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Abstract—The vehicular social networks (VSNs) paradigm is
a special class of vehicular networks (VANETs), where features
and social aspects are taken into account. Starting from this
concept, two different approaches can be applied in VSNs, which
are the social network analysis (SNA) measures and the social
networking concepts (SNC). In the past few years, several systems
have been proposed to deal with traffic congestion problems. They
rely on integrating computational technologies such as VANETs,
central server, and roadside units. A number of systems employ a
hybrid approach, this means that they still need an infrastructure
support (central server or roadside unit) to achieve the goals
of the system. In order to surpass that, this work deals with
the question of how to manage the urban mobility, when an
en-route event is detected, in an infrastructure-less environment
and scalable fashion. To achieve that, the main goal is to apply
VSNs to investigate how SNA measures and SNC can help in
the urban mobility management in a distributed fashion. To this
end, it was proposed the iMOB system, which is an intelligent
urban mobility management system. The system consists of
the 3-tier: the environment sensing (bottom tier), the vehicle
ranking mechanism (middle tier), and the altruistic rerouting
decision (upper tier). The SNA egocentric betweenness measure is
applied in the middle tier and SNCs such as social interactions
and virtual community were utilized in the upper tier. iMOB
was evaluated in simulation-based experiments being able to
outperform all its competitors in all assessed metrics. The results
obtained lead us to conclude that the application of concepts
and analysis of social network, in a vehicular environment, have
great potential to improve the reliability and efficiency of urban
mobility management systems in a practical and cost-effective
way.

I. INTRODUCTION

The integration between wireless communication technol-
ogy and social networking area, in vehicular ad hoc networks
(VANETs), has emerged as a new paradigm of Vehicular
Social Networks (VSNs) concept [1], [2], [3], [4]. VSN can
be explored in two different approaches: (i) by applying the
social network analysis (SNA) measures [2], [4] and/or (ii) by
combining social networking concepts (SNC) [1], [4].

The former approach focuses on exploring the social proper-
ties of VSN nodes. The degree centrality, closeness centrality,
and betweenness centrality are the three most used measures
in VSNs [2], [4]. The details about the centrality measures
can be used to analyze the social behavior of VSNs nodes.
Calculating the centrality of a node in a VSN is a challenging
task due to its highly dynamic topology. On the other hand,
once identified, it can facilitate many applications such as the
spread of the information flow through the network [2], just
to give one example. Additionally, the SNC approach involves
social interactions of commuters who have mutual interests in
the virtual community of vehicles [4]. The VSN has the benefit
of sharing social information, for example, the personal route.
This enables it to deal with the specific issues of drivers on

the road, e.g., traffic congestion. In others words, it provides
the opportunity for commuters to participate in a vehicular
community and share information of mutual interest through
social interactions [3], [4]. A social interaction is initiated
when vehicles encounter and share their social information
with each other. In VSNs the interactions between network
entities are performed through wireless communication links
in two basic ways: vehicle-to-vehicle (V2V) and/or vehicle-
to-infrastructure (V2I) [5].

Inspired by the aforementioned approaches, a 3-tier system
called iMOB, for intelligent urban MOBility management
systems based on VSNs, was proposed. In the proposed 3-tier
system, the bottom one represents the environment sensing
which is responsible to acquire the local awareness through
vehicles-crowdsensing. The middle tier, vehicle ranking mech-
anism, is applied to select the best-located vehicle in the
network. The selected vehicle is responsible for information
aggregation and knowledge-generating processes. In this tier,
it is applied an egocentric centrality measure. Lastly, the top
tier is the altruistic rerouting decision, in which the vehicle
rerouting strategy is performed collaboratively. In this step,
two concepts of social networks are applied, namely social
interactions and virtual community. The main objective of the
iMOB system is to apply the concepts and analysis of social
networks to improve the urban mobility and to reduce the
traffic congestions.

A set of simulations has been performed and the results were
analyzed from two perspectives: (i) scalability assessment
and (ii) urban mobility management assessment. The iMOB
system outperformed its competitors in both of the analyzed
perspectives. Thus, from the proposed system, a range of
issues stemming from the inherent characteristics of VSNs,
e.g., highly dynamic topology and frequent disconnection in
the network, can be well addressed as well as improving urban
traffic management.

The main contributions of this work are:
• The design and implementation of an infrastructure-

less system based on the real-life traffic condition to
improve the urban mobility management. This is done
in a practical and cost-effective way;

• The integration of an SNA measure and SNC into the
vehicular environment. This provides both scalability of
the system and the reduction of the level of traffic
congestion.

The remainder of this paper is organized as follows. Section
II shows an overview of the related works, while Section III
describes the iMOB system in details. Section IV presents the
experimental setup used to evaluate the performance of the
proposed iMOB system. The numerical results and analysis



are presented in Section V. Lastly, Section VI concludes the
work and presents the future work.

II. RELATED WORK

This section shows an overview of traffic management
systems found in the literature.

Doolan et al. [6] proposed a traffic management system
called EcoTrec. It is a VANETs application designed to
decrease CO2 emissions without significantly affecting the
vehicle’s travel times. This system is composed of three main
components: Vehicle Model, Road Model, and Traffic Model.
The Vehicle Model stores and updates each individual vehicle
information, and also shares information periodically with the
roadside unit through beacon packets. The information con-
tained in this component comes from GPS sensors, speedome-
ter, and accelerometer. The Road Model is maintained at the
roadside unit and it is updated with information of the local
roads. The Traffic Model is a central server that stores the
road characteristics and updates vehicle traffic conditions of
each individual road segment. Both components (Road Model
and Traffic Model) receive all the necessary information from
vehicles through V2I communication. The traffic condition of
each road segment is computed in the central server. Each
vehicle makes a constant request to the server about the traffic
condition of the road it is on. If the road is congested the
vehicle calculates an alternative route selfishly, i.e., without
taking into account the chosen routes from the surrounding
vehicles. In this approach, there is a high network overhead
during the information exchanges, especially in dense traffic
conditions. In addition, it employs a selfish approach to
alternative route calculation.

The authors in [7] proposed a hybrid vehicular rerouting for
the traffic management system called DIVERT. The approach
is hybrid because it requires a central server to determine
an accurate global view of vehicle traffic conditions and the
calculation of alternative routes is carried out by vehicles in
a distributed fashion. The central server operates as a coor-
dinator that receives location reports from vehicles through
V2I communication, besides detecting traffic congestion spot
and it sends rerouting notifications to the vehicles. The DI-
VERT system offloads the rerouting calculation at the vehicles
making the rerouting process a real-time operation. During
the rerouting calculation, the vehicle takes into account the
alternative route from the surrounding vehicles to build a
new route, i.e., a collaborative rerouting decision or altruistic
decision. The altruistic decision-making tends to be more
efficient than selfish ones [7]. It is worth mentioning that,
in this system, the broadcast suppression mechanism was not
applied during the data dissemination process. In this way,
it increases the consumption of the network bandwidth and
compromise system scalability.

Wang et al. [8] propose a system called NRR (Next Road
Rerouting). The main goal is to aid drivers in making the most
suitable next road choice bypassing unexpected congestions
spot. NRR acts in two-step traffic rerouting: (i) it calculates
only the optimal next road for the vehicle to bypass the
congested spot, and after that (ii) it uses the vehicle navigation
system to complete the alternative route until it reaches its
destination. The justification for this approach is that the
optimal next-road calculation is much faster than recalculating

the entire route. NRR also needs a central server, i.e., Traffic
Operation Center, to gather real-time traffic information from
traffic lights beside identifying congestion spots. In this case,
NRR assumes that there is a traffic light at each intersection
and also loop detectors to collect such information. Once
identified the congestion, the server notifies the closest traffic
lights to the congestion spot. Thus, the traffic light broad-
cast the rerouting message to all vehicles that are inside its
transmission range. The vehicles that are going towards the
congestion send the rerouting request to the traffic lights.
Lastly, traffic light computes the optimal next road and sends
the message back to the requester. The remaining of the route
is computed with the aid of the vehicle navigation system. It
can be observed that, in this approach, there is a high message
exchange rate in the network. In addition to that, there is no
experimental evaluation regarding the system’s scalability.

Incidentally, all the previously mentioned systems apply a
hybrid approach for the urban mobility management. The use
of infrastructure support lies in the difficulty of selecting the
most appropriate vehicle, in a highly dynamic network, to
identify traffic congestion. With this in mind, we designed and
implemented a vehicle ranking mechanism based on an SNA
measure, in particular, the egocentric betweenness measure [9].
In addition to that, we apply two SNCs namely the virtual
social community and social interactions for the altruistic
rerouting decision.

III. INTELLIGENT URBAN MOBILITY MANAGEMENT
SYSTEM

The iMOB system relies upon three main tiers as shown in
Figure 1. In a bottom-up view, the first tier is the Environment
Sensing, the middle tier is the Vehicle Selection Mechanism,
and the top tier is the Altruistic Rerouting Decision. As
previously stated, VSN can be exploited in two approaches: (i)
applying the social network analysis techniques and/or (ii) us-
ing social networking concepts. In this work, both approaches
are adopted. For example, an SNA technique is applied to
rank the vehicles in the middle tier of the proposed iMOB
system. While in the upper tier, an SNC was used to exchange
information of common interest. A detailed description of each
tier is given below.

A. Environment Sensing
Crowdsensing is a paradigm that allows the ubiquitous

mobile devices with the ability to sense the environment and
share local data towards a collective goal [10], [11]. Thus,
by aggregating crowd-generated local data, it is possible to
extract useful information according to the need of a specific
application.

Following the same idea, vehicle-crowdsensing enables
users of the VSN to solve problems in collaboration with each
other participant. For example, the participants of the VSN
can contribute to the improvement of urban mobility through
the exchange of environmental sensing data about the road
traffic conditions. By doing that, the crowdsensing capability
of VSNs can offer details about the real-time road conditions,
which will be transmitted to help in the decision process of
the urban mobility management system.

Furthermore, crowdsensing can use smart vehicles to mon-
itor the road traffic conditions by performing environmental
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Fig. 1: The main tiers of the iMOB system.

sensing, collecting data, and sharing information. To this end,
we apply the beaconing approach [12]. This means that each
vehicle i periodically exchanges short status messages (bi) to
create an environmental awareness. Each of these message
contains data about the vehicle such as current speed (si),
location (pi), time stamp (ti), and vehicle rank score (vranki

),
as described in the Equation 1. Each one of the parameters of
the equation will be explained in the following sections.

bi = ((pi, ti), si, σ(·), vranki
) (1)

B. Vehicle Ranking Mechanism
As mentioned before, the detection of the best-positioned

vehicle in the network, according to the communication links
between vehicles, is a very challenging task due to the highly
dynamic topology of VSNs. On the other hand, once detected
after each topology change, it may be useful for many systems
such as the spread of data flow through the network [2].

The idea of the vehicle ranking mechanism is to assign the
highest rank for the best-positioned vehicle in the network.
This is performed by applying only the local topology knowl-
edge. To this end, we use a measure based on SNA techniques,
called the egocentric betweenness [13]. The measure was
chosen because it is applied as a metric of the influence of
a node on the spread of information flow in the network
[14], [15]. Besides the egocentric betweenness measure, we
also take into consideration the wireless communication link
quality between vehicles as an additional parameter. The main
goal of this parameter is to ensure that the messages will
travel on a link with less interference. The model applied was
the two-ray ground-reflection [16]. Thus, the vehicle ranking
mechanism is presented in the Equation 2.

vranki
=

∑
Ai(m,n)6=0,m<n

(A2
i [1−Ai]m,n)−1+

20 log10(4πdλ−1| 1

1 + Γ expϕ
|)

(2)

The first half of the equation refers to egocentric between-
ness measure, where Ai represents the adjacency matrix of the
vehicle i. It is worth noticing that, mathematically, vehicle-
to-vehicle links can be described by a symmetric adjacency
matrix. The matrix A2

i provides the number of the geodesic
distances of length 2 (the maximum distance of the egocentric
network) between node pairs m and n, and 1 is a matrix with
all elements equal to 1. Briefly, the egocentric betweenness of
a vehicle i can be computed by the sum of reciprocal values of
the A2

i [1−Ai]m,n. For more details of the egocentric measure
please refer to [14], [15].

The second half of the equation refers to the two-ray
ground-reflection model, where d is the Euclidean distance
between vehicles, λ is the wavelength, Γ is the reflection
coefficient, and ϕ is the interfering rays [16]. All the vehicles
compute its own rank score at each local topology change and
attach (vrank) in the subsequent beacons.

C. Knowledge Generation and Dissemination
The iMOB system sends beacon messages (bi) periodically

to its surrounding vehicles. The is performed by applying the
crowdsensing paradigm, as described in Equation 1. This al-
lows it to monitor the road traffic conditions. Before presenting
the details of the aggregation functions used in this work, we
need defining the road network.
Definition: Let G = (V, E) be a graph that represents a road
network, in which V denotes a set of vertices (or intersections)
and E depicts a set of edges (or roads) E ⊆ V × V, i.e., an edge
i,j ∈ E corresponds to a road connecting two intersections i,j,
for i,j ∈ V.

To create the environmental awareness, we aggregate the
beacon data received from the neighborhood. For this, it is
applied the following aggregation function:

A := ((E′, max
1≤i≤n

ti), avg
1≤i≤n

si) (3)

where E′ = {e1, . . . , en} | E′ ∈ E(G). The parameters
max
1≤i≤n

ti and avg
1≤i≤n

si represent current time and average speed

of each element of E′, respectively. Once the beacon data
is aggregated into a single message, it is attached σi(A) in
the subsequent beacon. The next step is to share it with the
highest-ranking neighbor vehicle, according to the Equation
2.

On the other hand, to merge two aggregates information,
we apply the following aggregation function:

Au,v :=
∑

1≤u,v≤n

αAu + (1− α)Av ,

{
tu > tv
su and sv 6= 0

(4)

where α is the weighting factor. The main goal of this factor is
to assign a higher weight to the most current information (tu >
tv). The aggregation continues until it reaches the vehicle with
the highest-ranking score in the network at any given moment.

Once the highest-ranking vehicle in the network finishes the
process of aggregating the information received, it computes
the weight of each road (wk), according to the Equation 5,
and also classifies each one according to the Table I. The
levels-of-service and traffic classification were based on the
High Capacity Manual [17].



wk = savgaggk
× (smax

ek
)−1 | ∀ek ∈ E′ (5)

TABLE I: Traffic classification according to the weight of
each road [17].

Level of Service Traffic Classification wi

A Free flow (1.0 ∼ 0.9]
B Reasonably free flow (0.9 ∼ 0.7]
C Stable flow (0.7 ∼ 0.5]
D Approaching unstable flow (0.5 ∼ 0.4]
E Unstable flow (0.4 ∼ 0.33]
F Forced or breakdown flow (0.33 ∼ 0.0]

After the classification step, the vehicle checks if there
are congested roads. It will look for roads with levels-of-
service D, E, and F. Once identified the congested roads, the
next step is to create and disseminate a message along with
their respective identifications. As it is known, if the data
dissemination scheme is not coordinated among its neighbors,
it will lead to the broadcast storm problem. With this in mind,
it was applied the zone of preference (ZoP) concept [18],
[19] to deal with this problem. ZoP is a region inside the
transmission range, in which the vehicles are best suited to
continue the dissemination process. In other words, only the
vehicles located within the ZoP are enough to continue the data
dissemination efficiently [19]. The ZoP concept is decision-
based on delay, i.e., vehicles within it have a lower delay (or
priority) than the vehicles outside of it. Thus, vehicles outside
the ZoP receive redundant information and then cancel the
scheduled transmission.

D. Altruistic Rerouting Decision

VSN is also known as a class of mobile social networks.
One of its goals is to promote social interaction among com-
muters or interconnected vehicles that have mutual interests
[4], [20]. In addition to that, assuming the vehicles are travel-
ing along the same road and facing the heavy traffic conditions,
they can participate in a temporal virtual community and share
the alternative route chosen. This allows avoiding that most of
the vehicles will choose the same alternative route. In other
words, VSN involves the social interaction of commuters in
the temporal virtual community of vehicles based on social
interests and mutual objectives [21].

In this tier, we apply an altruistic rerouting decision. This
means that the choice of an alternative route is made in a col-
laborative fashion to avoid the congestion spot. In order to do
that, the chosen alternative route is shared among surrounding
vehicles. The main goal is to divert the maximum number
of vehicles from traffic congestions along their route. For
this purpose, two social networking concepts were employed:
temporal virtual community and social interactions, as shown
in Figure 2. Therefore, all vehicles inside the temporal virtual
community area are considered as participants in it. Besides
that, the covered area by such community depends on the
circumference radius that is defined by the application. On the
other hand, the social interactions between the participants in
the community are done through V2V communication links as
the information of common interest exchanged is the personal
alternative route.

Fig. 2: An illustrative example of the temporal virtual
community and social interactions in VSN.

During the altruistic rerouting decision phase, the vehicles
closest to the congestion spot has the priority in choosing
an alternative route. Therefore, the vehicles must be rerouted
in a synchronized fashion. To this end, a short time delay
was applied, which is directly proportional to the distance (d)
between the vehicle’s position and the congestion point. The
calculation of such delay is done by multiplying the distance d
by a constant k. This constant is the minimum value needed for
the system to receive the alternative routes from surrounding
vehicles and calculate a personal alternative route, as well as
share it through social interaction. Note that the first vehicle
calculates its alternative route individually. From the second
onwards, the alternative routes of the neighboring vehicles are
considered in the calculation.

Before calculating a personal alternative route, the vehicle
updates the popularity of the road segment according to the
alternate routes received from neighboring vehicles. The pop-
ularity of the road j is calculated according to the Equation 6.

ρj = nj × (
lengthj
lanesj

) (6)

where the parameters nj , lengthj , and lanesj are the number
of vehicles which pass by it, the length of the road, and the
number of road lanes, respectively.

In this way, the vehicle computes an alternative route using
the k-shortest path based on the road popularity. Lastly, the
vehicle selects the least popular route among k possible routes
and share it through social interaction. Thereby reducing the
possibility of generating congestion in another spot soon.

IV. EXPERIMENTS

The Veins [22] vehicular network simulator was used to
conduct the performance evaluation. It integrates the network
simulator OMNeT++ [23] with the road traffic simulator
SUMO [24]. The Physical (PHY) and Medium Acess Con-
trol (MAC) layers are implemented in Veins and based on the
IEEE 802.11p (WAVE) standard. In addition, the Handbook
Emission Factors for Road Transport (HBEFA) model was



used to measure the CO2 emission and it is already coupled
in the SUMO simulator.

A. Experimental Settings
In order to evaluate an urban mobility management system,

a close to real life urban mobility environment should be
considered. To this end, the TAPASCologne project1 of the
Institute of Transportation Systems at the German Aerospace
Center (ITS-DLR) was used in our evaluation scenario. This
project aims to reproduce, with the highest level of realism
possible, vehicle traffic in a large-scale scenario of the city
of Köln, Germany. It contains vehicle routes describing a real
demand, for the entire map region, of one day. However, only
a central submap of the city of Köln was picked for our
simulation experiments, because it reveals a higher incidence
of traffic congestion, as highlighted in the Figure 3. In
addition, we have separated this new dataset into five different
penetration rates, which are 20 %, 40 %, 60 %, 80 %, and
100 %. This means that, of the total of the new dataset, only
20 % of the vehicles are inserted in the scenario for our
simulation experiments, and so on.

Fig. 3: A snapshot of the vehicular traffic conditions status
of the city of Köln - adapted [25].

We set the NIC bitrate to 6 Mbps in the MAC layer, and
the NIC sensitivity to -82 dBm as well as the transmission
power to 20 mW. Thus achieving a transmission range of
approximately 287 m under a two-ray ground propagation
model [16]. Table II summarizes the simulation parameter
settings.

B. Evaluation Metrics
Eight metrics were used to evaluate the performance of the

proposed system. They were divided into two perspectives (or
assessment) as described below in detail:

1) Scalability assessment:
• Transmitted messages: shows the total number of

transmitted messages by the vehicles in the network;
• Packet loss: shows the total number of packets lost

during message transmission. That occurs due to the
busy communication channel as well as bit errors in
received packets.

1http://sumo.dlr.de/wiki/Data/Scenarios/TAPASCologne

TABLE II: Simulation parameters.

Parameter Value

Penetration rates of vehicles 20 % to 100 %
MAC layer 802.11p
NIC TX power 20 mW
NIC Bitrate 6 Mbps
NIC Sensitivity -82 dBm
Transmission range 287 m
Temporal virtual community radius 1 Km
Beacon transmission frequency 1 Hz
Confidence interval 95 %
Constant k 10−2

• Coverage: displays the delivered message rate to
vehicles for each one generated;

• Latency: measures the time spent to transmit mes-
sages to the vehicles during the data dissemination
process.

2) Urban mobility management assessment:
• Average travel time: shows the average travel time

of all vehicles’ trips, i.e., it indicates the overall
traffic status for the entire observed road network;

• Congestion time loss: describes the average con-
gestion time loss of all vehicles;

• Travel time index: measures the urban traffic con-
gestion level [26]. It is computed as the ratio of the
sum of the travel time to the sum of the free-flow
travel time for all vehicles;

• CO2 emission: gives the average CO2 emission of
all vehicles.

V. PERFORMANCE ANALYSIS

The main goal of our simulation-based evaluation is to
assess the performance of the iMOB system against the
EcoTrec [6] and DIVERT [7] systems. The baseline will be the
original vehicular mobility trace of the Cologne (OVMT) and
it is only used in the urban mobility management assessment.
Because it does not apply any vehicle routing mechanism.
For a better presentation of the results, we divided into two
Subsections, namely scalability assessment (V-A) and urban
mobility management assessment (V-B).

A. Scalability Assessment
Figure 4 displays the numerical results of the scalability

assessment comparing iMOB with the EcoTrec and DIVERT
systems. The metrics displayed are the number of transmitted
messages, packet loss, coverage, and latency at different
penetration rates. It is worth noticing that, in the EcoTrec
and DIVERT systems, the support of an architecture must
be considered. As is known, in the EcoTrec system each
vehicle sends its information periodically to the server and
also makes periodic requests about the condition of the road
in which it is. The consequence of this approach is the high
exchange of messages between vehicles and the central server.
This situation can be seen clearly in Figure 4(a). Another
direct consequence is the high rate of packet loss in the
network (Figure 4(b)). This aspect is even more expressive
at high penetration rates (80 % and 100 %). Due to the high
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(a) Transmitted messages.
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(b) Packet loss.
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Fig. 4: The scalability assessment results.

network overhead, EcoTrec has only a coverage of around
82 % (Figure 4(c)) and a long average latency of 1.88 seconds,
compared to the iMOB system and taking into account all
penetration rates (Figure 4(d)).

The Divert system follows the same approach of EcoTrec. In
it, the vehicles also periodically communicate with the central
server, however, they report local traffic density data and
receive the road traffic conditions. In addition to that, DIVERT
applies the altruistic routing decision to compute an alternative
route when congestion is detected. Due to this, one can observe
a slight increase in the number of messages transmitted and
also in the loss of packets compared to the EcoTrec system,
Figures 4(a) and 4(b), respectively. The advantage of such an
altruistic decision will be explained in the next subsection.
Both EcoTrec and DIVERT systems have a high network
overhead due to messages exchanged between vehicles and
the central server. Because of this, the performance in relation
to the coverage and latency metrics is similar between them,
as can be seen in Figures 4(c) and 4(d).

Finally, the proposed iMOB system which adopts an
infrastructure-less system and applies information aggregation
along with the vehicle ranking mechanism for the generation
of knowledge. iMOB also has a mechanism to deal with the
broadcast storm problem during the knowledge distribution
process, as well as altruistic rerouting decision. Based on
these strategies, it can be observed that the iMOB system

reduces network overhead significantly (Figures 4(a) and 4(b)),
compared to the EcoTrec and DIVERT systems. This hap-
pens because only the best-ranked vehicle, in the network,
accomplishes the generation of knowledge. For transmitted
messages, iMOB had a decrease of around 78 % (Figure
4(a)), in all the penetration rates analyzed. While for packet
loss, approximately 63 % reduction is achieved (Figure 4(b)),
compared to the other two systems. Due to the low network
overhead, iMOB achieves greater coverage of approximately
91 % in all the penetration rates analyzed (Figure 4(c)),
compared to the other systems considered. Lastly, a lower
latency, among all systems, around 0.5 second is achieved by
iMOB (Figure 4(d)).

After analyzing the results obtained, it is possible to con-
clude that the high network overhead and also high latency,
in both the EcoTrec and DIVERT systems, have significantly
reduced their scalability potential. On the other hand, the
iMOB system has shown a distributed approach that can be
scalable in a practical and cost-effective way.

B. Urban Mobility Management Assessment

Figure 5 shows the results of the urban mobility manage-
ment of the iMOB system against the DIVERT and EcoTrec
systems. The assessed metrics were the average travel time,
travel time index, congestion time loss, and CO2 emission at
different penetration rates. Specifically, Figure 5(a) presents
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(a) Average travel time.
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(b) Congestion time loss.
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(c) Travel time index.
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Fig. 5: The urban mobility management assessment results.

the average travel time and, as expected, OVMT has the
longest time, with an average of 23.6 minutes at all the
penetration rates analyzed. This can be explained because it
is the only one that does not perform vehicle routing when
congestion is detected. Due to this approach, it will also
have the longest time spent in the congestion, on average,
9.5 minutes (Figure 5(b)). The travel time index (Figure 5(c))
is, on average, 1.8. Based on these results it is also expected
that OVMT will have the highest CO2 emission of around
1.05 kilograms, as can be observed in Figure 5(d).

EcoTrec applies the selfish rerouting decision for the se-
lection of an alternate route when the congestion is detected.
Through this approach, it achieved a decrease of around 8 %
on the average travel time, in relation to OVMT in all the pene-
tration rates analyzed, Figure 5(a). Other consequences of this
approach are the reduction of time lost in congestion (around
of 10 %) and also in the travel time index (around of 7 %), as
can be seen in Figures 5(b) and 5(c), respectively. As EcoTrec
has the shortest time lost in congestion in comparison to the
OVMT, the vehicles will spend less time in accelerations and
decelerations. The direct consequence of this is the lower CO2

emission in all penetration rates analyzed, Figure 5(d).

Unlike EcoTrec, DIVERT applies an altruistic routing de-
cision, and such approach is known to outperform the selfish
one. This is confirmed by Figures 5(a), 5(b), 5(c), and 5(d).

Particularly, DIVERT has a reduction of around 22 % and 16 %
in the average travel time (Figure 5(a)), compared to OVMT
and EcoTrec, respectively. Still comparing DIVERT to OVMT
and EcoTrec, other advantages can be mentioned such as a
shorter congestion time loss (Figure 5(b)) and the reduction
in the travel time index (Figure 5(c)). The two advantages
aforementioned are directly related in the reduction of the
CO2 emissions (Figure 5(d)) of around 19 % and 16 %, in
comparison to the OVMT and EcoTrec, respectively.

Following the same approach as DIVERT, the iMOB also
applies the altruistic rerouting decision. Even so, the iMOB
system is able to outperform the DIVERT system because of
its low network overhead. As DIVERT has a high network
overhead, many data packets arrive corrupted at the destina-
tion. Because of that, they cannot get accurate information
for decision-makers. Due to the low overhead along with the
altruistic rerouting decision, iMOB has the shortest average
travel time (Figure 5(a)) of around 17 minutes, in all the
penetration rates considered. This represents a reduction of
38 %, 26 %, and 7 %, compared to OVMT, EcoTrec, and DI-
VERT, respectively. The direct consequence of such reduction
is reflected in the time lost in the congestion (Figure 5(b))
and in the travel time index (Figure 5(c)) as well as at the
CO2 emission (Figure 5(d)). For the congestion time loss
metric, iMOB achieves an reduction rate around of 58 %, 43 %,



and 28 % in comparison to OVMT, EcoTrec, and DIVERT,
respectively. For the travel time index metric it achieves
an reduction around of 42 %, 35 %, and 17 %, compared to
OVMT, EcoTrec, and DIVERT, respectively. As the iMOB
system has the shortest time spent in congestion, it will also
have the lowest CO2 emission compared to other systems
considered, around of 0.746 kilogram as can be observed in
Figure 5(d).

The assessment of the results leads to the conclusion that
the use of social interactions and virtual community into the
vehicular environment can help to improve the urban mobility
management.

VI. CONCLUSION

This work proposes the iMOB system, an intelligent ur-
ban mobility management system. The main advantage of
iMOB is the combined use of two approaches of VSNs such
as social network analysis measure and social networking
concepts. A social network analysis measure, in special, the
egocentric betweenness measure is employed in the vehicle
ranking mechanism. The advantage of this mechanism lies
in only using the local knowledge of the network topology
to carry out the calculation. In addition to that, two social
networking concepts were employed to the vehicle rerouting
strategy, namely the social interactions and virtual commu-
nity. Simulation experiments were carried out following two
perspectives: (i) scalability assessment and (ii) urban mobility
management assessment. The proposed system was compared
with two systems of literature, namely EcoTrec and DIVERT.
The results reveal that the iMOB system outperformed its
competitions in all the assessed metrics. This supports the
conclusion that iMOB is a scalable, cost-effective, and efficient
urban mobility management system.

In future works, we intend to incorporate the mobility
patterns of drivers and user preference into the iMOB system.
These parameters will be considered in the decision process
of choosing an alternative route.
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