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Abstract

In the past few years, several systems have been proposed to deal with issues related to the vehicu-
lar traffic management. Usually, their solutions include the integration of computational technolo-
gies such as vehicular networks, central servers, and roadside units. Most systems use a hybrid
approach, which means they still need a central entity (central server or roadside unit) and Internet
connection to find out an en-route event as well as alternative routes for vehicles. It is easy to
understand the need for a central entity because selecting the most appropriate vehicle to perform
aforementioned procedures is a difficult task. This is especially true in a highly dynamic network.
In addition to that, as far as we know, there are very few systems that apply the altruistic approach
(not selfish behavior) to routing decisions. Because of that, the issue addressed in this work is how
to perform the vehicular traffic management, when an en-route event is detected, in a distributed,
scalable, and cost-effective fashion. To deal with these issues, we proposed a distributed vehicle
traffic management system, named as dEASY (distributed vEhicle trAffic management SYstem).
The dEASY system was designed and implemented on a three-layer architecture, namely envi-
ronment sensing and vehicle ranking, knowledge generation and distribution, and knowledge con-
sumption. Each layer of the dEASY architecture is responsible for dealing with the main issues
that were not addressed in related works or could be improved. The three-layer architecture is
arranged as follows: the first layer deals with the task of selecting the most appropriate vehicle to
perform data forwarding and/or knowledge generation, the second one addresses the knowledge
generation and distribution, and the third layer applies an altruistic approach to choose an alterna-
tive route. Simulation results have shown that, compared with other systems from the literature,
our proposed system has lower network overhead due to applied vehicle selection and broadcast
suppression mechanisms. On average, dEASY also outperformed all other competitors in what
regards to the travel time and time lost metrics. Through the analysis of results, it is possible to
conclude that our infrastructure-less system is scalable and cost-effective.
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1. Introduction

Traffic congestion is a daily occurrence for citizens living in large cities around the world. This
problem tends to worsen with the economic and population growth in the urban centers. The in-
creasing vehicular traffic demand may overwhelm the existing transport infrastructure, especially
during rush hours [1, 2]. To improve on this issue, two immediate solutions come to mind: (i)
the expansion of road infrastructure; or (ii) the amendment of the traffic management system. In
the former solution, the cost of road infrastructure expansion is often impractical, due to financial
and/or physical-space constraints. The latter solution, on the other hand, allows the use of already
existing technologies, along with the new ones, to improve the efficiency of the traffic management
system. This can be done without the need to invest in new road infrastructure. Due to the lim-
itations mentioned in the first solution, significant research efforts have been directed toward the
second one [3, 4, 5, 6, 7]. One of the promising technologies for an efficient traffic management
system is the Vehicular ad hoc Networks (VANETs).

The highly dynamic topology of VANETs is one of the features that sets it apart from the
other types of networks. Besides that, the mobility pattern of the mobile nodes (vehicles) in these
networks is restricted by the roads pathways, traffic laws and regulations, and by the traffic condi-
tions [2]. In VANETs, all external interaction is done through wireless communication links either
between vehicles (vehicle-to-vehicle, V2V) or between the vehicle and the roadside unit (vehicle-
to-infrastructure, V2I) [8, 9]. The communication technology commonly employed follows the
WAVE (Wireless Access for Vehicular Environment - 802.11p) standard. WAVE supports seven
channels at the 5.9 GHz band [10, 11], where one of them is exclusively dedicated to the control
channel, and the other six are dedicated to service channels [10].

Most VANETs applications require to be aware of the local situation to find out en-route events
(e.g. traffic congestion) [12, 13]. One way to get such awareness is to apply the beaconing ap-
proach [14]. This approach performs the periodic exchange of one-hop beacon messages through
the control channel. As a result, each vehicle will be aware of information from neighboring vehi-
cles that are within its transmission range. The content of the beacon message is associated with
the GPS information such as location coordinates, speed, direction, as well as other vehicle in-
formation [14]. Using the beaconing approach, a real-time traffic management system can collect
raw data and extract useful information (or knowledge) about the traffic congestion in a region of
interest. Several systems were designed and implemented to recommend an alternative route, in
real-time, when an en-route event is detected [4, 5, 6, 7].

All the systems mentioned above apply a hybrid approach. In other words, the raw data collec-
tion task and knowledge extraction are done by a central entity (central server or roadside units),
and the calculation of the alternative route is performed by the vehicles. It is easy to understand
the use of the infrastructure for such tasks since selecting the best-located vehicle in VANETs
is not a simple task due to its highly dynamic topology. Furthermore, the previously mentioned

∗I am corresponding author
Email addresses: takeo@lrc.ic.unicamp.br (Ademar T. Akabane), roger@ic.unicamp.br (Roger

Immich), bit@ic.unicamp.br (Luiz F. Bittencourt), edmundo@ic.unicamp.br (Edmundo R. M.
Madeira), leandro@ic.unicamp.br (Leandro A. Villas)

URL: http://www.lrc.ic.unicamp.br/˜takeo/ (Ademar T. Akabane)

2



systems do not provide a procedure to deal with the broadcast storm problem as well, which takes
place during the knowledge dissemination process. Neglecting this problem, the scalability of
systems may be compromised. This is especially true in regions where there is a high concen-
tration of vehicles. Another important aspect, when it comes to alternative route planning in the
traffic management system, is the altruistic approach. It helps to select a better route by taking
into account the neighbor’s vehicles routes during the planning phase. In all abovementioned sys-
tems, only one applied the altruistic approach [7]. Although several systems have been proposed
for vehicular traffic management, there is still a long way to go to implement these systems in
practice.

Motivated by the aforementioned concerns, this work proposes an infrastructure-less sys-
tem for traffic management based on three-layer architecture named dEASY (distributed vEhicle
trAffic management SYstem). The three layers are environment sensing and vehicle ranking,
knowledge generation and distribution, and knowledge consumption. In a bottom-up fashion, the
first layer, environment sensing and vehicle ranking, applies a novel vehicle ranking mechanism
that was inspired in Google’s PageRank [15]. The proposal of this innovative mechanism allows
the vehicle to autonomously compute its score based on the number of one-hop communication
links. The main objective here is to use the ranking score to select the most appropriate vehicle
for tasks to be performed on the next layer. In addition to that, we use the beaconing approach to
be aware of the local situation. In the second layer, knowledge generation and distribution, the
vehicle with the highest ranking score processes the raw data received to extract knowledge about
the condition of the traffic congestion. Once the knowledge generation is completed, it will be
disseminated. During this process, a broadcast suppression mechanism is applied to avoid any un-
necessary network overhead. In the last layer, knowledge consumption, vehicles use the received
knowledge, in addition to the neighborhood route information, to create an altruistic alternative
route that avoids the congestion spot without creating others.

In order to validate our proposal, the simulation-based evaluation has been analyzed from
three perspectives: (i) control channel assessment; (ii) scalability assessment; and (iii) traffic man-
agement assessment. The dEASY system outperformed all its competitors in all the analyzed
perspectives. Because of that, it is possible to assert that dEASY is a scalable and cost-effective
system for real-time vehicle traffic management.

The main contributions of this paper can be summarized as follows:

• The proposal of a scalable, distributed three-layer system for real-time traffic management
(Section 3);

• A novel vehicle ranking mechanism (Section 3.3). The proposed mechanism allows select-
ing the most relevant vehicle in the VANETs, as demonstrated in the scalability assessment
(Section 5.2);

• An altruistic rerouting approach along with the entropy-based shortest path (Section 3.5).
This approach enables the computation of an alternative route and has demonstrated as an
interesting option in the traffic management assessment (Section 5.3).

The remainder of this paper is organized as follows. Section II provides a brief review of the
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related work. Section III details our distributed three-layer system for real-time traffic manage-
ment. Simulation setup is described in Section IV. Numerical results and analysis are presented in
Section V. Section VI concludes this work and looks out on future improvements.

2. Related Work

Many works have proposed congestion detection systems and real-time vehicle path planning
with the support of VANETs. They also use a combination of different technologies such as
induction loops, central server, and road sensors to achieve their goals [4, 5, 6, 7, 16, 17, 18].
The main purpose of these systems is redistributing the flow of vehicle traffic that is going to the
congested area, using real-time traffic data collected, to the non-congested area.

Several emerging technologies provide a large opportunity to decrease vehicular traffic conges-
tion, and also the emission of polluting gases, by only monitoring traffic conditions. Based on this,
Liu et al. [16] proposed a four-tier centralized architecture for urban traffic management combined
with 5G wireless network, SDN (software-defined networks), and MEC (mobile edge computing)
technologies. The proposed tiers are the environment sensing layer, the communication layer, the
MEC server layer, and the remote core cloud server (RCCS) layer. The environment sensing layer
is responsible for the perception of real-time traffic conditions. Vehicles actively report their status
as well as environmental data to RSUs. The communication layer is composed of two emerging
network paradigms, namely 5G and SDN. While the 5G network is responsible for direct commu-
nication between vehicles and infrastructures, SDN is responsible for decoupling network control
and forwarding functions, enabling thus network control to become programmable. The MEC
server layer is introduced to improve the responsiveness for the traffic congestion system. It is
deployed on the roadside infrastructure in order to keep it close to the end user. The remote core
cloud server layer processes all of the traffic data to identify the congestion points. This layer is
also responsible for informing vehicles and RSUs about the events monitored by the system in the
four tiers.

Another example of an architecture for traffic management is the EcoTrec [4]. Its main objec-
tive is to reduce gas emissions along the vehicle’s route without significantly increasing their travel
times. EcoTrec relies on the periodic exchange of information about road characteristics and traffic
conditions in the route segment. Based on the information collected, it applies a fuel consumption
model that takes into account the vehicle route to build and recommend alternative routes. The
vehicles periodically send information about the monitored environment to the nearest RSU. With
this information, the utility function computes and updates the optimum route. The function’s goal
is the best avail of each road potential. The vehicles’ routes are planned according to the shortest
path algorithm with basic load balancing strategy. This strategy is applied to avoid the most pop-
ular roads to become congested. EcoTrec architecture is constituted of three components: Vehicle
Model, Road Model, and Traffic Model. The Vehicle Model is built and updated by each vehicle
individually, using information from the GPS sensors and accelerometer. On the other hand, the
vehicle’s local traffic conditions are applied to build and maintain the Traffic Model. Both the
Traffic Model and the Road Model are maintained at a central server and updated with information
on the nearby roads around the RSU. Both works [4, 16] require RSUs, but it is not clear how they
are distributed in the scenario. In addition to that, a broadcast suppression mechanism was not
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applied during the information dissemination process. This can affect the system performance and
scalability. Another gap is the absence of the scalability assessment of the system.

Another example of a centralized vehicle rerouting system is the Next Road Rerouting (NRR) [5].
The NRR’s goal is to assist drivers in making the most suitable next road choice by focusing on
a higher travel time reliability in the face of congestions. The system is deployed as an add-on to
the typical 3-tier architecture of SCATS (Sydney Coordinated Adaptive Traffic System) [19]. On
top of this architecture is the Traffic Operation Center. It can manage up to 64 regional computers
residing in the middle tier. Each computer is responsible for coordinating the synchronization of
all traffic lights phases in its region, based on the real-time traffic information gathered from loop
detectors. At the bottom tier are the intersections (up to 250), where the traffic lights and loop
detectors are deployed. The rerouting calculation is done by the regional computer that will rec-
ommend only the next road with the least cost for each rerouting request. All requests are done
through V2I communication. The routing cost applied in NRR is expressed in terms of road oc-
cupancy, travel time estimation, geographic distance to destination, and geographic closeness of
congestion. After the vehicle enters the suggested optimal next road, it calculates the remaining
route with the aid of the vehicle navigation system. In this work, it is not clear how the sensing
of the environment is performed to detect the en-route event. In addition to that, no experimental
evaluation regarding the scalability of the system was presented.

A real-time global path-planning system has been proposed by Wang et al. [6]. This system
uses both VANETs and public transportation system to enable real-time communications among
vehicles, RSUs, and a vehicle-traffic server. In this case, taxis and buses are considered as super-
nodes, and they can directly upload the received warning message to the nearest cellular base
station (BS). The BS, in turn, will deliver the message to the vehicle-traffic server. Moreover, it is
assumed that there is an RSU placed at each intersection. All the vehicles periodically exchange
information about their movement. When the congestion is detected, the vehicles around the RSU
will generate and forward the warning message to other vehicles through V2V communication.
To reduce the redundancy of multi-hop relaying, only taxis/buses that are within the transmission
range will continue the data dissemination process. Otherwise, the farthest vehicle in the same
lane will be chosen as the next relay. Every time an RSU or a cellular BS receives a warning
message, it forwards the message to the traffic server through the wired network. After receiving
it, the server will perform the path-planning algorithm based on the road traffic information. Last,
after the server concluded the path planning, the replanned paths are forwarded back to vehicles
by the reverse way, i.e., traffic server, RSU, and the vehicle in need of alternative path. The path-
planning algorithm takes into account both the traffic flows of the network and the path-planning
cost. The main goal of this algorithm is to maximize the spatial utility while minimizing travel
cost. This study, as in work by Doolan et al. [4], does not evaluate the scalability of the system.
This evaluation is important because there is a high number of messages being exchanged in the
network. In addition to that, it is not clear how the identification of congestion spots is performed.

DIVERT is a hybrid vehicular rerouting system for congestion avoidance [7]. This proposal
is considered hybrid because it uses a central server, reachable over the Internet communication,
to provide a global view of the traffic situations. The central server operates as a coordinator that
collects location reports, identifies traffic congestion spots, and distributes rerouting notifications
to the vehicles. Each vehicle estimates local density using a periodic exchange of beacon packets
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among its neighbors, and sends this estimate to the server that handles the task of identifying the
congestion. When points of congestion are identified, the central server sends the traffic map to the
vehicles that have sent the latest updates. Afterward, these vehicles distribute the traffic map re-
ceived from the central server in their region of interest. Such system offloads the selection process
of the alternative route to the vehicles, thus the rerouting process becomes practical in real-time.
The selection of an alternative route, for each vehicle affected by congestion, is given by the k
loop-less shortest paths algorithm based on the current position and destination. In addition to
that, DIVERT takes collaborative rerouting decisions, i.e., the vehicles situated in the same region
exchange information about their alternate routes over V2V communications. Through collabora-
tive rerouting, vehicles can create an awareness of traffic conditions which could contribute to the
choice of the alternative route, thus avoiding additional congestion. This work lacks a broadcast
suppression mechanism during the two distinct steps of the information distribution (traffic map
and alternative route), which can affect the scalability of the system. In addition, the difficulty in
understanding the system scalability may in part be attributed to the lack of a detailed performance
evaluation of the DIVERT’s system.

The work in [17] proposes a vehicular traffic control system that applies the IoV (Internet of
Vehicles) to prevent heavy traffic formation and accidents. To this end, the proposed traffic control
system segments the evaluated scenario into small sub-scenarios. In each sub-scenario, there is an
infrastructure available that collects and processes all the traffic data. If a congestion event occurs,
it applies the ant colony algorithm in order to find the optimal route for vehicles that are going
towards the congestion spot. Likewise, in [18] CDRAM (Content Dissemination framework for
Real-time trAffic Management) is proposed applying IoV. CDRAM is composed of three main
components: RSU, BS, and TMS (traffic management system). The RSU component is used to
upload the traffic data generated by vehicles to TMS. The BS component can provide full coverage
of wireless communications for users in urban areas, and it is used when RSUs are unavailable.
Finally, TMS receives and processes all traffic data in order to identify the traffic congestion spots.
In addition, TMS computes and informs alternative routes for vehicles. This allows them to avoid
congested areas. Similarly to the works by Doolan et al. [4] and Wang et al. [6], the scalability
of the system has not been evaluated. This raises a number of concerns with respect to its real
applicability in a cost-effective way.

Due to the highly dynamic network conditions in VANETs, some systems choose to employ an
infrastructural approach, thus eliminating the difficult task of selecting the most relevant vehicles
to identify congestion and recommend alternative routes. Such type of infrastructure, with central
server or RSU, performs data aggregation in order to extract knowledge about traffic congestion
spots. In addition to that, some solutions implicitly assume that there are RSUs available along
with all the extension of public roads. This approach may be impractical, particularly when a spe-
cific region has no pre-existing infrastructure. Based on the challenges identified in this work, we
propose the dEASY system, which is an infrastructure-less system for vehicle traffic management
based on a three-layer architecture.
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3. Distributed and Infrastructure-less Vehicular Traffic Management System

In this section, we first present the assumptions used in our work and then detail our infrastructure-
less system for vehicle traffic management.

3.1. Assumptions
A number of assumptions are made in order to build our vehicle traffic management system.

The key assumptions are as follows:

1. Each vehicle has a GPS receiver to provide the primary navigation data;
2. Each vehicle has a bidirectional communication link with neighbor vehicles within the trans-

mission range;
3. The communication link breaks if the distance between vehicles is greater than the trans-

mission range;
4. All vehicles have the same transmission range;
5. The propagation model employed is the Two-Ray Path Loss.

3.2. System Overview
This subsection introduces an overview of how systems, found in the literature, have addressed

each one of the three layers. After that, in each subsection, we show in details each layer proposed
in this work according to Figure 1. In a bottom-up view of the architecture, the first layer de-
picts the environment sensing and vehicle rank. The mid-layer depicts knowledge generation and
distribution, and the upmost layer depicts knowledge consumption.

The Environment Sensing Layer plays a significant role in raw data collection, in addition
to that is possible to extract from it an accurate knowledge about traffic conditions of the roads.
This layer relies on V2V and V2I communications as well as roadside sensors and transportation
infrastructure to acquire real-time raw data traffic to build a knowledge base and keep it up to date.
To this end, vehicles share a beacon message periodically between them or with the central entity.
This type of message typically contains data gathered directly from the global navigation satellite
system (GNSS) receiver, which includes the current position, speed, and heading, just to name a
few.

The Knowledge Generation and Distribution Layer includes the knowledge-generation pro-
cesses such as processing and aggregation of the raw data. This step is vital to meet the different
needs according to the context of the service. In this process, the individual raw data, provided
by the bottommost layer, is gathered and grouped until new knowledge emerges from this mass of
data. Additionally, this layer is also responsible for delivering services to customers such as route
suggestion and en-route events.

The knowledge Consumption Layer is responsible for providing a knowledge-based decision
making procedure. This decision can be approached in two different ways: (i) the decisions are
made to benefit the overall system - altruistic approach; or (ii) the decisions are made only seeking
self-benefit - selfish approach. For a better understanding of the abovementioned approaches, let
us take as an example a congestion avoidance service. As soon as any congestion is detected,
vehicles traveling towards it should search for an alternative route. However, by applying a selfish
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Figure 1: The dEASY’s three-layer system architecture.

approach, they can create a secondary congestion, particularly when vehicles in the congested
roads have similar destinations. In this situation, it is important that vehicles share their decision-
making process with the maximum number of participants involved in the congestion. This allows
a better global decision-making process for all the participants, in addition to a better overall
network flow.

3.3. Environment Sensing and Vehicle Ranking
The environment sensing involves collecting data about the driving surroundings. Each ve-

hicle periodically broadcasts its current GNSS data through beacon messages to all the vehicles
within the transmission range. After receiving the beacon messages, vehicles can perform data
aggregation and broadcast the result in the network. However, if this is done by all participating
vehicles in an uncoordinated fashion, it will consume the entire network bandwidth in a short time.
Based on that, it is useful to identify the best-located vehicles in the network continually since the
network is highly dynamic and the localization of vehicles is time-dependent.

Identifying the best-located vehicles in a VANET is a very challenging task due to its highly
dynamic topology. On the other hand, once they are identified, it can beneficial for a large number
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of services, such as the ones that spread the information flow through the network [20].
It is known that Google’s PageRank [15] algorithm ranks the importance of webpages based on

the number of web-links directed towards it. The general idea of PageRank relies on a graph where
nodes are webpages and edges depict the links between them. Thereby, PageRank uses the link
structure as an indicator of an individual page’s importance in the structure of the World Wide Web
relative to other pages. In general, the higher the number of links, the greater the importance of
the webpage. Inspired by this idea, we propose an innovative vehicle ranking mechanism, named
Vrank. The idea of Vrank is to use the link structure of VANETs to compute the vehicle’s score. For
that, we used the Egocentric Betweenness Metric (EBM). Betweenness is a measure of how often
a node is located on the geodesic distance (shortest path) between other nodes in the network. It
thus measures the importance to which the node can function as a point of control in the communi-
cation [21]. Intuitively, betweenness metric measures the control a node has over communication
in the network. High centrality thus implying that a node can reach other nodes on relatively short
paths, or that a node lies on a considerable fraction of shortest paths connecting pairs of other
nodes. Based on that, in our case, the best-located vehicle is defined as the importance of the vehi-
cle in relation to the information flows that pass through it. This mechanism enables the vehicles
to autonomously compute their score based on the number of communication links established
with their neighbors. Another Vrank feature is the joint use of the radio propagation model, as can
be observed in Equation 1.

Vrank = αEBM + (1− α)RPM (1)

whereEBM andRPM are the Egocentric Betweenness Metric and the Radio Propagation Model,
respectively. The aim is to improve the process of data propagation, among vehicles, through a
path with minimum interference in inter-vehicle communication. Both parameters will be ex-
plained in more details later. The weighting factor, α, is an indicator of the importance of each
parameter for the calculation of vehicle relevance in the network, where α ∈ (0,1).

The EBM applies a centrality-based social-popularity approach inspired in social networks
analysis (SNA) technique. It analyzes the social data structure and social relation to understand
the characteristics of a network [22, 23]. There is a key difference between the traditional SNA
and the EBM. The first one usually requires the entire knowledge of the network topology to
perform the analysis [22, 24], while in the second one the analysis is done over the structure of
ego-networks, and requires only the local knowledge [24, 25]. Therefore, applying the structure
of ego-networks to study its behavior is an attractive approach in VANETs. Next, we introduce
the formal definition of the EBM and how it is calculated.
EBM is computed using an ego-network representation. By definition, an ego-network is a sub-
network constituted of a single node (ego - represented by label n in Figure 2) together with the
nodes to which they are connected to (alters - nodes 1, 2, 3, 4, and 5), and all links between al-
ters [24, 26]. Let N r

n be the set of nodes, v′, that are r-hop away from n (ego), i.e., N r
n = {v′ ∈

V ∧ 1 ≤ d(n, v′) ≤ r}, where d(n, v′) denotes a one-hop link between n and v′. Thereby, 1th-
order of node n consists of undirected graph G1

n = (V 1
n , E

1
n), where the set of nodes corresponds

to V 1
n = {N1

n ∪ {n}} and the set of edges corresponds to E1
n = {(i, j) ∈ E1

n|i, j ∈ V 1
n }.

Mathematically, node-to-node links can be represented by a symmetric adjacency matrix A
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Figure 2: An illustrative example of the ego-network.

(k × k), where k is the number of one-hop neighbor nodes. Thereby, each element in A, ai,j , can
be given by:

aij =

{
1 if there is a direct link between i and j
0 otherwise

Therefore, the EBM of a certain node, n, can be calculated by the sum of the reciprocal values
of the A2

n[1− An]i,j , as defined in the Equation 2 [25].

EBM(n) =
∑

An(i,j)6=0,i<j

1

A2
n[1− An]i,j

(2)

where An depicts the adjacency matrix of the node n, 1 is a matrix of all 1’s, and the matrix A2
n

provides the number of geodesic distances of length 2 between the node pairs i and j.
The egocentric betweenness is computed by manipulating only the adjacency matrix, i.e., a

simple network topology based on one-hop communications. The local information of the network
topology is obtained by means of the beaconing approach. Since the vehicle’s beacon messages
are only useful to one-hop neighbors, these messages are not forwarded. Therefore, the beacon
message exchanged between the vehicles is a list of neighbors, as can be observed in Figure 3.
In this illustrative example, the gray vehicle (labeled as 1) receives the list of neighbors of all
vehicles currently within its transmission range (vehicles labeled as 2, 3, and 4). Once received,
it can construct the adjacency matrix and calculate the egocentric betweenness score, according
to Equation 2. Each one of the vehicles updates the egocentric betweenness score whenever the
adjacency matrix is updated.

There is evidence that the betweenness SNA and EBM have the highest correlation in a static
network [24]. However, new research indicates that the highest correlation can also exist in highly
dynamic networks [9, 27], such as VANETs.

The other parameter used to compute the Vrank is the radio propagation model. This parameter
has been added for messages to travel on a link with less interference. The model applied was the
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Figure 3: An illustrative example of the ego-network calculation using VANETs.

two-ray ground-reflection, which considers path loss (20log(4π d
λ
)), the difference of interfering

rays from other vehicles, and the reflection coefficient, as described by Equation 3:

LTRI [dB] = 20log(4π
d

λ
|1 + Γ expϕ |−1) (3)

where λ is the wavelength, d is the Euclidean distance between two vehicles, Γ is the reflection
coefficient, and ϕ is the phase difference of interfering rays. The procedure for the calculation of
the phase difference of interfering rays is given by Equation 4:

ϕ = 2π
dlos − dref

λ
,

{
dlos =

√
d2 + (ht − hr)2

dref =
√
d2 + (ht + hr)2

(4)

where dlos and dref describe the propagation distance and the reflection distance, respectively. The
variables ht and hr represent the height at which the antenna of the transmitter and the receiver,
respectively, are relative to the ground. In this work, the height applied to both antennas was
149.5 cm, which is commonly adopted in the literature [28]. Lastly, the reflection coefficient can
be calculated by Equation 5:

Γ =
sin θi −

√
ε− cos θi

sin θi +
√
ε− cos θi

,

{
sin θi = ht+hr

dref

cos θi = d
dref

(5)

where ε represents the reflection from the ground with a value of 1.02 [28] and θ is the angle be-
tween the ground and the reflected ray. Finally, the wavelength value was set to 0.051 m according
to IEEE 802.11p [29].

Using these two parameters, therefore, each vehicle can autonomously compute its own rank
score. Once calculated the Vrank, each one of the vehicles shares it with its one-hop neighbors.

3.4. Generation and Distribution of Knowledge
The dEASY system sends the GNSS data through periodical messages to its one-hop com-

munication neighbors. These messages are sent into the control channel in the form of beacon
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packets. In addition to the already contained data in the beacon package, two extra information
fields were added, namely the current Vrank score and the aggregated data. The local knowledge is
created by aggregating the beacon data received from the neighborhood. Once the local knowledge
has been created, the next step is to share it with the highest-ranked neighbor vehicle.

The merging of two aggregated values, if needed, may be performed according to the following
function: Ar := ∂(A1, A2), where ∂ depicts the aggregation function that has two input values (A1

and A2). Therefore, these input values are combined, generating a new aggregated value (Ar). As
the main goal of this work is the design of a vehicular traffic management system, the aggregation
function is given by the Equation 6:

vavgagg(i)
=
v1c1 + v2c2
c1 + c2

(6)

where vavgagg(i)
is the average aggregate speed of a given road i. The parameters v1 and v2 are the two

input values of the same road, which are going to be aggregated. ci indicates the amount of data
that contributed to the generation of the new aggregated value. Every time the vehicle receives a
report concerning a given road i, it will smooth the computed aggregate average speed vcurragg(i)

using
the following Equation 7:

vcurragg(i)
= σvoldagg(i) + (1− σ)vnewagg(i)

(7)

The main goal of the equation is to keep the report updated, where σ is the weighting factor.
This factor is needed to assign a higher weight to the most current information. In addition to that
equation, we applied Equation 8 to calculate the weight of the road i (wroad(i)), which will be used
in the classification step.

wroad(i) =
vavgagg(i)

vmaxspe(i)

,


wroad(i) : weight of road i
vavgagg(i)

: aggregate average speed of road i

vmaxspe(i)
: maximum speed of road i

(8)

Equation 8 follows the same criteria of the one used in the Highway Capacity Manual (HCM) [30].
After aggregating all the local data, the vehicle that has the highest Vrank score, in that particular
moment, classifies the weight of the roads according to the Table 1. Here again, the levels-of-
service and traffic classification were based on the HCM [30].

Table 1: Level of service and traffic classification [30].

Level of Service Traffic Classification wi
A Free flow (1.0 ∼ 0.9]
B Reasonably free flow (0.9 ∼ 0.7]
C Stable flow (0.7 ∼ 0.5]
D Approaching unstable flow (0.5 ∼ 0.4]
E Unstable flow (0.4 ∼ 0.33]
F Forced or breakdown flow (0.33 ∼ 0.0]
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Figure 4 describes the inter-vehicular communication links at a given time. In this example,
it is assumed that the vehicle labeled as A needs to forward its aggregate local data to the next
vehicle within its transmission range. First, it selects the next neighbor vehicle with the highest
Vrank score. In this case, the vehicle with 1.93 score (vehicle B). As soon as vehicle B receives
the aggregate local data, it aggregates the received data with its own data and forwards it to the
next neighbor vehicle with the highest Vrank score. This procedure will be repeated until the data
reaches the vehicleD. It is worth remembering that the vehicles that were not selected will decline
the received data. This situation can be observed in Figure 4, where the vehicle D has the highest
Vrank score among all the participants, at that moment, thus all the aggregated data will be directed
to it.
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1.801.83

1.93

1.251.83

5.0

5.33

1.33

1.3

1.53

1.0

1
.0 1

.0

1
.4
5

1
.4
5

x.xx

: Communication Link

: Rank Score (Vrank)

Figure 4: An illustrative example of inter-vehicular communication links.

While vehicleD has the highest Vrank score, it classifies all aggregated data received. If during
the classification step an event is identified (in this case, levels D, E or F of Table 1), a message
(or knowledge) containing the identification of the roads in question is generated. After this step,
it initiates the knowledge distribution process in the service channel. The sender’s neighboring
vehicles that received the knowledge will schedule a retransmission to continue the knowledge
distribution process. Every time a vehicle receives a knowledge to be distributed, it checks if it is
within the zone of preference (ZoP) [8] of the sender vehicle, if that holds true, it transmits first.
The ZoP is an area, inside of sender vehicle transmission range, where the vehicles are best suited
to continue performing forwarding. Our previous work [8] has shown that ZoP can handle very
well the broadcast storm problem. Thus ZoP is applied as a broadcast suppression mechanism.
Due to this mechanism being implemented, as soon as the neighboring vehicles outside the zone
of preference receive the same scheduled knowledge, they cancel the retransmission. This allows
avoiding the traffic of redundant knowledge and also decreases network overhead.
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3.5. Consumption of the knowledge
The knowledge generated as a notification message about congestion is propagated through the

VANET. Thereby, vehicles approaching the congestion spot can receive and use this knowledge to
compute an alternative route in a timely manner.

Algorithm 1: Knowledge consumption and broadcast procedure
inputs : Notification message (mcong), containing the identification of the congested roads

and the route information message (mrou)
1 if receivemcong then
2 if my route crosses congestionAND can be avoided then
3 waiting time = ComputeWaitingT ime();
4 while waiting timeAND receivemrou do
5 CollectRouteInformation(mrou);

6 ComputesWeightPopularityRoadSegment();
7 np = EntropyBasedRouteP lanning();
8 BroadcastNewPath(np);

9 else
10 DiscardsMessage(mcong);

When a vehicle receives the knowledge, it triggers the procedure described in Algorithm 1.
The vehicle first checks if the current route is traveling through the congestion spot as well as the
possibility of avoiding it (Line 2). The received knowledge will be used in the alternative route
computation step together with the alternative route information received from surrounding ve-
hicles. This means that the vehicles compute an alternative route based on an altruistic routing
decision when congestion is identified. Before calculating an alternative route, the vehicle waits
for a short time (Line 3). The waiting time is directly proportional to the distance between the
congestion spot and the vehicle’s current position. The purpose of this waiting time is to collect
alternative routes from surrounding vehicles. In addition to that, the idea here is to prioritize vehi-
cles closest to the congestion spot to compute an alternative route first. Note that the first vehicle
computes an alternative route without considering the others. From the second vehicle onwards,
the neighborhood information route is taken into account for the calculation (Lines 4 and 5). The
entropy-based shortest path is the route planning strategy applied in this work (Definition 2). The
idea here is that each vehicle plans its own available alternative routes to the destination according
to the alternative route information received from surrounding vehicles. The information from
surrounding vehicles is used to compute the popularity of the road segment (Definition 1). The
popularity indicates to which roads vehicles are being moved to. It is worth noting that the plan-
ning strategy takes into account the popularity of the road segment, as described in Definition
2. The least popular path among the alternatives computed is chosen in order to avoid potential
future congestion. As described in Algorithm 1, as soon as the waiting time expires, the weight
of the road segment is calculated according to Definition 1 (Line 6). After this step is completed,
the route planning (Line 7) is computed through the use of the Entropy-based Shortest-Path. The
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alternative route with the lowest entropy score will be chosen. In other words, the priority is to
choose an alternative route with a low popularity score, therefore, avoiding a potential secondary
congestion. Lastly, in Line 8, the selected alternative route will be broadcasted to neighbors.
Definition 1 - Weight of the Popularity of the Road Segment is described as wrs(i) = n(i) × w(i),
where n(i) describes the total number of vehicles that will pass through road segment i, and w(i)

depicts a weight associated to it. The calculation of the weight is given by w(i) =
len(i)

lane(i)
, where

len(i) and lane(i), represent the length and the number of lanes of the ri, respectively.

Definition 2 - Entropy-based Shortest-Path: let R = {r1, ..., rn} be the path computed by the
vehicle and let (wrs1 , ..., wrsn) be the set of the weight score associated with each road segment
of R. Thereby, the entropy measure of the vehicle’s path v, is defined as Hpv =

∑n
i=1

wrs(i)

Q
×

log( Q
wrs(i)

), where Q =
∑n

i=1wrs(i) .

Figure 5: The dEASY’s operation flowchart.

Figure 5 shows a flowchart illustrating the steps followed by the dEASY’s system to contem-
plate the three-layer architecture. When dEASY receives the local information, it either inserts or
aggregates, according to Equation 7 (Block 1). After this step, it calculates the weight of the roads
according to Equation 8 (Label (a)). In addition, if the vehicle has the highest EBM value (La-
bel (b)), it also classifies the weight of the roads according to Table 1 (Label (c)). In this process, if
the selected vehicle finds out that there is a congested traffic flow, the knowledge about this event
is generated and distributed in the network (Label (d)). On the other hand, if the vehicle does
not have the highest EBM value, it selects the next most relevant vehicle, following the procedure
presented at Subsection 3.3, and sends the aggregated local information to it (Label (e)).

To avoid the well-known broadcast storm problem, a broadcast suppression mechanism that
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uses ZoP concept [8] was applied. Only vehicles that are located inside the ZoP will continue the
knowledge forwarding process. The ZoP mechanism works as follows: each vehicle within the
area of interest computes its own waiting time as soon as it receives the first knowledge. However,
vehicles that are within the ZoP have a smaller waiting time (Label (f)) than other vehicles outside
of it (Label (g)). Thereby, vehicles that are on the outside will receive redundant messages from the
vehicles located within the ZoP. These vehicles will cancel the scheduled transmission (Label (h))
and the message received will be dropped (Label (i)). Vehicles outside the ZoP will be requested
only when there are no other vehicles within the ZoP.

Every vehicle that receives the knowledge about a congestion spot will first verify if the current
route is moving towards the congestion (Label (j)) as well as if it can be avoided (Label (k)). If
so, it waits a period of time (Label (l)) before computing an alternative route. This time inter-
val is needed for the altruistic approach since the calculation of an alternative route also depends
on the neighborhood routes. After the waiting time expires, if the vehicle has received infor-
mation about alternative routes from the neighborhood, these will be taken into account for the
calculation of its own alternative route (Label (m)). This procedure is computed as described in
Entropy-based Shortest Path (Definition 2). Otherwise, the vehicles compute the best alternative
route (Label (n)). Lastly, if the vehicle does not pass through the congested area, it simply discards
the knowledge (Label (o)).

4. Simulation Setup

A set of experiments was conducted to assess the proposed system using Veins 4.51, which
is a vehicular network simulator framework. It integrates the OMNeT++ 5.0 network simulator2

with SUMO road traffic simulator version 0.29.03. The Physical (PHY) and Medium Acess Con-
trol (MAC) layers are implemented in Veins and based on the IEEE 802.11p (WAVE) standard. In
addition, the HBEFA (Handbook Emission Factors for Road Transport - v3.1) was used to measure
CO2 emissions. It is worth noticing that HBEFA is natively implemented in SUMO.

The bitrate was set to 6 Mbps in the MAC layer, the transmission power used was 20 mW
under a two-ray ground propagation model [28], and the receiver sensitivity was set to -82 dBm.
In addition to that, the movement of the vehicles is based on the Krauss’ car-following model [31].

In order to evaluate a vehicular traffic management system, a real-world scenario of urban
mobility should be considered. Based on this, the TAPASCologne project4, from the Institute of
Transportation Systems at the German Aerospace Center (ITS-DLR), was applied in our simula-
tion experiments as the evaluation scenario. This project aims to reproduce the vehicle traffic in a
large-scale scenario of the city of Köln, Germany, with the highest possible level of realism. This
dataset includes traffic demand from 6:00 am to 8:00 am, with more than 250,000 vehicles routes.
However, only a central submap of the city of Köln (Figure 6(a) - area within the black circle) was
chosen for our simulation experiments because it displays a higher incidence of traffic congestion,

1https://veins.car2x.org
2https://omnetpp.org
3https://sumo.sourceforge.net
4http://sumo.dlr.de/wiki/Data/Scenarios/TAPASCologne
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(a) Road topology. (b) Heatmap visualization - adapted [32].

Figure 6: Urban area of the city of Köln, Germany.

as highlighted in Figure 6(b). It is worth mentioning that Figure 6(a) was imported from Open-
StreetMap5 and the street layouts are comprised of highways, major urban arteries, and minor
roads such as residential streets. Moreover, only routes of vehicles that pass through the submap
were selected from the original dataset. The new dataset was also divided into five different traffic
volumes - 20 %, 40 %, 60 %, 80 %, and 100 %. This means that, of the total of the new dataset,
only 20 % of the traffic volume are inserted in the scenario for our simulation experiments, and so
on. All the experimental results of this work were conducted with a confidence interval of 95 %.
Table 2 summarizes the simulation parameter settings.

Table 2: Simulation parameters settings.

Parameter Value

MAC layer IEEE 802.11p PHY
Bandwidth 10 MHz
NIC Bitrate 6 Mbps
NIC TX power 20 mW
NIC Sensitivity -82 dBm
Transmission range 287 m
Beacon transmission rate 1 Hz
Alpha (α) 0.5
Confidence interval 95 %

Twelve metrics were used to evaluate the performance of the dEASY system. These metrics
were divided into three perspectives (or assessments), which are described in detail below. Each
perspective corresponds to a layer of the dEASY’s architecture.

1. Control channel assessment (Environment Sensing and Vehicle Ranking Layer).

5https://www.openstreetmap.org
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• Channel busy ratio: indicates the interference level and is estimated as the fraction of
the time in which the channel is identified as busy, due to packet collisions or successful
transmission to the total time;

• Total transmitted beacon: shows the number of beacon packets transmitted in the
network by all the vehicles during the simulation run;

• Beacon transmitted per vehicle: gives the number of beacon packets transmitted per
each vehicle during the simulation run.

2. Scalability assessment (Knowledge Generation and Distribution Layer).

• Coverage: indicates the percentage of messages delivered;

• Overhead: measures the total amount of transmitted messages by the vehicles;

• Delay: demonstrates the time spent to deliver the messages to the vehicles;

• Collision: shows the total number of packet collisions during message transmission.

3. Traffic management assessment (Knowledge Consumption Layer).

• Travel distance: shows the average distance traveled by all vehicles;

• Travel time: indicates the average travel time in relation to all vehicles;

• Congestion time loss: describes the average time spent on congestion;

• CO2 emission: gives the average CO2 emission of all vehicles;

• Planning time index: measures the total time needed to plan for an on-time arrival
95% of the time [33]. It is calculated as the rate of the 95th percentile travel time to
the free-flow travel time.

5. Simulation Results

The aim of this section is to assess the performance of dEASY in comparison to the EcoTrec
and DIVERT systems. In addition, the original vehicular mobility trace of the Köln (OVMT) is
going to be used as a baseline since it does not apply any vehicle routing mechanism. For a better
presentation, the results were divided into three subsections (5.1, 5.2, and 5.3) according to the
dEASY’s architecture layers.

5.1. Control channel assessment
The assessment of the control channel is important since all the solutions analyzed apply the

beaconing approach to share context-awareness information. In the experiments, the beacon trans-
mission rate of 1Hz was set to all systems [4, 7], including dEASY.

Figure 7 depicts the performance results of the control channel at all the traffic volume pos-
sibilities. In addition, Figure 7(a) shows the average channel busy ratio for each traffic volume.
As expected, the channel busy ratio increases with the traffic volume. This is due to the fact that
the number of vehicles in the neighborhood increases, thereby, raising the channel busy state. It is
important to notice that dEASY has the lowest average channel busy ratio for all traffic volumes,
when compared to DIVERT and EcoTrec. This can be attributed to the fact that it has a better
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(a) Channel busy ratio.
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(b) Beacon packets transmitted per vehicle.
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(c) Total beacon packets transmitted.

Figure 7: The results of the control channel assessment.

vehicular traffic management, as it will be explained later. In other words, dEASY distributes the
vehicles in a way that makes the most of the availability of roads. Consequently, the homogeneous
distribution of vehicles on the roads reduces the demand on the control channel.

The adoption of good traffic management practices can sharply reduce the vehicle travel time.
A direct consequence of this is the reduction of the number of beacon packets transmitted by
vehicles. Figure 7(b) shows a microscopic view of the average number of the beacon packets
transmitted by each vehicle. Through this figure, it can be observed that dEASY has the least
number of beacon packets transmitted when compared to the DIVERT and EcoTrec. Based on this
metric it can be assumed that dEASY has the best traffic management compared to its counterparts.
It is worth noting that this assumption will be confirmed later. A macroscopic view is depicted
in the Figure 7(c), where it is displayed the total number of beacon packets transmitted during
the entire simulation. As expected, dEASY has the smallest total number of packets transmitted,
followed by DIVERT and EcoTrec.

The WAVE standard has a single control channel and for better use of this channel one or

19



both practices can be applied: (i) a low rate of packet transmission and/or (i) good traffic manage-
ment practices. In our case, both practices were taken into account. The main lesson assimilated
from these results is that the beacon transmission rate of 1 Hz, may be considered suitable for
the scenario evaluated together with the adopted mobility model for the dEASY system. Because
the channel busy rate was around 36 %, on average, at the maximum analyzed traffic volume, as
shown in Figure 7(a).

5.2. Scalability assessment
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(a) Total of transmitted messages.
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(b) Collision.
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(c) Delay.
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Figure 8: The results of the scalability assessment.

This subsection analyzes the scalability of dEASY against the DIVERT and EcoTrec systems
regarding coverage, overhead, delay, and collision metrics. The results are shown in Figure 8.
More specifically, Figure 8(a) presents the performance results of all systems investigated accord-
ing to the overhead metric. As expected, the higher the traffic volume, the greater the network over-
head for all systems analyzed. It is known that both EcoTrec and DIVERT systems apply neither

20



the vehicle selection mechanism, to perform the tasks of information aggregation and knowledge
generation, nor the broadcast suppression mechanism during the knowledge distribution process.
The absence of both mechanisms results in the largest number of messages transmitted between
vehicles and vehicle-to-infrastructure. It is also possible to observe that DIVERT curve in the
graph is slightly above than EcoTrec. This is related to the fact that DIVERT applies the altruis-
tic routing mechanism in the selection of an alternative route. It is worth noting that the use of
this mechanism will help in the choice of alternative routes and the advantage of its use will be
discussed later in this paper. The dEASY system applies the vehicle ranking mechanism to select
the most appropriate one to perform the information aggregation and knowledge generation. In
addition, another mechanism was included to deal with the broadcast storm problem during the
knowledge distribution process. The combination of these mechanisms enables dEASY to outper-
form all the other analyzed systems. Thereby, the proposed system is able to dramatically reduce
the total number of messages transmitted in the network, on average, more than 78 % and 75 %
compared to DIVERT and EcoTrec, respectively.

Figure 8(b) shows packet collision as the function of the traffic volume. As expected, both
EcoTrec and DIVERT systems have a greater number of packet collisions, as this is directly related
to the number of packets transmitted on the network. It is known that both systems have greater
network overhead compared to dEASY, as shown by the abovementioned figure. On the other
hand, the direct consequence of the reduction of the network overhead is the lower packet collision
rate and this can be clearly observed in the dEASY system. It achieves an average reduction of up
to 64 % and 69 % compared to the EcoTrec and DIVERT systems, respectively.

Another metric evaluated is the transmission delay as the function of the traffic volume, Fig-
ure 8(c). In an infrastructure approach, all vehicles in the scenario constantly take part in con-
tending to access the service channel to send their information. Thereby the packet collisions
easily occur mainly as the traffic volume increases, Figure 8(b), which will result in more data
retransmissions and incur an extra delay. On the other hand, the dEASY system employs an
infrastructure-less approach, and for this two mechanisms are applied, the vehicle ranking and the
broadcast suppression, to decrease transmission and collision rates as well as delay. By compar-
ison, the average transmission delay of dEASY, EcoTrec and DIVERT systems is 0.8, 1.6, and
1.68, respectively. This means that the dEASY system has an average delay reduction of up 50 %
and 52 % compared to the EcoTrec and DIVERT systems, respectively. Thus, the infrastructure
approach achieves the worst performance in relation to the delay metric, when compared to our
proposed system.

Figure 8(d) illustrates the impact of the traffic volume on the coverage ratio. EcoTrec has
a slightly better coverage than DIVERT due to the fact that it presents lower network overhead
(Figures 8(a) and 8(b)), when compared to its opponent. Another observation is that for high
traffic volumes (80 % and 100 %) both systems have a reduction in coverage due to the network
overhead. In other words, as the network becomes dense, the service channel competition will
lead to more packet collisions, easily resulting in packet transmission failure. On the other hand,
as the dEASY system has the least network overhead, the knowledge dEASY generated can reach
a larger number of vehicles at all the analyzed traffic volumes, reaching, on average, 90 % of
the vehicles. This result represents an increase of 11 % and 10 % in comparison to DIVERT and
EcoTrec, respectively.
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Two main lessons can be drawn from the above results. First, it is clear the advantage of using
the proposed vehicle ranking (Vrank) to select the most relevant vehicle to perform information
aggregation and knowledge generation. Moreover, from the analysis of the results, it is possible
to notice that the combined use of Vrank and the zone of preference enables the construction of
a distributed system which can achieve high levels of scalability. Second, the Vrank is a viable
option for a vehicle selection mechanism in highly dynamic networks.

5.3. Traffic management assessment
Besides the control channel features and scalability issues, the traffic management also plays an

important role in the dEASY system. This subsection compares our proposed system against the
DIVERT and EcoTrec systems, as well as OVMT regarding travel time, travel distance, congestion
time loss, CO2 emission, and planning time index, as shown in Figure 9. Initially, Figure 9(a)
shows the result of the travel time for all the traffic volumes. The higher the traffic volume, the
longer the average travel time for all solutions analyzed. This behavior is in agreement once at
high traffic volumes the roads become much more congested. As expected, the original trace
of Köln (OVMT) has the highest average travel time of around 20 minutes in all traffic volume
analyzed. Because it keeps the original route throughout the simulation. The EcoTrec system
uses a selfish vehicle rerouting that selects an alternative route based on the lower CO2 emissions
rate throughout the vehicle’s journey. Note that this criterion alone does not present a significant
reduction in relation to the travel time metric over the OVMT. In the DIVERT system, vehicles
compute an alternative route based on an altruistic routing decision. This means that the alternative
route is computed taking into account the routes of surrounding vehicles. The main idea is to avoid
a secondary congestion. Thus, it is possible to notice a reduction in the travel time rate of 18 % and
17 % at all analyzed traffic volumes, compared with the OVMT and EcoTrec, respectively. The
dEASY system applies an altruistic routing decision and an entropy-based shortest-path approach
to assist in route planning. This combination enables it to outperform all its competitors. By
analyzing numerically, dEASY has an average reduction in the rate of around 26 %, 25 %, and
14 % compared with the OVMT, EcoTrec, and DIVERT, respectively.

Figure 9(b) shows the result of the travel distance for all traffic volumes. As expected, the
systems that apply some vehicle routing algorithm will generally have a greater distance traveled
in comparison to the OVMT. Because the OVMT’s routes were generated based on the shortest
path between the origin and the destination of each vehicle. The EcoTrec system has an average
increase in distance traveled of 20 % compared with the OVMT, while the DIVERT system had an
average increase of 17 % in distance traveled compared with the OVMT. Furthermore, a decrease
in the distance traveled can be observed when comparing with EcoTrec. This is due to the fact of
applying the altruistic routing decision in choosing an alternative route. The dEASY system has a
higher average distance traveled than the OVMT. However, it is slightly below the average value
of the EcoTrec system and practically the same as the average value of the DIVERT system.

Another metric evaluated is the congestion time loss as the function of the traffic volume Fig-
ure 9(c). Despite the increase in traveled distance of all analyzed systems, note that there was no
increase in time wasted on congestions in relation to OVMT. This was already expected, since all
systems apply some mechanism to bypass congestion areas. Such a mechanism is directly asso-
ciated with the better distribution of vehicles on public roads. The results of the congestion time
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(a) Travel time.
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(b) Travel distance.
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(c) Congestion time loss.
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(d) CO2 emission.
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(e) Planning time index.

Figure 9: The results of the traffic management assessment.

loss metric in both OVMT and EcoTrec are visually the same. This can be attributed to the fact
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that in the EcoTrec system, the vehicles with similar destination can be moved to the same alterna-
tive route, thus, causing a secondary congestion. DIVERT reduced the time lost in congestion by
26 % and 25 % compared with the OVMT and EcoTrec, respectively. Nonetheless, the alternative
routes chosen by the dEASY system have the lowest traffic congestion level compared with the
other three systems. Considering numbers, dEASY achieves an average reduction in the rate of
about 50 %, 48 %, and 30 %, compared with the OVMT, EcoTrec, and DIVERT, respectively. As
previously shown, the dEASY system has the lowest network overhead compared with the other
two systems. This fact contributes to the information reaching the largest number of participants,
and thus, collaborating in the best planning of alternative routes.

Figure 9(d) shows the impact of the traffic volume on the CO2 emission. OVMT has the
highest average CO2 emission at all traffic volumes. This is due to the fact that the vehicles spend
a long time stuck in congestions, as observed in Figure 9(c). In addition to that, the number of
accelerations and decelerations caused by congestions also tends to be greater than in free-flow.
These two observations help to explain the reason for the higher CO2 emissions. The results of the
congestion time loss and travel time metrics (Figures 9(c) and 9(a)) in both OVMT and EcoTrec
are visually the same. As a consequence, both also have similar behavior in the CO2 emission
metric. The DIVERT system has low congestion levels over the OVMT and EcoTrec, due to the
vehicles computing an alternative route based on an altruistic routing decision, consequently, it
also has the lowest CO2 emission compared with them. dEASY has the lowest CO2 emission
average at all analyzed traffic volumes. Its average reduction in the rate was around 33 %, 32 %,
and 10 % compared with the OVMT, EcoTrec and DIVERT, respectively. Because of that, it holds
true that vehicles using dEASY had the least time spent in congestion, thus avoiding the constant
braking and acceleration usually needed during traffic congestion.

Figure 9(e) shows the reliability measure of the planning time index. This index estimates
how much additional time should be reserved for a trip relative to free-flow travel time. In other
words, it indicates how much of the total time should be added to ensure on-time arrival to the
destination on 95% of the time. As expected, the higher the traffic volume in the simulations,
the higher the planning time index for all analyzed systems. This happens because the time spent
in congestion also increases, as illustrated in Figure 9(c). The planning time index is higher in
OVMT, followed by EcoTrec, DIVERT, and dEASY. This result is in agreement with the previous
ones, such as because of both the travel time and the congestion time. In both cases, they follow
the same behavior as shown in Figure 9(e).

The main lesson learned from the results is that the altruistic rerouting approach, together with
the entropy-based shortest-path mechanism, helps to improve in the planning of alternative routes.

6. Conclusion and Future Research

This paper presented dEASY, a distributed vEhicle trAffic management SYstem. dEASY is
an infrastructure-less and cost-effective system that applies real-life settings for efficient vehicle
traffic rerouting. Another advantage of the proposed system is its low network overhead. This
system employs an egocentric betweenness measure together with the radio propagation model,
as a vehicle selection mechanism, and also an altruistic routing decision and an entropy-based
shortest-path approach for vehicle traffic management. A set of simulation experiments, in a real
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urban scenario, have been performed to analyze the performance of the dEASY system against
two other systems: EcoTrec and DIVERT. The experiment results were divided from three per-
spectives: (i) control channel assessment; (ii) scalability assessment; and (iii) traffic management
assessment, and our proposed system outperformed in all the analyzed perspectives.

Our proposed system provides a valuable and timely contribution towards a distributed and
infrastructure-less for intelligent and connected transportation systems.

As future work, we intend to apply two essential characteristics of the driver such as mobility
pattern, and social relationship for rerouting decisions, to make the most of the available road
infrastructure and consequently decrease the time wasted in congestion.
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