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Abstract—The use of video-equipped Unmanned Aerial Vehi-
cles (UAV) has been increasing recently, along with the number
of available applications for military and civilian employment.
This unveils the need for an adaptive video-aware mechanism
capable of overcoming a number of challenges related to the
scarce network resources, device movement, as well as high error
rates, to ensure a good video quality delivery. Forward Error
Correction (FEC) techniques can be tailored to provide adaptive
protection with Quality of Experience (QoE) assurance over
error-prone and high-mobility networks. Besides that, unique
characteristics of each video sequence, such as the spatial
complexity and the temporal intensity, strongly affect how the
QoE will be impacted by the packet loss. This paper proposes
an adaptive motion intensity and video-aware FEC mechanism
with the aid of Fuzzy logic to safeguard UAV real-time video
transmissions against packet loss, providing a better user expe-
rience, while saving resources. The advantages and drawbacks
of the proposed mechanism in comparison to the related work
are evidenced through experiments and assessed by using QoE
metrics.

Index Terms—Motion intensity, Forward Error Correc-
tion (FEC); Unmanned aerial vehicles (UAV); Fuzzy Logic;
Quality of Experience (QoE); Unequal Error Protection (UEP)

I. INTRODUCTION

In the last few years, we have seen a substantial growth of

Unmanned Aerial Vehicles (UAV) use in video reconnaissance,

exploitation, and surveillance [1]. The deployment of both, au-

tonomous and nonautonomous UAVs, was formerly exclusive

use of military and special operation teams. Nowadays, the

easy operation and cost-effective wireless network technolo-

gies are making this type of equipment accessible for civilian

use. The adoption of UAVs can be helpful in a broad range of

situations, more often than not replacing fixed video cameras

due to their mobility and low cost operation in contrast to

manned systems. Some examples of UAVs applications are in

traffic surveillance, sport events, festivals, public parades, or at

any place that has the potential of gathering a large amount of

people [2] [3]. It is also worth highlighting the use for monitor-

ing and inspection of critical infrastructures, such as harbours,

large industrial areas, rail-ways, long pipelines, power plants,

as well as to cover large areas with lack of infrastructure,

such as interior border control, countryside properties or even

in natural disaster sites and rescue missions [4].

As evidenced, video-equipped UAVs can provide several

benefits, however, despite the adoption of modern visualization

tools, without a proper video streaming quality, which must

be watchable for humans, the usability of the system will

be compromised. At the same time, real-time video transmis-

sions with ensured Quality of Experience (QoE) are resource-

demanding services, especially over wireless networks. Video

streaming needs a steady and continuous flow of packets, being

susceptible to failure due to different factors. To start off, in

wireless networks, the channel conditions can quickly fluctuate

over time, particularly in high-mobility networks. Several other

common communication issues also have to be taken into

consideration like channel interference, multipath fading, and

noise [5]. To make the matter even worse, the UAV networks

often have poor connectivity quality [6]. Another problem that

needs to be tackled is how to make a fair use of the available

bandwidth [7]. All of these issues need to be considered to

provide an efficient use of the available resources.

The QoE of video streams can be defined as the overall

acceptability of end-users being related to, but differing, from

the largely studied concept of Quality of Service (QoS). This

means that QoE solutions assess the video quality from the

end-users point-of-view, and as a result of that, it must be

considered in the adaptive mechanisms. Efficient QoE-aware

video stream distribution is one of the main challenges in high-

dynamic wireless networks. To do that, it is necessary to define

a proper adaptive control that uses QoE, video, and network

characteristics to improve the use of resources and, at the same

time, enhances the video quality for end-users.

A number of factors have impacted on the QoE in a

UAV scenario. Besides the network-related parameters, several

video characteristics are known to play an important role on

the video quality, such as the image size (resolution), codec

type, bitrate, the format of the Group of Pictures (GoP), as

well as the spatial complexity and the motion intensity [8].

Owing to that, an adaptive mechanism is necessary to better

define the amount of redundancy accordingly to the video

characteristics, network conditions and, the human perception

of quality, leading to an improved QoE. This is even more

important in high-dynamic and error-prone wireless network,

particularly if it involves mobile nodes like the UAVs. One

important factor to consider in these networks is the motion

intensity. It can be inferred through the Motion Vectors (MV)

data, and it is used to store changes from adjacent frames in

the temporal video compression. This offers a particular view

of each video sequence and can be used to adaptively change

the amount of redundancy to be contained in a set of live video
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flows. Another important video feature that needs to be tackled

is the image size. Lately, a large number of video resolutions is

available and can be used for different purposes. Owing to that,

the adaptive mechanisms have to be flexible enough to cope

with arbitrary resolutions. The analysis of this information

allows us to identify the most critical pieces of information

and through the use of an Unequal Error Protection (UEP)

scheme it is possible to protect it accordingly.

Several adaptive mechanisms have been proposed with

the aid of Forward Error Correction (FEC) techniques. This

technique is known to be successfully used in real-time

video transmission services [9], by sending redundant data

along with the original set, thus improving the QoE, without

increasing the delay. It is known that the wireless channel

resources are limited and can be unfairly distributed among

the users, thus an adaptive FEC-based mechanism is required.

To further improve the adaptive mechanism, it should also be

UEP- and QoE-aware, assuring the redundancy of only the

most important video sequences from the user point-of-view.

This will produce less network overhead, while increasing the

human perception when watching live video flows.

This paper describes a novel adaptive Motion INTensity

and video-aware mechanism (MINT-FEC) to enhance the

resilience of UAV real-time video transmissions. One of the

major weaknesses in the mechanisms found in the literature

is the use of unnecessary redundancy, where they generate

and send sequences of all video frames and not only the most

important ones from the human perspective, such as I- and

P-Frames. These are the most important frames in the MPEG

standard. The loss of one I- or P-Frame will be more noticeable

by the end-user because the error will only be corrected when

another I-Frame arrives, in other words, in the beginning of

the next GoP. Thus, those frames need to be protected with

redundant information; To tackle this issue, the MINT-FEC

dynamically adapts itself by using fuzzy logic, to add a precise

amount of redundancy to only the most QoE-sensitive data,

while ensuring high-quality video and downsizing the usage

of scarce wireless resources. The video quality is important

to users and authorities (e.g., paramedics and firefighters) to

do an accurate assessment of each situation, reducing human

reaction times. Additionally, by sending less redundant data we

are automatically using less power, which saves energy. The

MINT-FEC was assessed using objective QoE metrics and real

videos obtained from UAVs.

The remainder of this paper is structured as follows. Sec-

tion II describes the related work. The novel MINT-FEC

mechanism is shown in Section III, and its assessment is

presented in Section IV. Conclusions and future work are

given in Section V.

II. RELATED WORK

A range of different solutions has been proposed to enhance

the video quality over wireless networks. To the best of

our knowledge, none of those proposals improve the real-

time video transmission of UAVs using the motion intensity.

This is a key characteristic to know how the video quality

will be impacted when packets are lost in dynamic wireless

networks. The Adaptive Cross-Layer FEC (ACFEC) provides

packet-level error correction [10]. A MAC layer loss counter

determines the amount of FEC redundancy. Because of that, in

good wireless conditions, this counter will be low, generating a

small amount of redundant traffic. While this is true, a proper

network overhead assessment was not conducted and thereby

it is difficult to ascertain the proposal efficiency. On top of

that, the video characteristics are neglected. This information

is known to impact on the video resilience to packet loss and,

therefore, on the QoE levels.
Another approach defines a dynamic FEC block length [11].

This block is configured using the packet loss rate and also

the number of continuous losses to enhance the video trans-

missions. The weakness of this mechanism is that it only uses

network parameters disregarding key multimedia information,

such as video characteristics and QoE results. These details

are very important to set a precise amount of redundancy in

any adaptive QoE-aware mechanism.
The Cross-Layer Mapping Unequal Error Protection (CLM-

UEP) [12] assigns a custom amount of redundancy by

analysing the packet loss rate and the frame type. Nevertheless,

the CLM-UEP does not utilize an important video detail,

namely the motion intensity. As previously mentioned, this

characteristic can have a significant weight to determine a

precise amount of redundancy, which allows saving significant

network resources and energy.

III. ADAPTIVE MOTION INTENSITY AWARENESS

MECHANISM

In the light of the open issues aforementioned, especially

the lack of adaptive QoE-aware mechanisms that take into

consideration efficient indicators of motion intensity, this study

describes and evaluates a novel cross-layer adaptive FEC-

based mechanism with motion intensity awareness (MINT-

FEC). The main goal is to ensure a good QoE in real-time

video transmissions of UAVs, while saving wireless resources

and energy. This proposal improves our previous work [13]

and the main enhancements are described next.
A novel approach was taken in the MINT-FEC, as the

motion intensity is now given by combining the spatial

complexity and temporal intensity. Spatial complexity is how

distinct is one frame from another, as well as the colour and

luminance saturation. The temporal intensity can be defined

as how fast and how much the image is changing frame-

by-frame. The joint use of them provides a more accurate

motion classification to be used for adding a precise amount of

redundancy. Another improvement from the previous work is

the video resolution independence. By normalizing the values

of all the video characteristics, as well as using the motion

vector distance and macroblock size, it is possible to add,

on-the-fly, an adaptive amount of redundancy to videos with

arbitrary resolution. A detailed description of all the novel

components is given further.
The use of fuzzy logic allows the design of a comprehensive

and dynamic mechanism [13]. This is possible because it

can take into consideration a large number of videos and

network details and still be fast enough to operate in real-

time schemes, as expected in highly dynamic UAV networks.
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Additionally, fuzzy logic can be considered a problem-solving

methodology that aims to define what the system should do,

rather than attempting to fully understand its operation. It

adopts a simple approach to provide definitive conclusions

relying on imprecise, ambiguous, or vague information.

The design process of MINT-FEC starts with the definition

of several fuzzy components, such as the sets, membership

functions, and rules. Fuzzy sets are different from classical sets

since an element can have a degree of membership instead of

just belonging or not belonging to a set. Membership functions

are used to represent the degree of relationship between the

elements of the sets. At last, the rules are responsible for

defining how the system will behave. This is a complex process

that has to be executed offline only once. After that, all the

generated information can be loaded into the fuzzy interface

engine to be used in real-time. This offline process is very

important as it allows a faster and more accurate mechanism

to perform its procedures on-the-fly, since simpler tasks are

done.

The first step is to quantify the spatial complexity, which is

how much spatial information a frame is carrying compared to

the previous one. The most common way to compute this dif-

ference is using the Sum of Absolute Differences (SAD) [14].

It is not a complex operation, however, it is very time-

consuming because it compares each pixel from both frames,

making this impractical in real-time. Another way to find this

information is through the frame sizes. The problem of using

the frame size is that several video characteristics can impact

on it, such as different resolutions (picture size), content, as

well as temporal intensity. To be able to compare the frame

sizes among different videos, it is necessary to normalize

all the information. Using Eq. (1) the average frame size is

calculated, and the same operation is also executed for P-

and B-frames. After that, through Eq. (2), all frame sizes are

normalized, as before, this is also done for P- and B-frames.

This process is performed for each video sequence separately.

Table I shows the adopted notation.
TABLE I

ADOPTED NOTATION

NOTATION MEANING

µIs, µPs, µBs Frame size average

µ̂Is, µ̂Ps, µ̂Bs Normalized frame size average

Is(i), Ps(i), Bs(i) Frame size of the ith frame

nF Number of frames in the video sequence

|MV | Euclidean distance of a motion vector
∣

∣MV(i)

∣

∣ Euclidean distance of the ith motion vector

MBh Macroblock height

MBw Macroblock width

aMB Macroblock area

aMB(i) Area of the ith macroblock

nMB Number of macroblock in the frame

TI∆t Temporal intensity

µIs =
1

nF

nF−1
∑

i=0

Is(i) (1)

µ̂Is =
µIs

µIs + µPs + µBs

(2)

Once all the frame sizes are normalized, it is possible

to perform an exploratory analysis to cluster all frames of

all video sequences together according to their sizes. The

technique used was hierarchical clustering, because it allows

the partition of the data, as much as possible, into the most

homogeneous groups [15]. Based on the linkage distance of

the clusters it was possible to divide them into three distinct

groups, namely “small”, “medium”, and “large”. After defining

the clusters, a boxplot was used to summarize and display

the distribution of the data. This is an important tool in

the exploratory analysis because it displays the shape of the

distribution of each cluster along with the central value and the

variability. Fig. 1 shows the boxplot for the spatial complexity.

The fuzzy sets for spatial complexity were defined using the

information displayed by the boxplot, as shown by Fig. 2.
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Fig. 1. Spatial Complexity

FuzzyOperator& op = FuzzyOperator::DefaultFuzzyOperator();

FuzzyEngine engine("complex-mamdani", op);

InputLVar* Isz = new InputLVar("I-size");

Isz->addTerm(ShoulderTerm("SMALL", 0.274, 0.459, true));

Isz->addTerm(TriangularTerm("MEDIUM", 0.274, 0.651));

Isz->addTerm(ShoulderTerm("LARGE", 0.502, 0.757, true));

engine.addInputLVar(Isz);

InputLVar* Psz = new InputLVar("P-size");

Psz->addTerm(ShoulderTerm("SMALL", 0.162, 0.219, true));

Psz->addTerm(TriangularTerm("MEDIUM", 0.162, 0.325));

Psz->addTerm(ShoulderTerm("LARGE", 0.288, 0.333, true));

engine.addInputLVar(Psz);

InputLVar* Bsz = new InputLVar("B-size");

Bsz->addTerm(ShoulderTerm("SMALL", 0.081, 0.13, true));

Bsz->addTerm(TriangularTerm("MEDIUM", 0.081, 0.219));

Bsz->addTerm(ShoulderTerm("LARGE", 0.205, 0.252, true));

engine.addInputLVar(Bsz);

Fig. 2. Spatial complexity (Frame size sets)

After defining the set, the membership functions need to be

outlined. This is problem-dependent, as well as a complex task

being difficult to find an optimal solution [16]. Considering

that, it is better to use piecewise linear functions (formed of

straight-line sections). These functions are both simpler and

more efficient regarding to computability, leading to lesser re-

source requirements. Fig. 3 shows the graphical representation

of our chosen membership functions for the frame sizes.
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Fig. 3. Frame size membership function

Apart from the spatial complexity, the fuzzy components for

the motion intensity also need to be created. The analysis of

this intensity is performed through the Motion Vectors (MV)

information. The basic idea of MV is to describe the change in

place or position of objects as a sequence of small translations

on a plane. In order to better represent this movement, instead

of counting the number of MV, it is computed how far each

vector is pointing using Euclidean distance, which is given

by Eq. 3. This is necessary because it is possible to have

one frame with several vectors pointing to a close distance

meanwhile, another frame with fewer vectors, pointing farther

away although, and thereby having higher motion intensity.

|MV | =
√

(x− x′)2 + (y − y′)2 (3)

As defined in the MPEG standard, the MV describes the

movement of macroblocks (MB) from some position in one

frame to another position in another frame. It is important to

note that not all MB have the same size, as well as videos

with higher resolution will have more MB than videos with

lower resolution. To be able to compare video sequences with

different MB sizes and resolutions, we decided to use the MB

area, given by Eq. (4), together with the MV. Additionally,

using Eq. (5) it is possible to calculate for each macroblock

how many pixels have been moved and how far away, which

can be translated as temporal intensity.

aMB = MBh ×MBw (4)

TI∆t =
1

nMB

nMB−1
∑

i=0

aMB(i) ×
∣

∣MV(i)

∣

∣ (5)

Using the aforementioned details, another exploratory anal-

ysis was performed to classify the video sequences in terms

of temporal intensity. This time, instead of breaking the video

sequences in frames, the whole video was analysed. The values

found through (5) were used to cluster the videos into three

distinct groups, namely “low”, “medium”, and “high” temporal

intensity. Additionally, in the same way as before, a boxplot

was used to summarize and display the data distribution, as

well as to create the sets, as presented in Fig. 4.
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Fig. 4. Temporal Intensity

Another important step is to define the packet loss

rate (PLR). The primary objective is to find out the impact

of different PLR in the QoE for a set of videos with the same

characteristics. This is necessary because video sequences

have a certain tolerance for losses. For example, due to the

natural video resiliency to packet loss, in our approach a loss

rate of 10% can be considered low, in other services such as

voice over IP, it might be considered unacceptable. To find

the PLR that best represents the video quality, a number of

network simulations using a broad collection of UAV video

sequences were carried out. For PLR between 0% and 10%

the video quality was good. A tolerable video quality was

observed for majority of the videos between 5% and 20%

of PLR. Over 15% of PLR the quality quickly decreased in

videos with higher motion intensity, and over 25% it became

unacceptable. Based on the results, the PLR set was defined,

as shown in Fig. 5.

After delineating the packet loss rate, the amount of the

redundancy set must be defined. In the same way as done
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InputLVar* PLR = new InputLVar("PacketLossRate");

PLR->addTerm(TriangularTerm("LOW", 0, 10));

PLR->addTerm(TriangularTerm("MEDIUM", 5, 20));

PLR->addTerm(TriangularTerm("HIGH", 15, 100));

engine.addInputLVar(PLR);

Fig. 5. Packet loss rate input set

before, the definition of this set also enfolds several experi-

ments. With the help of human knowledge in the field, it was

specified what would be considered a “small”, “medium”, and

“large” amount of redundancy. Fig. 6 displays the result.

OutputLVar* redundancy = new OutputLVar("RedundancyAmount");

redundancy->addTerm(ShoulderTerm("SMALL", 0.55, 0.70, true));

redundancy->addTerm(TriangularTerm("MEDIUM", 0.60, 0.80));

redundancy->addTerm(TriangularTerm("LARGE", 0.75, 1));

engine.addOutputLVar(redundancy);

Fig. 6. Motion activity output set

With all sets defined, it is necessary to create the rules. This

activity also involves human knowledge about the video char-

acteristics, namely spatial complexity and temporal intensity,

as well as the frame type, and the PLR. For example, in videos

with high spatial complexity the I-Frame needs a greater

amount of protection, because it holds a lot of information.

On the other hand, in videos with high temporal intensity, the

I-Frame also needs to be protected, but the P-Frame plays an

important role because it holds the temporal information about

that sequence, and needs to have almost the same protection

as the I-Frame. Fig. 7 shows two rules that represent this case.

RuleBlock* block = new RuleBlock();

block->addRule(new MamdaniRule("

if ( SpatialComplexity is HIGH and

PacketLossRate is HIGH and

FrameType is I )

then RedundancyAmount is HIGH", engine));

block->addRule(new MamdaniRule("

if ( TemporalIntensity is HIGH and

PacketLossRate is HIGH and

FrameType is I or P )

then RedundancyAmount is HIGH", engine));

Fig. 7. Packet loss x video characteristics rules

Once all the fuzzy rules and sets are defined, they are

employed in real-time in the Fuzzy Logic Controller (FLC).

The offline process needs to be performed just once, after that

the FLC will be able to compute a precise amount of QoE-

aware redundancy on-the-fly.

IV. PERFORMANCE EVALUATION AND RESULTS

The MINT-FEC goal is to ensure a high perceived QoE

for end-users, while avoiding unnecessary network overhead,

saving the already scarce wireless resources. The experiments

were conducted in the Network Simulator 3 (NS-3). The

assessment scenario consists of up to four UAVs operating

in autonomous mode, with 4G LTE radio at 800MHz. To

better reflect a UAV scenario, the Gauss-Markov distribution

mobility model was used. This model provides a uniform

spatial distribution of the nodes and also simulates inertia

in the movements, which is a characteristic of UAVs in

autonomous mode. The ground control station is equipped

with a portable base station and antenna. All UAVs are in

line-of-sight and communicating in ad-hoc mode. Only real

UAV video sequences were used in the experiments. To be

more precise, twenty of each video resolution (1080p, 720p,

and SVGA), giving a total of sixty video sequences. All

of them were encoded with both same GoP length of 19:2

and same H.264 codec. Considering the portable base station

power, the ad-hoc communication, and the very demanding

high definition videos, the flying range was limited to a

radius of 2000 meters from the base station. Due to the harsh

environment and the low-gain antenna, the PLR can range

from 0% to 35%. Fig. 8 shows the packet loss distribution

in our experiments. At the receiver side, a Frame-Copy error

concealment was used, meaning that when a frame is lost,

it will be replaced with the last good one received. Table II

shows the simulation parameters.
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Fig. 8. PLR distribution

TABLE II
SIMULATION PARAMETERS

PARAMETERS VALUE

Display sizes 1920x1080, 1280x720, and 800x600

Frame rate mode Constant

Frame rate 29.970 fps

GoP 19:2

Codec H.264

Container MP4

Propagation model FriisPropagationLossModel

Mobility model Gauss-Markov

UAV velocity 45-65 km/h (28-40 mph)

LTE Frequency band 800MHz

LTE Mode FDD

LTE Bandwidth 5 MHz

eNodeB Operating Power 22 dBm

Antenna Gain 16 dBi

Five different schemes were simulated as follows: (1) with-

out any FEC mechanism. This is only to serve as a baseline

for comparison with the others; (2) a non-adaptive video-

aware FEC (I- and P-Frames are equally protected) using a
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pre-set value of 75% of redundancy (Video-aware FEC). This

value was chosen because it showed a good tradeoff between

QoE and network overhead in several PLR; (3) our previous

adaptive FEC-based mechanism (uavFEC) [13]; (4) a related

work implementation of the Cross-Layer Mapping Unequal

Error Protection (CLM-UEP) [12]. At last, (5) adopts our

novel MINT-FEC mechanism.
Fig. 9 shows the average Structural Similarity Met-

ric (SSIM) results. Values closer to one mean better video

quality. Regardless of the fact that this is an objective metric,

it gives good results, which are consonant to the human visual

system [17]. A foreseen situation can be clearly noticed, the

farther away the UAVs are from the ground control station the

worst is the video quality. In the first case (without FEC), a

good video quality is noticed up to 600m. This is expected

on the grounds that some video sequences tend to have a

natural resiliency to packet loss. In particular, this situation

is true in videos with low motion intensity, which usually

scores higher results in QoE-aware assessment. Between 600m

and 900m the video quality is already affected and a sharp

decline is perceived after that. At the same time, in the FEC-

based schemes, such as Video-aware FEC, uavFEC, CLM-

UEP and, MINT-FEC, the video quality was kept good for

a long distance, until 1200m. Notwithstanding, our proposed

mechanism outperforms all its competitors in terms of video

quality, providing even better results over higher distances. A

comprehensive comparison analysis is given further.
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Fig. 9. Average SSIM QoE for all scenarios

The MINT-FEC already shows that it can provide enhanced

video quality, especially over higher distances, however it

is equally important to do so with lower network overhead.

A mechanism with a low network footprint is essential

considering the scarce wireless channel resources and the

uneven bandwidth distribution. In our experiments the network

overhead can be found by summing the size of all video

frames transmitted, which includes the redundant data, and

after that subtracting the original frame size. The Video-aware

FEC scheme is non-adaptive and due to that it has a constant

network overhead, as shown in Fig. 10. This is not suitable

for UAVs, because even when they are close to the base

station, with a low PLR, a large amount of redundancy is

added, wasting resources. On the other hand, the adaptive

mechanisms (uavFEC, CLM-UEP, and MINT-FEC) allow a

better use of the network resources, as also shown in Fig. 10.

In all three mechanisms, the initial amount of redundancy is

small and starts to become larger as the UAVs move away from

the ground station. Both our previous uavFEC mechanism and

CLM-UEP perform close to each other up to 1200m. After that

uavFEC starts to add more redundancy to provide better video

quality. Here again, the MINT-FEC performs better than the

others. Up to 1500m, it induces less network overhead, while

providing higher video quality. Subsequently, it adds a slightly

higher redundancy and still smaller than the other schemes, in

favour of a considerably better video quality. This proves that

we were able to identify the most important video portions

and protect them accordingly.
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To further understand the MINT-FEC achievements, a com-

parison against CLM-UEP and uavFEC is given in Fig. 11. The

first case is the comparison between CLM-UEP and MINT-

FEC, and the second one, uavFEC against MINT-FEC. The

graph shows the average percentage of QoE and network

overhead improvement. In the QoE assessment, a positive

percentage means that our proposed mechanism achieved

higher video quality, which is desirable. On the other hand,

in the network evaluation, a negative percentage means that

the MINT-FEC generated less overhead, which is also advan-

tageous.
In both cases, MINT-FEC presented a slightly better video

quality until 1200m, which was between 0.59% and 2.01%,

and between 0.69% and 1.63%, respectively. While out-

performing the other mechanisms in terms of quality, our

mechanism was also able to considerably reduce the network

overhead. It added on average 16.20% less redundancy than

CLM-UEP and 16.65% less redundancy than uavFEC, up to

1200m. This proves that our mechanism is capable of better

identifying the most QoE-sensitive data and adds a precise

amount of QoE-aware redundancy to it, resulting in higher

video quality and less network overhead. After this threshold,

the MINT-FEC starts to increase the amount of redundancy
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to improve the video quality. This happens for the reason that

our mechanism was designed to sustain a higher video quality

over long distances, when the connection is more susceptible

to errors. In doing that, the videos are received with up to 40%

better quality in comparison to the CLM-UEP mechanism and

up to 18% higher quality than our previous uavFEC mecha-

nism. Another important advance of the MINT-FEC over the

uavFEC was the network overhead reduction beyond 1200m.

In this case, the MINT-FEC mechanism managed to reduce the

overhead by up to 11.74%. This is an additional proof that our

mechanism is doing a better work to infer the motion intensity

using spatial complexity and temporal intensity, allowing the

definition of a precise amount of redundant information to the

most sensitive data. Thanks to that, we are able to deliver

higher video quality leading to a better user perception.

V. CONCLUSION AND FUTURE WORKS

The ever-growing use of UAVs to deliver video underlines

the need for an adaptive QoE-aware mechanism to improve

the resiliency to packet loss, while keeping the user perception

high. The MINT-FEC enhances the video quality over long-

range transmissions, providing both higher QoE and lower

network overhead. This allows a thorough use of the already

scarce wireless resources. The advantages and disadvantages

of the proposed mechanism were highlighted through a set of

experiments, proving that we were able to precisely identify

the motion intensity in arbitrary video sequences and better

protect the most QoE-sensitive data, which is translated in

higher video quality.

The MINT-FEC outperforms the others, adaptive and non-

adaptive, mechanisms in the experiments. In scenarios with up

to 1200m, it was able to deliver videos with slightly higher

quality and at the same time generating substantially less

network overhead. This implies that an enhanced video quality

was perceived without wasting wireless resources. On the other

hand, over 1200m, due to harsher conditions, our mechanism

starts to increase the redundancy providing a considerably

higher QoE than the other mechanisms. This is definitely a

desired tradeoff between network overhead and video quality.

As future work, other mobility scenarios are going to be

evaluated, an analysis about the delay and buffer size impact

will be conducted, as well as subjective QoE assessments.
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