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Abstract—The constant sharing of information among vehicles
is of vital importance to provide different types of service in
Intelligent Transportation Systems (ITS). Typically, ITS apply
the sharing benefit to carrying out tasks such as extracting
knowledge of vehicle traffic conditions and its distribution. The
ITS that use this approach are able to perform the knowledge
distribution, however, they lack of mechanisms to select the most
appropriate vehicles to do so. It is common, in these systems,
such tasks are performed by all vehicles. Consequently, it could
easily cause a network overhead because of the highly redundant
knowledge about the traffic that is being transmitted. With this
in mind, we propose a system for information management and
knowledge distribution named TRUSTed. The proposed system
applies the egocentric betweenness measure to select the most
relevant vehicle to carry out such tasks. Simulation results have
shown that TRUSTed outperforms other systems found in the
literature in several requirements.

I. INTRODUCTION

One of the promising technologies for Intelligent Transport
Systems (ITS) applications is Vehicular ad hoc Networks
(VANETs). It enables vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications, with the help of Road
Side Units (RSUs) [1], [2]. In order to deal with the highly
dynamic topology of VANETs, a new stack of protocols was
created. The IEEE 1609 Wireless Access in Vehicular Environ-
ments (WAVE) offers support for inter-vehicular communica-
tions and was also necessary to meet a set of VANETs require-
ments such as short communication time and frequent network
partition [3]. In addition to that, the standard IEEE 802.11p
DSRC (Dedicated Short-Range Communication) has assigned
multiple inter-vehicular communication channels such as con-
trol channel (CCH) and service channels (SCHs) [3].

For many ITS applications, the constant sharing of local
information, with one-hop communication neighbors, is essen-
tial to create an awareness about vehicle traffic conditions [4],
[5], [6]. This type of sharing is well-known as beaconing, and
most often the exchanges occur in the control channel with a
transmission frequency generally between 1Hz and 10Hz [7].
The default information contained in the beacon package
include the vehicle identification, current vehicle position,
average speed, direction of travel, among others [3]. On the
other hand, the service channels are used to share all other
data needed by the applications.

Several ITS that deal with local information management
and knowledge distribution about vehicle traffic conditions,
have been proposed [4], [5], [6]. This type of system extracts
knowledge, for instance, about the traffic condition of a given
road, by processing the aggregated local information received
from the neighbor vehicles. However, many proposed systems
have the same shortcoming, the absence of a vehicle selection
mechanism to carry out the tasks of information aggregation

and knowledge generation. Without the selection mechanism,
all vehicles would perform such tasks resulting in a highly
redundant traffic of knowledge. In addition, other systems [4],
[5] do not apply any broadcast suppression mechanism during
knowledge distribution, increasing even further the network
overhead.

In order to overcome the above-cited limitation, we propose
the TRUSTed, a distributed system for information manage-
ment and knowledge distribution. By means of beaconing,
TRUSTed collects the local information needed to apply the
egocentric betweenness measure. The result is the selection,
within a subset of vehicles, of the most relevant one in a
given moment to carry out the tasks of information aggregation
and knowledge generation. The relevance is defined as the
importance of a vehicle in relation to the information flows that
pass through it. In other words, it defines how important is the
intermediate vehicle for the information flow continuity in the
network. One of the advantages of the egocentric measure is
the use of the local information, which is available to perform
the necessary calculation. Beyond this advantage, the work
of [8] confirmed that the egocentric betweenness measure,
in a highly dynamic topology, has a high correlation with
the sociocentric betweenness measure. Last but not least, a
broadcast suppression mechanism was applied to avoid the
redundant traffic of knowledge.

The main objective of this work is to reduce the network
overhead. Extensive simulations have been conducted com-
paring our system with systems found in the literature [4],
[5], [6] according to several requirements. The performance
assessment was done from two perspectives: (i) performance
of the systems in relation to knowledge distribution and (ii)
performance of the control channel.

The remainder of this paper is organized as follows. Section
II shows a brief overview of some related works, while our
system is presented in Section III. Some numerical results and
analysis are given in Section IV. Finally, Section V concludes
the paper and presents the future work.

II. RELATED WORK

In this section, all proposals presented here employ a
periodic exchange of local information, between one-hop
communication neighbors, this allows them to create the local
knowledge base. In addition, they were designed to operate
only with vehicle-to-vehicle communication technology.

The authors in [4] proposed a probabilistic aggregation
system for knowledge distribution. The system applies a hier-
archical aggregation technique for the local information called
soft-state sketches. This technique is based on an extension
of Flajolet-Martin sketches [9]. The key characteristic of this
technique lies in the fact that it aggregates information that



does not have specific values of the monitored place, for
instance, number of vehicles from a determined road. The
aggregated information has, instead, a probabilistic value. The
main advantage of this technique is the ability to combine mul-
tiple aggregated values, of the same information content, for
the generation of knowledge. However, the main disadvantage
of this system is that it does not have any vehicle selection
mechanism to perform its tasks of information aggregation and
knowledge generation. Therefore, all vehicles are candidates
to perform such tasks, this way generating highly redundant
traffic of knowledge. Furthermore, there is no broadcast sup-
pression mechanism during the knowledge distribution phase.

An adaptive forwarding delay control system, named Catch-
up, has been proposed by Yu et al. in [5]. Its main objective is
to gather aggregated local information from different sources
for the knowledge generation. To this end, the forwarding
speed of nearby information is dynamically changed. In doing
that, they have a better chance to meet each other and, as a
result, be aggregated together. Each aggregate information can
have one of the two types of adaptive delays, RUN (short) or
WALK (long). The system was designed based on a distributed
learning algorithm, which means that, each vehicle learns by
means of local information and computes a delay based on
the results of the learning. The advantages of Catch-up are
the use of an adaptive forwarding delay for the knowledge
generation as well as probabilistic aggregation. However, it
falls short by not having a broadcast suppression mechanism
during the knowledge distribution. Another disadvantage is
that all vehicles can act as an information aggregator and
knowledge generator, which can incur in network overhead,
as mentioned before.

Yuan et al. in [6] propose the DARF (Data Aggregation
Algorithm by Restricting Forwarders). The DARF focuses
mainly on the selection of the vehicles that will continue the
knowledge forwarding process, which was generated in the
aggregation step. In order to do that, each vehicle receives
one of the two labels (forwarder or non-forwarder) according
to the neighborhood labels. This label, as the name says,
determines whether the vehicles will forwarder, or not, the
knowledge. The vehicles will be non-forwarder if there is
a forwarding vehicle immediately in front of and behind it.
The labeling of the vehicles is based on periodic exchange
of local information. One of the advantages of DARF is the
broadcast suppression mechanism, which is applied during
the knowledge distribution process. However, it is possible
to notice that there is no vehicle selection mechanism to ag-
gregate local information and generate the knowledge. In this
way, all vehicle can contribute to the knowledge generation,
thus, generating a highly redundant traffic of knowledge in the
network.

All the above-mentioned proposals have presented some
limitations. For instance, the systems proposed by [4], [5],
only take into account the information aggregation technique.
Another proposal, [6], apply some type of the information
aggregation technique together with the broadcast suppression
mechanism. Nevertheless, none of these systems adopted a ve-
hicle selection mechanism to perform the tasks of information
aggregation and knowledge generation. Taking into account
this limitation, a system for information management and
knowledge distribution, so-called TRUSTed, was proposed.
TRUSTed applies the egocentric betweenness measure, in
order to perform the selection of the most relevant vehicle
to carry out above-mentioned tasks. In addition to that, the
proposed system also uses a broadcast suppression mechanism
to avoid the traffic of redundant knowledge.

III. TRUSTED

TRUSTed is a distributed system for information manage-
ment and knowledge distribution related to vehicle traffic
conditions in VANETs. One of the main challenges of this
type of system, due to the highly dynamic topology, is the
selection of the most relevant vehicle, within a subset of
vehicles, to perform the tasks of information aggregation
and/or knowledge generation. If a vehicle is not selected, all
of them could carry out such tasks, this can overload the
network with highly redundant traffic of knowledge. With this
in mind, the egocentric betweenness measure was applied to
select the vehicle that will carry out above-mentioned tasks.
The egocentric measure was chosen because it requires only
the available local information (one-hop neighbors) to find
the most relevance vehicle. This relevance is based on the
information flow passing through it. It also allows connecting
two distinct vehicles by means of the shortest path.

A. Egocentric Betweenness Measure
The egocentric betweenness measure (EBM) is computed

over ego-network topologies. By definition, an ego-network is
a subgraph formed by a single node (so-called ego) together
with the nodes to which they are connected to (so-called
alters), and all links the alters themselves [10], [11]. Figure
1(a) highlights a subgraph where n represents the ego and
the one-hop neighbors (1, 2, 3, 4, and 5) represent the alters.
The EBM formal definition and the mathematical calculation
is given next.
Egocentric betweenness is computed using an ego-network
representation. Let Nr

n be the set of nodes that is r-hop away
from n (ego), i.e., Nr

n = {v′ ∈ V |v′ 6= n∧ 1 ≤ d(n, v′) ≤ r},
where d(n, v′) denotes a one-hop between n and v′ (alters).
Thereby, 1th-order of node n consists of undirected graph
G = (V 1

n , E
1
n), where the set of nodes corresponds V 1

n =
{N1

n ∪ {n}} and the set of edges corresponds E1
n = {(i, j) ∈

E1
n|i, j ∈ V 1

n }.
Mathematically, node-to-node links can be represented by a

symmetric adjacency matrix A (k×k), where k is the number
of one-hop neighbor nodes. Thereby, each A element, ai,j , can
be given by:

aij =

{
1 if there is a direct link between i and j
0 otherwise

(a)
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W1 0.83 

W2 0.25 

W3 0.83 

W4 0.83 

W5 4.00 

W6 0.00 

W7 4.33 

W8 0.33 

W9 0.33 

S1 0.25 

S2 0.00 

S4 0.00 

I1 0.00 

I3 0.00 

W6 W1 

W8 W7 

S4 

W9 S2 I3 

S1 

I1 W3 

W2 

W4 

W5 

(b)

Fig. 1: (a) highlights an ego-network topology. (b) example
taken from study case [10].

Figure 1(b) depicts the classical example employed to
demonstrate the calculation of the EBM [10]. EBM is com-
puted by counting nodes that are connected through the
ego node [12]. Represented by the mathematical expression,
A2[1 − A]i,j , the EBM is the sum of reciprocals of the



mathematical expression [12], where 1 is a matrix of all 1’s.
As an example, we compute EBM from the perspective of the
node W4 of the Figure 1(b). The following adjacency matrix
describes a view of all connection links between the W4 and
its alters, and also the links between the alter’s pairs.

W4 =

W4
I1
S1
W3
W1
W2
W5


W4
0

I1
1

S1
1

W3
1

W1
1

W2
1

W5
1

1 0 0 1 1 1 0
1 0 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 0
1 0 1 1 1 0 0


Since the W4 matrix is symmetric, only non-zero values

above the main diagonal should be considered. In this case,
the remaining elements of W42[1 −W4] are 4, 3, and 4, as
can be seen in the following matrix.

W42[1−W4] =

W4
I1
S1
W3
W1
W2
W5


W4
∗

I1
∗

S1
∗

W3
∗

W1
∗

W2
∗

W5
∗

∗ ∗ 4 ∗ ∗ ∗ 3
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 4
∗ ∗ ∗ ∗ ∗ ∗ ∗


Thereby, the EBM value of the node W4 (1/4+ 1/3+ 1/4) is

0.83. Therefore, all the nodes are able to compute they EBM
value using only local information. In VANETs, the EBM
value should be calculated whenever the adjacency matrix is
updated. Each matrix element is collected by means of beacon
packets periodically broadcasted.

There is evidence that the betweenness centrality measure
in egocentric and sociocentric networks have the highest
correlation in a static network [10]. However, new research
indicates that the highest correlation can also happens in a
highly dynamic network [8], such as VANETs.

As mentioned before, the EBM is applied to select the
most relevant vehicles to perform the tasks of information
aggregation and/or knowledge generation. As shown in Figure
1(b) it is possible to have nodes with the same EBM value. In
this particular case, three nodes have an EBM value of 0.83,
two nodes have 0.25, and two nodes have 0.33. Assuming that
the graph depicted in Figure 1(b) describes the inter-vehicular
communication links at a given time. If the node I1 needs to
forward its aggregate local information it, beforehand, have
to select the next alter, with highest EBM value, to carry out
such tasks. As shown, the I1 has three alters (W1, W3 and
W4) with an EBM value of 0.83. In this case, the Two-Ray
Interference model (Equation 1) [13] is applied as the tie-
breaking criterion.

LTRI [dB] = 20log(4π
d

λ
|1 + Γ expϕ |−1) (1)

where λ is the wavelength, d is the Euclidean distance between
two vehicles, Γ is the reflection coefficient, and ϕ is the
interfering rays.

Following the previous example, once selected the next al-
ter, assuming the W3 was elected, it performs the aggregation
of its information with the received ones. At the same time, the
remaining alters discard the aggregated information received.
The information aggregation process will be carried out until
reaching the node W7, because it has the highest EBM value
in the network in this example. Once all information received
has been aggregated, the W7 node is responsible for gener-
ating and distributing the knowledge. The data aggregation

technique, the procedure for the knowledge generation, and
the broadcast suppression mechanism will be detailed in the
next section.

B. Information Aggregation and Knowledge Generation
The TRUSTed system, periodically shares the local infor-

mation, among its one-hop communication neighbors. This is
performed using beacon packets through the control channel,
and it is used to create the local knowledge base. In addition to
the information already contained in the beacon package, two
more information fields were added: the current EBM value
and the aggregated information.

The local knowledge base is created by aggregating the local
information received from the one-hop neighbor, as well as
the calculation the weight of roads. The next step, once the
local knowledge base was created, is to share it with the most
relevant neighbor vehicle, following to the selection criterion
presented in the Subsection III-A.

The Fusion of two aggregated values may be represented
as follows: Ar := ∂(A1, A2), where ∂ is the aggregation
function that has two input values (A1 and A2). These values
are combined, generating a new aggregated value (Ar). As the
main goal of the proposed work is on information management
and knowledge distribution about the vehicle traffic condition,
the aggregation function is given as follows:

vavgaggi =
v1c1 + v2c2
c1 + c2

(2)

where vavgaggi represents the aggregate average speed of a given
road i. The parameters v1 and v2 are the two input values of
the road i, which are going to be aggregated. ci indicates the
amount of information that contributed to the generation of
the new aggregated value. Thereby, the weight of the road i
(wi) is calculated as follows:

wi =
vavgaggi

vmax
spei

,


wi : weight of road i

vavgaggi : aggregate average speed of road i
vmax
spei : maximum speed of road i

(3)
After aggregating all the local information, the vehicle that

has the highest EBM value classifies the weight of the roads
according to the Table I. The levels of service and traffic
classification were based on the Highway Capacity Manual
(HCM) [14].

TABLE I: Level of service and traffic classification [14].

Level of Service Traffic Classification wi

A Free flow (1.0 ∼ 0.9]
B Reasonably free flow (0.9 ∼ 0.7]
C Stable flow (0.7 ∼ 0.5]
D Approaching unstable flow (0.5 ∼ 0.4]
E Unstable flow (0.4 ∼ 0.33]
F Forced or breakdown flow (0.33 ∼ 0.0]

As soon as the classification step is over, if an event is
identified (in our case, levels D, E or F of the Table I), a
message (also known as knowledge), containing the identifi-
cation of the roads in question is generated. This procedure
initiates the knowledge distribution process in the service
channel. The sender’s neighboring vehicles that received the
knowledge will schedule a retransmission to continue the
knowledge distribution process. Every time that a vehicle
receives a knowledge to be distributed, it checks if it is within



the zone of preference [2], if so, it transmits first. Due to
the broadcast suppression mechanism implemented (zone of
preference), as soon as the neighboring vehicles outside the
zone of preference receive the same scheduled knowledge,
they cancel the retransmission, thereby avoiding the traffic of
redundant knowledge in the network.

Figure 2 illustrates the operation flowchart of the TRUSTed.
When TRUSTed receives the local information, it either inserts
or aggregates this local information into the local knowledge
base (Block 1). After this step, it calculates the weight of
roads according to the Equation 3 (Legend (a)). In addition,
if the vehicle has the highest EBM value (Legend (b)), it also
classifies the weight of roads according to the Table I (Legend
(c)). In this process, if the selected vehicle finds out that there
is some congested traffic flow, a knowledge is generated and
distributed in the network (Legend (d)). On the other hand, if
the vehicle does not have the highest EBM value, it selects the
next most relevant vehicle, according to the Subsection III-A
and sends the aggregated local information to it (Legend (e)).

Fig. 2: Operation flowchart of TRUSTed system.

IV. PERFORMANCE EVALUATION

In order to assess the performance of TRUSTed, the system
was designed, implemented, and simulated with the aid of the
following tools: Omnet++ 5.0 - Network Simulation Frame-
work1, SUMO 0.29.0 - Simulation of Urban Mobility2, and
Veins 4.5 - Vehicular Network Simulations3. First of all, the
parameters of the experimental scenario are explained. After
that, it is provided the analysis of the experimental results.

A. Experimental Settings
In order to produce realistic mobility traces, a real map

clipping of the city of Erlangen/Germany was imported from

1https://omnetpp.org/
2http://sumo.sourceforge.net/
3http://veins.car2x.org/

OSM (OpenStreetMap4), as shown in Figure 3. In addition,
five distinct traffic densities (100, 150, 200, 250 and 300
vehicles/km2) were used during the simulations. Furthermore,
the Krauss car following mobility model [15] was also
adopted.

Fig. 3: Map segment from Erlangen/Germany.

The bitrate was set to 6 Mbps in the MAC layer and a
transmission range of approximately 200 m under a two-ray
ground propagation model [13] was applied. Following the
same idea, the transmission power was set to 0.98 mW.

Finally, all the experimental results of this work were gather
by conducting thirty three times on different traffic conditions
with a confidence interval of 95%. Table II summarizes the
parameters used in the simulation.

TABLE II: Simulation parameters.

Parameter Value
Density of vehicles 100 to 300 vehicles/km2

MAC layer 802.11p
Transmission power 0.98 mW
Bitrate 6 Mbps
Transmission range 200 m
Beacon transmission frequency 1 Hz
Confidence interval 95 %

Seven metrics were applied in order to evaluate the perfor-
mance of the TRUSTed system:

1) Coverage: percentage of messages delivered to the
vehicles that are within the scenario;

2) Overhead: measures the total amount of transmitted
messages by the vehicles in the network;

3) Delay: demonstrates the time spent in delivering the
messages to vehicles that are within the scenario;

4) Collision: shows the total number of packet collisions
during message transmission;

5) Channel busy ratio: measures the percentage of channel
usage during the exchange of the information;

6) Total beacons transmitted: displays the total amount
of beacons transmitted in the network;

7) Beacons transmitted per vehicle: exhibits the number
of beacon packages transmitted per vehicle.

The analysis of results is divided into two subsections.
First, it is analyzed the performance of the solutions in the
knowledge distribution process, Subsection IV-B. Second, the
Subsection IV-C assess the performance of the control channel
during the exchange of local information.

B. Knowledge Distribution Process Assessment
Figure 4 depicts the results of the experiments from the

point-of-view of the knowledge distribution, as a function of

4https://www.openstreetmap.org/



vehicle densities. Particularly, Figure 4(a) presents the per-
formance results of all solutions analyzed using the coverage
metric. The Probabilistic solution displays the lowest coverage,
reaching an average of 80 %, for all analyzed densities. These
results can be justified due to the network overhead, which is
caused because all vehicles perform the tasks of information
aggregation, generation, and distribution of the knowledge
(Figure 4(b) and Figure 4(d)). In addition, during the process
of knowledge distribution none broadcast suppression mech-
anism is applied, thus, resulting in a highly redundant traffic
of knowledge, as shown in Figure 4(b). Because of this, it
is possible to observe a high rate of packet collisions in the
network (Figure 4(d)). It is also evident the long delays in
the delivery of knowledge, compared to the other systems
considered (Figure 4(c)). We can see a slight drop in the
coverage rate as the vehicle density increases. This is due to
the fact of the high network overhead and the high collision
rate.

The other solution analyzed is the Catch-up system. The
main strategy of this system is the insertion of an adap-
tive delay in the message forwarding process. This allows
increasing the probability of the meeting of the aggregated
information. This approach was able to decrease the total
number of messages transmitted and consequently, the col-
lisions, as shown in the Figures 4(b) and 4(d). For this
reason, Catch-up achieves better results when, compared to
the Probabilistic system. It was able to reduce, on average,
10 % of both transmitted messages and packet collisions. In
addition to that, it increased the coverage by 5 % (Figure 4(a)).
In both, Probabilistic and Catch-up, there is a slight drop in
the coverage rate as the vehicle density raises. In addition
to this, the Catch-up system still has a higher knowledge
transmission rate and packet collisions. It is known that both
Probabilistic and Catch-up do not use any type of selection
mechanism to chose the most relevant vehicle to perform the
tasks of information aggregation, generation, and distribution
of knowledge. The lack of such mechanism is translated in
the delays for both systems when compared to DARF and
TRUSTed. This situation is depicted in Figure 4(c).

The DA2RF system employs a broadcast suppression mech-
anism in the knowledge forwarding process.This approach,
as shown in Figure 4(a), improves the coverage rate by
18 % and 15 % when compared to Probabilistic and Catch-
up, respectively. By applying the suppression mechanism, it
is possible to clearly see a decrease in the total number
of the messages transmitted (Figure 4(b)). On average, was
reached a reduction of 30 % in comparison to the Probabilistic
system, and 20 % fewer messages when compared to Catch-
up. The same tendency was observed in regards to the packet
collisions rate (Figure 4(d)). On average there was a reduction
of 30 % and 25 %, compared to Probabilistic and Catch-
up, respectively. It is important to notice that DA2RF is
implemented only with the broadcast suppression mechanism
and does not have any selection mechanism. Because of this,
it still introduces a delay very close to the other previously
analyzed systems, as depicted in Figure 4(c).

Finally, the proposed TRUSTed system applies the egocen-
tric betweenness measure to perform the selection of the most
relevant vehicle to carry out the information aggregation and
knowledge generation. In addition, it also applies the broadcast
suppression mechanism in the knowledge distribution process.
This combination enables it to outperform all other systems in
all the metrics evaluated. TRUSTed significantly reduces the
total number of messages transmitted in the network, with
an average decrease of more than 85 % in comparison to

Probabilistic, as well as 80 % and 70 % compared to Catch-
up and DA2RF, respectively (Figure 4(b)). As a consequence
of this reduction, the knowledge generated can reach a larger
number of vehicles in all densities analyzed, resulting in a
higher coverage rate, close to 98 %, on average, as shown in
Figure 4(a). Furthermore, the broadcast suppression mecha-
nism implemented has helped reduce the number of packet
collisions (Figure 4(d)). The average reduction reached more
than 75 %, 70 %, and 50 % compared to Probabilistic, Catch-
up, and DA2RF, respectively. At the end, the TRUSTed system
also presented the lowest average delay, among all systems
analyzed, being around of 0.15 seconds (Figure 4(c)).

Two main lessons were learned from the analysis of results.
The first one is that there is a need for a mechanism to select
the most relevant vehicle in the network. Because by using this
kind of mechanism it is possible to make the system scalable.
The second one refers to the egocentric betweenness measure
being a viable option for the selection mechanism in highly
dynamic networks.

C. Control Channel Perspective Assessment

The periodic exchange of beacon packages was used, in all
the analyzed systems, to create the local knowledge base (local
information exchanged between one-hop neighbors). Moreover
the transmission frequency of 1Hz was set to all systems [4],
[5], [6], including TRUSTed. Because of that, the following
results are consistent between all the systems assessed in this
work.

Figure 5 depicts the performance results of the control
channel in all the vehicle densities. A macroscopic view of
the total number of beacon packets transmitted in the network,
is presented in Figure 5(a). It is possible to notice that the
number of transmitted packets increases linearly following the
vehicle density expansion. This result is expected, because as
the vehicle densities increase in the course of the simulations,
the larger the number of beacons transmitted in the network.
Note that the channel busy rate, shown in Figure 5(b), exhibits
the same behavior, in average value, in relation to the total
number of beacons transmitted, see Figure 5(a). The observed
behavior of the results is also expected, because of the channel
busy rate increases as the number of packets transmitted on the
network increases. When the system is running with the high-
est densities evaluated, such as 200, 250 and 300 vehicles/km2,
the channel busy rate reached, on average, 28 %, 34 %, and
35 %, respectively (Figure 5(b)).

A microscopic view of the number of beacon packets
transmitted in the network, can be seen in Figure 5(c). It shows
the average number of beacons transmitted by each vehicle as
a function of vehicle densities. It is known that the number of
beacons transmitted by each vehicle is directly related to its
travel time, which is the time that it remains in the simulation.
With this in mind, the results of the travel time for each density
was generated, see Figure 5(d). As the beacon transmission
frequency is of 1 Hz, we can see that the number of packets
transmitted, on average, by each vehicle is in accordance with
the average time in each density.

As a results, a beacon transmission frequency rate of 1 Hz,
may be considered adequate for this type of scenario when
evaluated together with the adopted mobility model. Because
the channel busy rate was around of 35 %, on average, at the
maximum analyzed density (300 vehicles/km2), as shown in
Figure 5(b).
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(d) Collision.

Fig. 4: Knowledge distribution results.

100 150 200 250 300

Densities [vehicles/km2]

0

50000

100000

150000

200000

250000

300000

350000

400000

T
o
ta

l 
T
ra

n
sm

it
te

d
 B

e
a
co

n
s 

[#
]

(a) Total of transmitted beacons.

100 150 200 250 300

Densities [vehicles/km2]

0.0

0.2

0.4

0.6

0.8

1.0
C

h
a
n
n
e
l 
B

u
s
y
 R

a
ti

o
 (

C
C

H
)

0.128 0.20725 0.2823 0.34355 0.3565

(b) Channel busy ratio.
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(c) Beacon transmitted per vehicle.
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(d) Trip time by each vehicle.

Fig. 5: Control channel results.

V. CONCLUSION

Several Intelligent Transport Systems have been proposed to
deal with information management and knowledge distribution
related to vehicle traffic conditions. In this type of system,
the knowledge is generated from the processing of aggregated
local information. However, in the systems found in the
literature, all the vehicles perform the tasks of information
aggregation and knowledge generation. This situation leads
to overloading the network. In order to address this issue, the
TRUSTed system was proposed. TRUSTed is a distributed sys-
tem for information management and knowledge distribution,
which employs the egocentric betweenness measure, in order
to select the most relevant vehicle to perform above-mentioned
tasks. In addition, it applies the broadcast suppression mecha-
nism during the knowledge distribution process, reducing the
network overhead.

The experimental results showed that TRUSTed outperforms
all its competitors in all metrics. As future work, alternative
route calculation will be added to the proposed system, en-
abling to alert the drivers to avoid congested areas. With this,
it will be possible to address all the three phases of the system:
(i) environment sensing, (ii) generation and distribution of
knowledge, and (iii) consumption of the knowledge produced.
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