
Resource Management for Embedded Systems

Roger Kreutz Immich, Diego Luis Kreutz and Antônio Augusto Fröhlich
Laboratory for Software and Hardware Integration

Federal University of Santa Catarina
PO Box 476 – 88049-900 – Florianópolis, SC, Brazil

{roger,kreutz,guto}@lisha.ufsc.br

Abstract

Classical strategies for resource management in
operating systems are often complex and innapropriate
for embedded systems. Implementations for these
strategies may use either virtual function tables or long
conditional structures to provide transparent access
to different resources. This overhead is unacceptable
for embedded systems. The EPOS operating system
provides flexible and transparent access to resources
for applications without incurring in unnecessary
overhead. Metaprogrammed structures are used to
predict, according to application usage and in compile
time, whether a resource must use a polymorphic
representation or may be accessed through direct
calls. This way, virtual function tables are only used
in the system when strictly necessary, and thus saving
resources. In this article, we show that this strategy is a
viable alternative for resource management in embedded
systems.

Keywords: Resource Management, Static Meta-
programming, Operating Systems

1 Introduction

One of the main functions of an operating system is to
manage hardware and software resources in a transparent
and efficient way. General purpose systems often have to
manage a great amount and variety of resources. Classical
strategies of resource management in operating systems
are thus often complex and dependent of application
domain.

In order to provide application programmers with a
reusable resource management application programming
interface (API), for example, through a file system
interface, general purpose systems often make use of
conditional structures or virtual function tables in their
implementation. The system doesn’t know a priori what
type of resource it must manage, and must provide access
to all possible resources through a common interface. This
causes the system to aggregate code blocks that may never
be executed, but nonetheless will occupy system memory,

and occurs in runtime overhead.
In embedded systems, applications typically use less

resources than in general-purpose system. If, for example,
an embedded application uses a single type of resource,
an application-tailored operating system could provide
management to that single resource, without incurring
in runtime overhead or aggregating unnecessary code
blocks. If an application, however, uses n resources,
this operating system should also be able to provide a
metamorphical, uniform interface for managing these n
resources.

EPOS (Embedded Parallel Operating System) is an
application oriented operating system that provides
an adaptive, flexible and transparent interface for
resource management[1]. Through the use of static
metaprogramming techniques, and based on application
analysis, it is possible to predict in compile time whether
resources may be managed through a direct call or
polymorphic interface. This way, only the absolutely
necessary overhead is introduced into the system.

This paper elaborates on the resource management
strategy in EPOS. Section 2 presents the EPOS
metaprogrammed resource management framework.
Section 3 evaluates the strategy, presenting a case study
and evaluating overhead and performance of resource
management in EPOS. Section 4 discusses related work.
Section 5 discusses the results and finalizes.

2 Resource Management in EPOS

Resource management is a key point in operating
system performance and usability. In the particular case
of application-tailored operating systems [1], resource
management is a specially interesting problem, as the
application itself defines what resources must be managed
in a given system instance, for a given execution
environment. The application programmer must be
provided with reusable interfaces, and with transparent
component selection mechanisms.

One way to deliver transparent, adaptative resource
management in an application oriented operating
system is through the use of static metaprogramming.
Metaprogrammed frameworks allow the system to
select adequate components for resource management,

1-4244-0379-0/06/$20.00 ©2006 IEEE. 91

traits.h

Network 1
Network 2
Network 3

Application

Source code

Application

Binary

Metaprogram

Network 3Network 2Network 1

Compiler

Figure 1. How the metaprogram works

generating flexible interfaces that may either generate
static function calls or virtual function tables, according
to application’s needs and in compile-time.

EPOS relies on a specially developed
metaprogrammed library to provide efficient and
flexible resource management. Conditional structures
(e.g. IF-THEN-ELSE and operators EQUAL are defined
by this library, and implemented as described in [2].
These library functions are not restricted to resource
management, and may be used elsewhere in the system.

Figure 1 illustrates the EPOS resource management
resolution process which is applied in compile time.
In the first step, macro components that satisfy user
requirements are selected through application code
analysis [3]. In the second step, specific, platform-
dependent components are selected to become part
of the system’s final instance. In this phase,
the metaprogrammed framework eliminates all virtual
function call whenever possible, reducing final object
code size.

As an example, if an application needs to use two
network cards, the programmer simply declares two NIC
objects. In compile-time, the application is analyzed
according to the selected platform. The metaprogrammed
framework identifies the types of network cards available
in this instance of the system. If two network cards of
different types are available, the resource management
interface for these cards will present the same interface,
and its implementation will be polymorphic. If two
network cards of the same type are available, the resource
management interface will still be uniform, but will
provide direct access to the actual device, with no virtual
function call overhead. This process requires no further

NIC nic0(0);
NIC nic1(1);

//thead 0
while(1){

// ...
nic0.send(BROADCAST, PROTOCOL, "A", 1);

}

//tread 1
while(1){

// ...
nic1.send(BROADCAST, PROTOCOL, "A", 1);

}

Figure 2. Sample Application

user interaction than to select and configure the target
platform, and is transparent to the application.

Considering three hypothetical platforms "A", "B"
and "C", and two network cards "X" and "Y". The
programmer might use a similar code to the one
presented in Figure 2 for different all three platforms.
If that application were compiled for the hypothetical
platform "A", with two network cards of type "X", the
polymorphism of objects nic0 and nic1 will be replaced
by direct calls to the actual instances of the network cards
"X". The same process would be repeated for a supposed
architecture "B", that has two network cards of type "Y".
The great advantage is that the user application continues
the same one, transparent and with a high degree of code
reuse. On the other hand, the polymorphism could not be
eliminated for platform "C", because, it makes use of one
network card "X" and another network card "Y". In this

92

template <> struct Traits<PC_NIC>: public Traits<PC_Common>
{

typedef LIST<PCNet32, PCNet32> NICS;

static const unsigned int PCNET32_UNITS = NICS::Count<PCNet32>::Result;
static const unsigned int PCNET32_SEND_BUFFERS = 8;
static const unsigned int PCNET32_RECEIVE_BUFFERS = 8;

static const unsigned int E100_UNITS = NICS::Count<E100>::Result;
static const unsigned int E100_SEND_BUFFERS = 8;
static const unsigned int E100_RECEIVE_BUFFERS = 8;

static const unsigned int C905_UNITS = NICS::Count<C905>::Result;
static const unsigned int C905_SEND_BUFFERS = 8;
static const unsigned int C905_RECEIVE_BUFFERS = 8;

};

Figure 3. Description of the network cards in the traits file

in case, it is only possible to determine which calls goes
to an specific network card in runtime.

2.1 Resource Management Metafunctions
A metaprogrammed LIST construct is used to generate

a metalist in compile-time witch contains the available
resources of a given type in the system. An configuration
repository contains details regarding configuration and
characteristics of all resources that may be used in a given
platform. Figure 3 illustrates a sample traits configuration
archive for the PC platform (Intel IA32 Architecture) in
EPOS. In that example, configuration values for number
of sending and receiving buffers are defined for three
network devices: PCNET32, E100 and C905. This
information will be pertinent in compile time, during the
definition of an instance of the respective component.

The polymorphic construct returns a boolean value
obtained through the application analysis in compile-time
using the previously defined metalist. When the system is
configured with different devices of the same class (e.g.
the PCNet32, E100 and C905 network cards defined in
figure 3), this construct returns TRUE indicating that the
use of the polymorphism will be necessary. When the
metalist has only one element, or several elements with the
same type, this function returns FALSE, indicating that
the polymorphism can be eliminated and direct calls can
be used to interact with the devices present in the list.

The polymorphic construct is used in a
metaprogrammed conditional structure, that defines
a Base variable (figure 4). The Base will be either a
pointer for virtual methods (when polymorphic) or a
pointer to an actual device (when not polymorphic),
allowing direct calls to the device.

3 Evaluation

In order to test the efficiency of resource management
in the EPOS, a simple application was implemented that
sends the "A" character through the network interfaces.
Two sample target configurations were use: one with

template<typename NICS>
class Meta_NIC {
//...
public:
typedef typename IF<polymorphic,

NIC_Base,
typename NICS::template

Get<0>::Result>::Result Base;
// ...

};

Figure 4. Conditional Structures for
Removing Polymorphism

a single network card, and another with two different
types of network cards. This experiments demonstrates
the percentage of resource management that is eliminated
when virtual function calls are removed from the system.

We developed and compiled this application for the IA-
32 architecture. Table 1 presents data and code memory
sizes for test case A (concrete) and B (polymorphic).
These values demonstrate that the resources management
in the EPOS carried through in compile time, optimizes
memory usage, allocating space only for the resources that
really will be used in the application in question.

Test Case A Test Case B
.text 19308 19668
.data 88 88
.bss 432 432

Table 1. Size in bytes for the Test Case A
(Single NIC) and B (Two Different NICs)

In a second experiment, we measured the access time
to resources in the EPOS system. The measurements were
taken by measuring the time immediately before calling

93

Test Case A Test Case B
Time 13.6 14.61

Table 2. Time in microseconds for access to
a NIC in Test Case A and B

the send method, and when entering the actual send
method in the NIC driver. We executed 100 iterations with
1000000 measurements each over a VMWare emulator in
an Athlon64 3000 machine. Table 2 presents access time
in microseconds for both test cases. These measurements
demonstrate the efficiency of removing polymorphism
whenever possible in a resource management strategy.

Through the use of the resource management strategies
in EPOS it is possible to provide memory economy and
to improve the access time to the resources. Memory
economy is reached through the elimination of everything
that is not be to the application execution, leaving the
final code tailored to this application. The improvement
in the access time to the peripherals is reached replacing,
in compile time, virtual methods for direct calls.

4 Conclusion

The use of the static metapramming techniques
to provide optimization in the resources management
strategies for EPOS revealed a viable alternative for
embedded systems. Despite the difficulties introduced
by metaprogramming constructs, such as the increase
of the complexity, difficulty of depuration and greater
compile time, it was shown that that it is possible to use
isolate its usage in the system only in the places where
it becomes necessary, keeping the original structure in
the others parts, continuing with the original flexibility
and providing the necessary optimization. Current
work focuses on further evaluating this techniques, and
comparing it to other existing solutions.

References

[1] A. A. M. Froehlich, Application-Oriented Operating
Systems, GMD - Forschungszentrum Informationstechnik,
1 edition, 2001.

[2] R. Robson, Using the Stl - The C++ Standard Template
Library, Springer-Verlag, 2 edition, 1999.

[3] F. V. Polpeta and A. A. Fröhlich, “On the Automatic
Generation of SoC-based Embedded Systems”, in In:
Proceedings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation, 2005.

94

