture which consists of more simplified neurons, and it
achieved satisfactory results compared with the other models.
The results can be improved for each of the models in
future work through the application of optimization algorithms
based on heuristics that would allow an optimal adjustment
of the parameters of each one. Another recommended future
work should concentrate on a couple of these models on a
proactive autoscaling mechanism to evaluate the assertiveness
of decisions in terms of the resources reserved to meet the
demands of a chained eHealth service.
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