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Abstract. Image segmentation using graph cuts have become very pop-
ular in the last years. These methods are computationally expensive, even
with hard constraints (seed pixels). We present a solution that runs in
time proportional to the number of pixels. Our method computes an
ordered region growing from a set of seeds inside the object, where the
propagation order of each pixel is proportional to the cost of an opti-
mum path in the image graph from the seed set to that pixel. Each
pixel defines a region which includes it and all pixels with lower prop-
agation order. The boundary of each region is a possible cut boundary,
whose cut measure is also computed and assigned to the correspond-
ing pixel on-the-fly. The object is obtained by selecting the pixel with
minimum-cut measure and all pixels within its respective cut boundary.
Approaches for graph-cut segmentation usually assume that the desired
cut is a global minimum. We show that this can be only verified within
a reduced search space under certain hard constraints. We present and
evaluate our method with three cut measures: normalized cut, mean cut
and an energy function.

1 Introduction

We consider the problem of segmenting an image in object and background by
graph-cut measures. The image is interpreted as an undirected graph, whose
nodes are the image pixels and whose arcs are weighted and defined by an adja-
cency relation between pixels. We wish to assign weights to the arcs and define
an objective function (a graph-cut measure), such that its minimum corresponds
to the desired segmentation (i.e., a cut boundary whose arcs connect the nodes
between object and background).

Approaches for graph-cut segmentation usually aim at assigning higher
weights to arcs inside object and background, and lower weights otherwise. Their
objective functions measure some global property of the object’s boundary from
this weight assignment. Wu and Leahy [1] were the first to introduce a solution
for graph cut using as measure the sum of the arc weights in the cut boundary.
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Their cut measure has the bias toward small boundaries and other objective
functions, such as average cut [2], mean cut [3], average association [4], normal-
ized cut [5], ratio cut [6], and energy functions [7, 8, 9] have been proposed to
circumvent this problem.

The problem of finding a minimum of an objective function through graph cut
is NP-hard for a generic graph and very often solutions require hard constraints.
Heuristic solutions have been proposed in polynomial time [10], but with poor
computational performance, and the results are sometimes far from the desired
segmentation [11]. Indeed we have verified that even in a reduced search space
that includes the desired cut, it does not always correspond to the minimum cut.
This suggests that hard constraints are really needed in practice. For example,
two terminal nodes (source and sink) can be added to the image graph, rep-
resenting object and background respectively [7, 8]. Additionally to the weight
assignment between pixels, this approach aims at assigning lower arc-weights
between source and object pixels, higher arc-weights between sink and object
pixels, lower arc-weights between sink and background pixels, and higher arc-
weights between source and background pixels. A min-cut/max-flow algorithm
from source to sink [12, 13] is used to compute the minimum-cut boundary. If
the method fails the detection of the desired boundary, the user can impose
the arc weights with source and sink by selecting seed pixels inside and outside
the object [7]. The running time of these algorithms is still polynomial [8] (i.e.,
typically O(mn2) where m is the number of arcs and n is the number of nodes).

We present a solution that runs in linear time (i.e., in O(n)). Our method com-
putes an ordered region growing from a set of seeds inside the object, where the
propagation order of each pixel is proportional to the cost of an optimum path in
the image graph from the seed set to that pixel. Each pixel defines a region which
includes it and all pixels with lower propagation order. The boundary of each re-
gion is a possible cut boundary, whose cut measure is also computed and assigned
to the corresponding pixel on-the-fly. The object is obtained by selecting the pixel
with minimum-cut measure and all pixels within its respective cut boundary.

Our method essentially reduces the search space by ordering possible cuts
from inside to outside the object. It requires lower arc weights across the object’s
boundary than inside it in order to include the desired cut in the reduced space.
When this weight assignment is not achieved, the method can still work by
adding more seeds. A problem, however, has been the sensitivity of some cut
measures with respect to the heterogeneity (arc weights) outside the object.
We evaluate this aspect with normalized cut [5], mean cut [3], and an energy
function [7, 9].

We could use the same adjacency relation, weight assignment between pixels,
and energy function to compare our method with the one by Boykov and Jolly [7]
in the context of interactive segmentation. However, under the same conditions,
both methods are likely to produce similar results except to the fact that our
algorithm is more efficient. Instead of that, we prefer to verify the accuracy
of our approach in a real application that represents the worst case for the
aforementioned cut measures.
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Section 2 presents the image graph, weight functions, and cut measures used
in this paper. We present our method for the 2D case, but its extension to 3D
is straightforward. The method and its algorithm are presented in Section 3.
Section 4 evaluates it using three cut measures and our conclusions are stated
in Section 5.

2 Image Graphs and Cut Measures

Consider an undirected graph where the pixels are the nodes and the arcs are
defined by an irreflexive 4-adjacency relation between pixels. There are many
ways of exploiting image features to compute arc weights [5, 7, 14]. We suggest
to assign a membership value for each pixel with respect to the object based
on image features (texture, color, gradients), which may be different depending
on the application. The idea is to improve the weight assignment by reducing
inhomogeneities inside the object.

Let xp be a feature vector computed at a given pixel p; μp and Σp be mean
and covariance matrices of the feature vectors xq computed at all pixels q within
an adjacency radius around p; and T be a set of training pixels, selected in object
regions that have different image features. For a given pixel s ∈ T , we compute
a membership value Rs(p) for every image pixel p.

Rs(p) = exp
(

− 1
2d

(xp − μs)tΣ−1
s (xp − μs)

)
(1)

where d > 1 takes into account the absence of statistical information (e.g., we
use d = 10). We also set a distinct adjacency radius for each pixel s ∈ T , making
it as largest as possible, in order to compute the best estimation for μs and Σs

inside the object region that includes s. A region map R is obtained as

R(p) = max
∀s∈T

{Rs(p)}. (2)

We also apply a median filter on R to make it more homogeneous. The weight
w(p, q) for any arc (p, q) is given by

w(p, q) = exp
(

− (R(p) − R(q))2

2d

)
. (3)

Figures 1a–c show three original images, where the training pixels and their
adjacency radii are indicated by circles. The respective region maps are shown in
Figures 1d–f. We used two normalized attributes within [0, 1] for the feature vec-
tors of Equation 1 in each case: brightness and gradient magnitude (Figure 1a);
and red and green values (Figures 1b and 1c). Note that the choice of these at-
tributes is a separate problem, and the segmentation can not be generally solved
by thresholding the region map and extracting the binary components, which
are hard-connected to internal seeds (e.g., Figure 1d).

Due to the heterogeneity of the background, it is very difficult to obtain higher
arc weights outside the object. This affects some graph-cut measures more than
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) A Magnetic Resonance (MR) image of a brain with three training pixels
(the circles indicate their adjacency radii). (b) A colored image of peppers with four
training pixels. (c) A colored image of two cows with two training pixels. (d–f) The
respective region maps of (a),(b), and (c).

others. Therefore, we will consider the normalized cut [5], mean cut [3], and an
energy function [7, 9] to evaluate this aspect in Section 4.

Let I and E be the interior and exterior of a cut boundary IE, which consists
of a set of arcs (p, q) where p ∈ I and q ∈ E. The normalized cut is defined as

cut(I, E)
asso(I) + cut(I, E)

+
cut(I, E)

asso(E) + cut(I, E)
(4)

where

cut(I, E) =
∑

∀(p,q)| p∈I,q∈E

w(p, q) (5)

asso(I) =
∑

∀(p,q)| p∈I,q∈I

w(p, q) (6)

asso(E) =
∑

∀(p,q)| p∈E,q∈E

w(p, q). (7)
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The mean cut is defined as
cut(I, E)

|IE| (8)

where |IE| is the number of arcs in IE.
We have chosen an energy function similar to that proposed in [7] and con-

sistent with the general formulation described in [9].

λ

⎛
⎝ ∑

∀p∈I

(1 − Ro(p)) +
∑
∀q∈E

(1 − Rb(q))

⎞
⎠ +cut(I, E) (9)

where Ro and Rb are region maps computed by Equation 2 using training pixels
inside object and background, respectively; and λ > 0 represents the importance
of the first term (a normalization factor) with respect to the second one.

3 Region Growing by Ordered Propagation with Graph
Cut

Let A4(p) be the set of the 4-adjacent pixels of p, excluding it. A path π in the
image graph (Section 2) is a sequence 〈p1, p2, . . . , pn〉, such that pi+1 ∈ A4(pi),
for i = 1, 2, . . . , n − 1.

First, assume that Equation 3 assigns lower arc weights across the object’s
boundary than inside it. These arc weights are inversely proportional to the
dissimilarities δ(p, q) between 4-adjacent pixels of the region map. For a given
set S of internal seeds, we define the cost c of a path π as:

c(π) =
{

maxi=1,2,...,n−1{δ(pi, pi+1)} if p1 ∈ S
+∞ otherwise (10)

where δ(p, q) = K(1 − w(p, q)) for an integer K that represents the maximum
dissimilarity between pixels (e.g., K = 1023). The reason for using an integer K
will be explained later.

A path from a seed set S to a pixel p is optimum when its cost is minimum as
compared to the cost of any other path from S to p. Under the above conditions,
it is enough to have a single seed in S (we will discuss later the case of multiple
seeds), and the optimum paths from S to object pixels will have costs strictly
less than the costs of optimum paths with terminus at background pixels. The
object could be detected by thresholding the costs of the optimum paths from
S, but this threshold is unknown. Thus, we grow a region from S by aggregating
one adjacent pixel at a time in order proportional to the cost of an optimum
path from S to that pixel; such that the object pixels will be aggregated before
the background pixels.

Each pixel defines a region which includes it and all pixels with lower prop-
agation order. The boundary of each region is a possible cut boundary, whose
cut measure is also computed and assigned to the corresponding pixel on-the-fly.
The desired cut boundary consists of arcs between object and background pixels,
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and the object is defined by the pixel with minimum-cut measure and all pixels
within its respective cut boundary.

This region growing process creates a reduced search space that includes the
desired cut boundary. Now it is expected that the objective function be able to
detect it as the one with minimum cut. This is certainly not a problem when
Equation 3 assigns lower arc weights across the object’s boundary than inside
and outside it.

If Equation 3 assigns low arc weights inside the object, the method may require
one seed for each part of the object that satisfies the above conditions. The cut
boundaries from each seed will merge into the desired cut boundary before the
optimum paths reach the background pixels.

3.1 Algorithm

Our method uses the Image Foresting Transform (IFT)— a tool for the design
of image processing operators based on connectivity [15]. The IFT algorithm
essentially reproduces the aforementioned process by assigning an optimum path
from S to every pixel in a non-decreasing order of cost. Its bottleneck is a
priority queue Q, which selects a path of minimum cost C(p) at each iteration
by removing its last pixel p from Q. Ties are broken in Q using first-in-first-out
policy. The algorithm runs in linear time if δ(p, q) is an integer in [0, K] and Q
is implemented as described in [16].

We need to modify the IFT algorithm as follows. When a pixel p is removed
from Q, p receives a propagation order Od(p) ∈ [1, n], for an image with n pixels.
At this moment, p and all pixels with lower propagation order define a region I
and the algorithm has found the optimum paths from S to every pixel in I [15].
The remaining pixels define a region E; the cut IE is defined by arcs between
pixels of I and its 4-adjacent pixels in Q; and the cut measure M(p) for IE is
computed on-the-fly. We first illustrate these modifications for normalized cut.

Algorithm 1 Computation of the propagation order map Od and nor-

malized cut map M

Input: An image and adjacency A4.
Output: Maps Od and M .
Auxiliary: A priority queue Q and variables o, ai, ie, and ae that store the order

and values of the Equations 5- 7 for the cut IE.

1. Set o ← 1, ai ← 0, ie ← 0, and ae ← 0.
2. For every image pixel p, do
3. Set C(p) ← +∞ and Od(p) ← +∞.
4. For every pixel q ∈ A4(p) do
5. Set ae ← ae + w(p, q)/2.
6. For every pixel p ∈ S do
7. Set C(p) ← 0 and insert p in Q.
8. While Q is not empty do
9. Remove p from Q such that C(p) is minimum.
10. For every pixel q ∈ A4(p) do
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11. If Od(q) < Od(p), then
12. Set ie ← ie − w(p, q) and ai ← ai + w(p, q).
13. Else
14. Set ie ← ie + w(p, q) and ae ← ae − w(p, q).
15. Set cst ← max{C(p), δ(p, q)}.
16. If cst < C(q) then
17. If C(q) �= +∞ then
18. Remove q from Q.
19. Set C(q) ← cst and insert q in Q.
20. Set Od(p) ← o and o ← o + 1.

21. Set M(p) ← ie

ie + ai
+

ie

ie + ae
.

Lines 1–7 initialize maps, variables and insert seed pixels in Q. The division by
2 in Line 5 takes into account that the graph is undirected (i.e., w(p, q) = w(q, p)
should be considered only once). Thus, variable ae is initialized with the sum of
all arc weights in the graph. Lines 8–21 compute the maps M and Od during
the IFT. When p is removed from Q (line 9), it leaves E and goes to I. At this
moment, all arcs that contain p need to be evaluated. The condition stated in
Line 11 indicates that q ∈ I, then arc (p, q) is being removed from IE and its
weight must be considered to update ie and ai. Otherwise q ∈ E, then arc (p, q)
is being inserted in IE and its weight must be used to update ie and ae. Lines
15–19 evaluate if the path that reaches q through p is better than the current
path with terminus q and update Q and C(q) accordingly. Finally, lines 20–21
compute the propagation order of p and the measure of its corresponding cut IE.
After Algorithm 1, the object is obtained by selecting a pixel m with minimum-
cut measure and thresholding Od at values less than or equal to Od(m).

The above algorithm can be easily modified for mean cut if we set a variable
nie to 0 in line 1 (where nie stores the size of IE); compute ie as above; insert
nie ← nie − 1 in line 12 and nie ← nie + 1 in line 14; and set M(p) to ie/nie

in line 21. In the case of the energy function, we substitute lines 4 and 5 by
ae ← ae + (1 − Rb(p)); compute ie as above; remove the computation of ai and
ae from lines 12 and 14; and insert ai ← ai+(1−Ro(p)) and ae ← ae−(1−Rb(p))
between lines 20 and 21. In line 21, we set M(p) to λ(ai + ae) + ie. Note that,
we can do the same for many other graph-cut measures (e.g., [2, 4, 9]).

4 Results and Evaluation

Figures 1d and 1e show that the cut boundary may contain multiple contours
due to “holes” (dark regions) inside the region map. The holes may be part of the
object (Figure 1e) or not (Figure 1d). This problem may occur in any graph-cut
segmentation approach. In our method, we close the holes in the resulting binary
image and consider only the external contour as object boundary. Some results
using the region maps of Figure 1 are presented in Figure 2 for normalized cut,
mean cut, and energy function. In the latter, we also used training pixels outside
the object to compute the background region map Rb of Equation 9.
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(a) (b) (c)

Fig. 2. Segmentation results where the seeds are indicated by dots, using (a) normalized
cut, (b) mean cut, and (c) energy function

Figure 3 shows the cut measure versus the pixel propagation order for mean
cut, normalized cut, and energy function using the region map of Figure 1d. In
the case of the energy function, we also created a background map and set λ to 80
in Equation 9. In all cases the IFT parameters are the same and the desired cut
occurs at order 13,340 of the reduced search space. However, it corresponds to the
minimum cut only for the energy function (Figure 3c). Mean cut and normalized
cut fail because of the weight assignment outside the object (Figures 3a–b). On
the other hand, both cut measures can work if we add more hard constraints,
such as limiting the search up to some propagation order o, for o < n and greater
than the object’s size (e.g., o = 0.7n in this case).

This shows that any approach to separate object and background using graph
cut is likely to require some hard constraints, because the problem can not be
simply reduced to finding a minimum of an objective function in the entire
search space. Since false-cut boundaries due to similarities between object and
background are very common in practice, we have chosen a real application
representing the worst case in this respect to evaluate our method.

4.1 Experiments for Evaluation

We have selected 6 images of archaeological fragments, similar to the one shown in
Figure 4a. In this application, the boundary of each fragment has to be perfectly
detected to reassemble the original object [17]. Thus, any failure in the detected
boundary is considered a segmentation error. The similarities between object and
background and touching fragments fail segmentation by thresholding.

The images have 512×384 pixels (n = 196, 608) and a total of 211 fragments.
We applied morphological operations to reduce internal noise, eliminate the grid
pattern in the background, and estimate one seed pixel inside each fragment. This
approach was able to find seeds inside 201 out of the 211 fragments automatically.
Therefore, our experiments consist of using the method to detect the boundary
of 201 seeded fragments in the filtered images.
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Fig. 3. The cut measure versus the pixel propagation order for (a) mean cut, (b)
normalized cut, and (c) energy function using the MR-brain image
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A suitable region map for each fragment would require seed selection on the
shadow region that appears on most fragments. Since this is impractical in an
automatic fashion, we decided to use dissimilarity and weight functions based
on differences of brightness, as usually done in graph-cut segmentation [5, 3, 7].

δ(p, q) = |f(p) − f(q)| (11)

w(p, q) = 1.0 − δ(p, q)
K

(12)

where f(p) is the brightness of pixel p and K is the maximum brightness value
in the filtered image. However, the region maps Ro and Rb were computed for
the entire image (taking into account that fragments and non-fragments have
dissimilar features) and used in the following energy function.

λ

⎛
⎝ ∑

∀p∈I

(1 − Ro(p)) +
∑
∀q∈E

(1 − Rb(q))

⎞
⎠ +

∑
∀(p,q)|p∈I,q∈E

α(p, q)w(p, q) (13)

where

α(p, q) =

⎧⎨
⎩

0 if Ro(p) > Rb(p) and
Ro(q) < Rb(q)

1 otherwise.
(14)

and λ = 40. Note that Equation 14 uses Ro and Rb to restrict the computation
of w(p, q) inside uncertainty regions, as suggested in [7].

Our strategy is to assign a distinct number for each seed, detect each frag-
ment separately, and label it with its corresponding number (see examples in
Figures 4b–c). Some fragments touch each other, but the algorithm can separate
them. When the algorithm fails, it usually outputs the union of two touching
fragments twice, one for each seed. This situation is automatically detected and
the fragments are separated by watershed transform restricted to their union [15].

The method with normalized cut correctly detected only 52 fragments
(25.87%). In order to confirm that this bad result was not due to the IFT,
we repeated the experiment with normalized cut and mean cut, but we limited
the search for the minimum-cut value up to order o = 0.05n. The method with
normalized cut correctly detected 104 (51.74%) fragments, while the method
with mean cut detected 190 (94.53%) fragments correctly.

We also performed the experiments with the energy function. In this case, the
method correctly detected 182 (90.50%) fragments. Although the number of cor-
rect detections was lower than using mean cut with o = 0.05n, we have observed
that energy functions are usually more robust than the other two cut measures,
when it is possible to devise a suitable normalization factor in Equation 9.

Finally, the mean running time to execute the method over images with 512×
384 pixels was 161 milliseconds, using a 2.8GHz Pentium IV PC.
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(a) (b) (c)

Fig. 4. Detection of archaeological fragments. (a) the original image. (b-c) Examples
of correct and incorrect detections.

5 Conclusion

We showed that the segmentation by graph cut usually requires hard constraints
to find the desired cut as minimum cut. We proposed a linear-time solution
where the desired cut is included in a reduced search space under certain hard
constraints applied to arc weight assignment and seed selection. We presented
and evaluated our method for three cut measures: normalized cut, mean cut and
an energy function.

The method requires proper weight assignment and/or more seeds inside the
object, such that the IFT can reproduce its boundary during the region growing
process. Under this condition, the problem is reduced to the sensitivity of the cut
measures with respect to the weight assignment outside the object. The experi-
ments evaluated this aspect in the worst case (i.e., when object and background
parts have similar image properties). Even so, the results show accuracy greater
than 90% for some cut measures. Therefore, we may conclude that our approach
is a significant contribution in graph-cut segmentation.

In interactive segmentation, the IFT allows competition among internal and
external seeds [18]. The combination of external seeds (to reduce the search
space) and cut measures (to reduce user intervention) may provide more effective
solutions than using [18, 7]. We are currently investigating this variant.
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