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Abstract—Video transmission over wireless networks has
shown a great increase in recent years and it is becoming part
of our daily life. Meanwhile, several difficulties can impair the
success of the transmission, such as limited network resources,
high error rates and fluctuating signal strength that may lead
to variable bandwidth. Therefore there is the need for adap-
tive mechanisms that can provide a good video transmission.
Adaptive Forward Error Correction (FEC) techniques which
assure Quality of Experience (QoE) are a convenient means of
delivering video data to wireless users in dynamic and error
prone networks, while taking into account the content of the
transmitted data. This paper proposes an adaptive content-
aware and Random Neural Network (RNN) based mechanism to
provide protection of real-time video streams against packet loss
in wireless networks, improving user experience and optimising
network resources. The benefits of the proposed mechanism
are demonstrated through simulations and assessed with QoE
metrics.

Index Terms—Motion Vectors (MV); Forward Error Correc-
tion (FEC); Video-aware FEC; QoE; Neural networks; Unequal
Error Protection (UEP)

I. INTRODUCTION

In the last few years the use of real-time video services
in wireless and mobile networks has seen a dramatical in-
crease [1], namely in Europe where the growth in mobile
video views was of 162% from 2011 to 2012. The outlook for
growth, according to Cisco, is even greater and will represent
over 90% of the global IP traffic by 2015 [2]. This viewpoint
can be explained by the substantial amount of new forms of
entertainment and information, which include news websites,
social networking communities, e-learning as well as large
amounts of user-generated content.

Due to the video traffic growth, it becomes critical to
improve its transmission quality. However, the network re-
sources are not unlimited, and therefore, many factors, such
as propagation loss, congestion, and channel noise, can hinder
the transmission. This may cause packet loss which in turn
degrades video quality and negatively impacts the end user
experience. The quality of the video should be assessed in
terms of Quality of Experience (QoE), because contrary to
Quality of Service (QoS), it assesses the quality of the video as
perceived by the end user. Therefore, QoE must be considered

1CNPq Fellow - Brazil

in the process of building a mechanism that can adapt to the
video and network characteristics.

An adaptive mechanism is needed to combat the infor-
mation loss on networks with different characteristics. This
mechanism should improve the video transmission to ensure
that the viewing experience of the users is not negatively
affected by the impairing factors of the wireless environment.
Retransmission and Forward Error Correction (FEC) are two
commonly used techniques to handle network limitations.
Retransmission mechanisms are suitable for systems where
delivery must be guaranteed. However, in a real-time video
transmission environment, what is most important is the timely
delivery of the content, because if a frame arrives after its
decoding deadline it can no longer be displayed. On the
other hand, FEC mechanisms have delay-constraints. These
mechanisms add redundancy to the original data so that it is
possible to correct, without retransmission, eventual errors or
losses caused due to the characteristics of the network. The
problem is that many times they are non-adaptive and strict.
This means that the mechanism only offers a fixed amount
of protection/redundancy to the data to be transmitted, not
taking into account the video characteristics. This can lead
to a poor utilization of network resources and it can cause
network congestion due to unnecessary overhead.

Taking these problems into account, this paper proposes a
novel adaptive Video-aware Random Neural Networks (RNN)
based mechanism (neuralFEC). It aims at overcoming the
limitations of non-adaptive schemes, such as the inability to
take into consideration the video’s motion intensity, which is
crucial to a high QoE. An efficient way to quantify the motion
intensity is through Motion Vectors (MV). These vectors play
a key part in the video compression process, allowing to store
changes from adjacent frames, including both previous and
future frames. Therefore it is possible to quantify the motion
intensity of a given frame using the information inside his MV.
The proposed mechanism mitigates these problems by adap-
tively selecting the amount of redundancy given to individual
frames, through the analysis of their type and their motion
characteristics through a RNN [3]. Neural networks (NN) are
computational models inspired by biological central nervous
systems, which are able to go through the process of machine
learning and pattern recognition. They can be trained by feed-



ing them with learning patterns and letting them change the
weights according to some learning rule. The choice of RNN
is related to their particular characteristics that enable their
success in pattern recognition and classification problems [4].

Another important feature of neuralFEC is the use of a
Unequal Error Protection (UEP) scheme. This allows the use
of different amounts of redundancy to different parts of the
data. The proposed UEP scheme protects frames with a greater
intensity of movement with a larger amount of redundancy
opposed to those with lower intensities of movement. This
scheme reduces network overhead through the adaptive and
selective use of redundancy while also improving or at least
maintaining the level of QoE of the transmitted videos when
compared to non-adaptive FEC mechanisms.

The remainder of this paper is structured as follows. The
related work is presented in Section II. Section III describes
the neuralFEC and its evaluation is presented in Section IV.
Conclusions and Future Work are summarized in Section V.

II. RELATED WORK

Adaptive FEC mechanisms have been gaining an increased
interest because they allow for the redundant data to be
used according to the video and network characteristics. The
APB-FEC scheme aims to solve the problem of conventional
packet level FEC by the use of a smaller packet length,
while increasing the FEC block length [5]. By using feedback
information from the receiver regarding the correct reception
of the packets, the mechanism adapts the video in the stream-
ing buffers to the network conditions. The use of buffers
is not optimal and can increase the delay. Also, relying on
information from the receiver can be problematic due to the
fact that if the communication is hindered it is very probable
that the feedback information will not reach the sender.

The ViewFEC module-based mechanism [6] uses a database
module with motion and complexity information from several
videos that is built prior to video distribution. It also uses
another module to assess the length of the Group of Pic-
tures (GoP) which has a greater influence in the received video
quality if packets are lost during transmission. The motion
intensity classification adopts a heuristic based comparison
with the database, which may lead to non-optimal results.

Another FEC mechanism uses a layer-based approach which
processes each GoP and divides it into layers of different utility
to adequately distribute FEC among them [7]. This process
is very time consuming and takes more time with larger GoP
sizes, which in turn adds delay to the transmission. If the layer-
division is not already processed, this mechanism requires a
great amount of processing which means it cannot be used in
real-time video transmission.

Also related to the use of GoP information is the optimized
cross layer FEC mechanism which assigns different priorities
to the GoPs according to the commutative mean squared error
of the entire GoP [8]. The GoPs are encoded and cyclic redun-
dancy check bits are added to detect coding errors. Afterwards
the FEC codes are optimized with different parameters for
different situations. This mechanism has several optimization

phases, for each frame, that are very time consuming, increas-
ing the delay and degrading the QoE.

III. ADAPTIVE MECHANISM

The issues presented above, together with the need to further
optimize the use of network resources, make way for the
novel mechanism proposed in this paper. The neuralFEC goal
is to use an optimized UEP scheme according to the video
frame’s motion intensity characteristics. Making it possible
to better protect the most QoE-sensitive frames, therefore
providing both, the reduction on the impact of packet loss
on the video quality and the use of only the necessary amount
of redundancy. Through this, it is possible to distribute the
redundancy in a way that will improve the QoE for the end
user while sparing precious network resources.

Figure 1 depicts the overall operation of the neuralFEC
mechanism. First of all, in the offline process, an exploratory
analysis using hierarchical clustering was carried out to train
the RNN. Through the human experience about the intrinsic
video characteristics and several simulation experiments the
RNN was also validated. After this, the RNN can be used
in real-time. The offline process is very important because
it leads to accurate results in real-time. Then the decision
making process conducted by the RNN determines a specific
amount of redundancy needed by each frame. This allows the
neuralFEC to shield only the QoE-sensitive data against packet
loss, resulting on better video quality as perceived by the end-
users while saving network resources. A detailed explanation
of the proposed mechanism is presented afterwards.

In order to perform the classification of each frame accord-
ing to its motion intensity a RNN was employed. As other
NNs, this model has the capability for learning and gener-
alization, but excels in pattern recognition and classification
problems [4]. By training the network successfully with an
adequate range of video samples, it can be used in real-time
to classify a given video sequence according to the intensity
of the movement. This is achieved by attributing a specific
value to determine frames with different motion intensities.
After that, the neuralFEC is able to select in real-time the
appropriate amount of redundancy to be transmitted so that
the network overhead is minimized and QoE is maximized.

The RNN structure consists of three input nodes, seven
hidden layer nodes and one output. The three input nodes
represent each frame’s characteristics specifically frame size,
frame type, and MV ratio (total number of motion vectors
divided by the distance described by them). The MV in a
video sequence was adopted from the classical mechanics and
vector-oriented model of motion used by them. This is a simple
model that defines the movement of objects as the progression
of small translations on a plane. A MV ratio was used because
a certain frame can have several vectors pointing to a close
distance while other frames can have less vectors pointing
further away however, and consequently defining a situation of
higher motion intensity. Finally, the output node provides the
motion intensity classification value, computed by the network
from the given inputs. Through these parameters it is possible



Fig. 1. neuralFEC mechanism

to characterize the video motion intensity and choose the
optimal amount of redundancy on a frame-by-frame basis.

To adequately train the RNN, an exploratory hierarchical
cluster analysis using Ward’s method [9] was performed to
categorize selected video sequences which represent different
types of movement. The video sequences were selected ac-
cording to the recommendations of the Video Quality Experts
Group (VQEG) [10] and the International Telecommunications
Union (ITU) [11], and represent sequences that cover different
distortions and content that are commonly seen in online
videos. A set of 15 videos was selected to perform the
hierarchical cluster analysis. Each video was broken down into
three parameters, namely about the frame size and type, and
the total number of motion vectors divided by the distance
described by these vectors.

Using the exploratory analysis results, the video sequences
were classified into three categories of motion intensity,
namely low, median and high intensity. Afterwards, two videos
of each motion intensity category were randomly selected to
train the RNN. The training of the RNN consisted in feeding
the information of this set of selected videos to the inputs of
the network for about 600 iterations which was the point at
which the Minimum Mean Squared Error (MSE) stabilized.
After the training of the RNN was completed, the RNN was
validated with a different set of video sequences, the remaining
9 videos from the exploratory analysis, which also cover all
three motion intensity characteristics. The results obtained
proved to be correct classifications of the video sequences
present in the validation set.

After the training and validation phases, the RNN can be
used in the real-time process. Using cross-layer techniques, the

neuralFEC is able to obtain important information about sev-
eral video characteristics, namely frame type and size, as well
as the number of motion vectors and the Euclidean distance
pointed by them. All these details are fed to the RNN which
in turn provides, in real-time, an accurate motion intensity
value for each frame. After the video frame is classified it
is encoded by the Reed-Solomon (RS) [12] with the amount
of redundancy selected by the RNN. This erasure code has
low complexity, and therefore provides better performance for
real-time services [13]. The RS is a linear block code that
has a rule to convert of source bits s, of length k, into a
transmitted sequence t of length n bits. To add redundancy,
n is made greater than k. In a linear block code, the extra
(n−k) bits are linear functions of the original k bits, which are
called parity-check bits. It allows us to use different block sizes
represented by each individual frame. Through this procedure,
a precise UEP amount can be assigned to each frame, where
only the QoE-sensitive data will be protected. In turn, this
results in better video quality while reducing the amount
of redundancy data needed, thus not adding unnecessary the
network overhead. This reduction is very important because it
can be the source of serious interference problems. In this way,
not adding unnecessary redundancy will allow more users to
access services with better QoE, improving the overall system
performance.

Figure 2 shows the pseudo-code portraying the neuralFEC
real-time operation. All procedures are performed inside a for-
loop, at line 01, which will go through all the frames in the
video sequence. At line 02, the frame type is identified to be
used in the selection control mechanism (if statement) at line
03. This allows the change in the control flow according to



neuralFEC needs, which is, to assign a tailored redundancy
amount to I- and P-Frames, and send B-Frames without addi-
tional data. At lines 05, 06, 07, and 08 it is possible to observe
the identification of the frame size, the computation of the MV
ratio, the classification of the video frame motion intensity
using the RNN, and the assignment of an unequal amount
of redundancy to the most QoE-sensitive data, respectively.
Lines 09 and 11 are responsible for sending the frame with or
without redundancy.

01 for each Frame
02 FT=getFrameType(Frame)
03 if(FT equal (I- or P-Frame))
04 then
05 FS=getFrameSize(Frame)
06 MVratio=calculateRatio(getMV(Frame))
07 MotionIntensity=RNN(FT, FS, MVratio)
08 addRedundancy(RS(MotionIntensity))
09 sendFrame(Frame+Redundancy)
10 else
11 sendFrame(Frame)
12 end if
13 end for

Fig. 2. neuralFEC pseudo-code

IV. PERFORMANCE EVALUATION AND RESULTS

The main objective of the neuralFEC is to reduce the
network overhead by not adding unnecessary redundancy
while having a light improvement or at least maintain the
same video quality. In order to assess the performance of
the proposed mechanism in wireless networks, several ex-
periments were performed using Network-Simulator 3 (NS-
3) [14]. The scenario for evaluation is comprised of 25 nodes
in a grid disposition (5x5), separated by 50 meters. The
Optimized Link State Routing Protocol (OLSR) [15] was used
as the routing protocol. Ten video sequences were used in
this scenario, namely Bowing, Coastguard, Container, Crew,
Foreman, Hall, Harbour, Mother and Daughter, News and
Soccer. These particular sequences were selected in order to
have a great variety of motion intensities. They are in Common
Intermediate Format (CIF) with a resolution of (352x288) and
coded with the H.264 codec. The GoP size was set to 19 and
after each I- or P-frames, come two B-frames.

A two-state discrete-time Markov chain model was im-
plemented following a simplified Gilbert-Elliot packet-loss
model [16], which approximates the behaviour of a wireless
network. It produces simulation results which are closely
related to those of burst loss patterns of wireless channels [17].
The simplified Gilbert-Elliot is shown in Figure 3, where the
probability of packet loss in the Good state (G) was set at 0,
which means no losses, and the probability of packet loss in
the Bad state (B) was set at 1, where all packets are lost. The
Packet Loss Rate (PLR) can be obtained by Equation 1, where
PBG represents the probability of transitioning from the Bad
state to the Good state and vice-versa with PGB .

PLR =
PBG

PBG + PGB
(1)

Fig. 3. Gilbert-Elliot simplified model

To validate and compare the results, three experiments with
different schemes were performed. The first experiment serves
as a baseline as there was no FEC mechanism in use. The
second experiment was performed with a non-adaptive video-
aware FEC mechanism (Video-aware FEC), where a fixed
amount of 38% of redundancy was added only to I- and P-
frames. This amount of redundancy was selected according to
an extensive set of experiments, which showed the best video
quality situation taking into consideration the characteristics of
the scenario defined for the experiment. The last experiment is
the proposed adaptive mechanism with RNN and UEP (neu-
ralFEC). Each of the three experiments was simulated 10 times
with an error rate of 20% representing an average loss [18]
obtained through the simplified Gilbert-Elliot model.

The video quality of each evaluation scenario was assessed
through an objective measurement, namely the Structural
Similarity (SSIM) Index. This objective evaluation metric is
a method based on the analysis of luminance, contrast and
structural similarity of images. SSIM is one of the most
commonly used metrics for objective evaluation of QoE [19].
The objective quality assessment of the video sequences was
performed with EvalVid [20] and the MSU Video Quality
Measurement Tool (VQMT) [21].

A set of ten video sequences different from those used to
train the RNN was used. They represent distinctive situations
with a broad type of motion intensity characteristics. Three
different mechanisms were used to perform the experiments on
the mentioned sequences, namely without protection, with the
non-adaptive Video-aware FEC mechanism and finally with
the adaptive neuralFEC mechanism.

Figure 4 shows the results in terms of overhead of the
experiments. While using the non-adaptive Video-aware FEC
mechanism the network overhead added was between 35%
and 43%. On the other hand, when the neuralFEC mechanism
was employed the amount of overhead remained between 13%
and 24%. This means that the average redundancy added by
the non-adaptive mechanism was around 38% on contrast
to only 19% added by neuralFEC. It is also clear that the
proposed mechanism can assess the importance of frames
according to motion intensity. This assessment is performed
by the RNN, which attributes a higher classification for frames
with a great amount of movement, and a lower classification
for frames with less amount of movement. In doing that,
a greater amount of redundancy was attributed to video se-
quences such as Crew, Soccer, Harbour and Coastguard. On
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Fig. 4. Network Overhead

the contrary, video sequences which are classified as being of
lesser motion intensity, such as Bowing, Mother and Hall are
given less redundancy. These results show that the neuralFEC
mechanism performs better than the non-adaptive Video-aware
FEC mechanism in terms of overhead, by reducing in average
a half of the redundancy needed to protect the data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Without FEC Video-aware FEC neuralFEC

S
S

IM

Bowing
Mother

Hall
News

Foreman
Container

Crew
Soccer

Harbour
Coastguard

Fig. 5. Objective QoE assessment (SSIM)

Besides saving the already scarce network resources by
not adding unnecessary redundancy, it is also important to
provide good video quality. In order to verify this situation,
a set of assessments were performed using the SSIM metric.
Figure 5 depicts the SSIM values for each video sequence
while using the three aforementioned protection schemes. The
results show the neuralFEC mechanism obtained an average
SSIM value of 0,831 against a value of 0,819 for the video-
aware FEC mechanism and 0,726 for the mechanism that
did not use any type of protection. This represents a slight
improvement of almost 1,5% , on average, in terms of SSIM

value for the adaptive neuralFEC mechanism in comparison
to the non-adaptive video-aware FEC mechanism. In further
detail, the SSIM score achieved by neuralFEC for the Harbour
video sequence was of 0,675 against 0,662 for the video-
aware mechanism and 0,485 for the mechanism without FEC.
Although all video were transmitted with the same PLR, the
SSIM score obtained by the same three mechanisms for the
Bowing sequence was of 0,915, 0,914 and 0,920 respectively.
This can be explained by the different characteristics of these
two sequences. The Harbour video sequence has a greater
amount of motion compared to the Bowing sequence, meaning
that packet loss has a greater effect on this type of sequences.
This results in lower SSIM scores for sequences with a higher
degree of motion intensity, and also shows that videos with
a lower degree of motion intensity have greater resilience to
packet loss. Due to this, it is important to employ adaptive FEC
mechanisms, such as neuralFEC to protect the contents of the
video taking into account its motion intensity characteristics.

TABLE I
AVERAGE SSIM AND NETWORK OVERHEAD

neuralFEC Video-aware FEC Without FEC
SSIM 0,831 0,819 0,726
Overhead 19,334% 38,460% –

Table I summarizes the results presenting the average SSIM
and network overhead for all video sequences. It demonstrates
that the proposed neuralFEC mechanism had a slightly im-
proved video quality. Most importantly, it was able to do
so while drastically reducing the network overhead by not
adding unnecessary redundancy. This is of great importance
in wireless networks, due to the limited nature of the wireless
channel resources, which can be aggravated by packet loss
due to interference from concurrent transmissions and network
congestion.

The results showed that the neuralFEC mechanism, through
an accurate motion intensity classification of video sequences
with distinct characteristics, is able to add a precise amount
of protection. In doing that, it can offer less overhead during
transmission in a wireless mesh network setting while provid-
ing as good video quality as non-adaptive FEC mechanisms.

V. CONCLUSION AND FUTURE WORKS

The growth of the online video transmission over wireless
networks calls for adaptive QoE-aware mechanism to ensure
the video quality. To fill this gap, the neuralFEC provides
the possibility to shield the video transmission in wireless
networks, protecting only the most QoE-sensitive data, max-
imizing the video quality while saving network resources by
not sending unnecessary redundancy. This is important to
better use the already scarce wireless resources. Both impact
and advantages of the neuralFEC approach were demonstrated
through a set of experiments using real video sequences.

The experimental simulation results showed that neuralFEC
was able to highly reduce the amount of network overhead
by 50% while maintaining or even improving the QoE for



the end user. This is a great enhancement over non-adaptive
FEC mechanisms and also reinforces the importance of using
adaptive FEC mechanisms which take into account motion
intensity when protecting a video stream with varying char-
acteristics. Future work should emphasize further refinement
of the mechanism by taking into account a larger set of video
sequences. Additionally, other adaptive FEC mechanisms will
be used to evaluate the performance of neuralFEC. Different
scenarios should be explored by introducing mobility and
cross-traffic to assess the resilience of the mechanism in such
conditions.

ACKNOWLEDGMENT

This work was funded by the Brazilian National Counsel of
Technological and Scientific Development (CNPq) and also
supported by the Intelligent Computing in the Internet of
Services (iCIS) project (CENTRO-07-ST24-FEDER-002003),
co-financed by QREN, in the scope of the Mais Centro
Program.

REFERENCES

[1] comScore, “More than 200 billion online videos viewed globally in
october,,” comScore inc., www.comscore.com/Press Events/Press Re-
leases/2011/12/More than 200 Billion Online Videos Viewed Globally
in October, Tech. Rep., 2011.

[2] Cisco, “Cisco visual networking index: Forecast and methodology 2010-
2015,” Cisco, Tech. Rep., 2011.

[3] A. Abraham, “Artificial neural networks,” handbook of measuring system
design, 2005.

[4] S. Mohamed and G. Rubino, “A study of real-time packet video
quality using random neural networks,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 12, no. 12, pp. 1071–1083, 2002.

[5] M.-F. Tsai, N. Chilamkurti, and C.-K. Shieh, “An adaptive packet and
block length forward error correction for video streaming over wireless
networks,” Wireless Personal Communications, vol. 56, no. 3, pp. 435–
446, 2011.

[6] R. Immich, E. Cerqueira, and M. Curado, “Cross-layer fec-based mech-
anism for packet loss resilient video transmission,” in Data Traffic
Monitoring and Analysis, ser. Lecture Notes in Computer Science,
E. Biersack, C. Callegari, and M. Matijasevic, Eds. Springer Berlin
Heidelberg, 2013, vol. 7754, pp. 320–336.

[7] V. Lecuire, “Unequal error protection under bitrate constraint
for video streaming over internet,” Computer Communications,
vol. 35, no. 3, pp. 287 – 297, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366411003161

[8] A. Talari, S. Kumar, N. Rahnavard, S. Paluri, and J. Matyjas, “Opti-
mized cross-layer forward error correction coding for h.264 avc video
transmission over wireless channels,” EURASIP Journal on Wireless
Communications and Networking, vol. 2013, no. 1, pp. 1–13, 2013.

[9] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,”
Journal of the American statistical association, vol. 58, no. 301, pp.
236–244, 1963.

[10] N. Staelens, I. Sedano, M. Barkowsky, L. Janowski, K. Brunnstrom,
and P. Le Callet, “Standardized toolchain and model development for
video quality assessmentthe mission of the joint effort group in vqeg,” in
Quality of Multimedia Experience (QoMEX), 2011 Third International
Workshop on. IEEE, 2011, pp. 61–66.

[11] T. S. S. O. ITU, Objective perceptual multimedia video quality mea-
surement in the presence of a full reference, ITU-T Std. J.247, August
2008.

[12] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, June 1960.

[13] J. Neckebroek, M. Moeneclaey, and E. Magli, “Comparison of reed-
solomon and raptor codes for the protection of video on-demand on the
erasure channel,” in Information Theory and its Applications (ISITA),
2010 International Symposium on, 2010, pp. 856–860.

[14] G. F. Riley and T. R. Henderson, “The ns-3 network simulator modeling
and tools for network simulation,” in Modeling and Tools for Network
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