
Efficient and Flexible

Cluster-and-Search for CBIR

Anderson Rocha1, Jurandy Almeida1, Mario A. Nascimento2

Ricardo Torres1, and Siome Goldenstein1

1 Institute of Computing, University of Campinas – Brazil
{anderson.rocha, jurandy.almeida, rtorres, siome}@ic.unicamp.br

2 Department of Computing Science, University of Alberta – Canada
mn@cs.ualberta.ca

Abstract. Content-Based Image Retrieval is a challenging problem both
in terms of effectiveness and efficiency. In this paper, we present a flexible
cluster-and-search approach that is able to reuse any previously proposed
image descriptor as long as a suitable similarity function is provided. In
the clustering step, the image data set is clustered using a hybrid divisive-
agglomerative hierarchical clustering technique. The obtained clusters
are organized in a tree that can be traversed efficiently using the simi-
larity function associated with the chosen image descriptors. Our exper-
iments have shown that we can improve search-time performance by a
factor of 10 or more, at the cost of small loss in effectiveness (typically
less than 15%) when compared to the state-of-the-art solutions.

1 Introduction

There is a permanent demand for automatic tools to store, organize, browse, and
search collections of images, e.g., satellite imagery and commercial collections of
stock photography to name but a few. Content-Based Image Retrieval (CBIR)
systems aim at addressing these tasks. Arguably, the most challenging task
within the domain of CBIR still remains being able to minimize search/retrieval
time while keeping the effectiveness as high as possible.

In a typical CBIR system, images are processed and represented as metadata
— often an n-dimensional feature vector. In this process, different image descrip-
tors could be used (Sec. 3), depending on the image domain or the intended use
of the system. Oftentimes, the user is interested in searching for images similar
to a given query image. Thus, at query time CBIR is used to compare the meta-
data from the query image to the metadata of all images in the data set. The
searching process can be as simplistic as comparing the query image to every
other image in the data set, so-called a linear scan, or more sophisticated using
clustering or indexing structures.

In this paper, we focus on improving the search time aspect of a CBIR system
by employing a flexible cluster-and-search approach (Sec. 4). Towards this goal,
the main contributions of this paper are twofold:

1. We propose a hybrid clustering approach which alternates between agglom-
erative and divisive clustering paradigms.

2. We allow the use of any image descriptor to be used for the image metadata.

For the first point, we present a flexible Divisive-Agglomerative Hierarchical
Clustering (DAHC) technique. It combines features from both divisive and ag-
glomerative clustering paradigms in order to yield good quality clusters, which
are organized in a well-defined tree structure. At search time, only representa-
tive elements of clusters need to be compared to the query image, thus efficiently
pruning large portions of the tree, diminishing the number of required compar-
isons, and therefore reducing query time substantially.

The second point makes our proposed framework very flexible. DAHC does
not impose any restriction on the descriptor used. It only uses the set of elements
to be analyzed, which are not the images themselves but rather their extracted
features (metadata), along with a suitable similarity function.

Our experiments, using two real data sets and different image descriptors pre-
viously proposed in the literature, reveal that (1) our hybrid clustering technique
is more efficient and more effective than using either a divisive-hierarchical-only
or partitional-only clustering approach, and (2) it improves search time by up to
two orders of magnitude while incurring in a loss of effectiveness typically below
10% when compared to using the same image descriptors without clustering and
performing a full linear scan of the data set.

2 Related work

Data clustering algorithms can be partitional or hierarchical [6]. In this paper,
we rely on the latter. Hierarchical clustering strategies can be divided into two
basic paradigms: bottom-up agglomerative or top-down divisive. Agglomerative
strategies begin with each element as a separate cluster and merge them into
successively larger clusters. Divisive strategies start with one cluster and divide
it into new clusters. In both strategies, the process is recursively repeated for
each obtained cluster until some convergence criteria are reached.

The clustering paradigm can be used in different contexts such as unsuper-
vised learning [14] and dimensionality reduction in micro-array description [10].

In the past few years, some researchers have presented clustering techniques
for CBIR. Shyu et al. [8] have introduced a unified framework to facilitate
conceptual database clustering for CBIR using Markov model mediators. An-
tani et al. [1] have developed clustering techniques for hybrid text/image query-
retrieval for medical images. Malik et al. [5] have proposed a technique to over-
come problems of region growing algorithms such as seed point selection and
processing order. In their approach, the pixels are consecutively merged in or-
der to create representative clusters. In turn, Stehling et al. [11] proposed an
adaptive agglomerative clustering algorithm to segment images.

Bhatia [2] has introduced a hierarchical clustering technique for image data-
bases. However, this technique presents the undesirable requirement of changing

the way the images are physically stored thus breaking up the logical and phys-
ical data independence in the database.

Kinoshenko et al. [7] have proposed a technique to partition the image into
disjoint subsets. Their approach splits each query into representative subclasses
and finds the most similar stored subclasses to each part of the query. Notwith-
standing, the image classes need to represent a structural hierarchy, for instance
the relationship present in images of a car and its parts.

The main difference among previous approaches and ours is that we combine
both agglomerative and divisive strategies in order to obtain a hierarchical clus-
tering structure, and that it does not depend on the image metadata but only
on the predefined similarity function.

3 Image descriptors

CBIR relies on representing the images by some ideally compact and possibly
application-dependent metadata. The commonest metadata used in this domain
is based on the color feature, more specifically, its distribution over the images.
Next we review a few representative color-based image descriptors that have been
used elsewhere and which we use to illustrate the flexibility of our framework.

The simplest approach to encode the information present in an image is
the Global Color Histogram (GCH) [13]. A GCH is an ordered set of values,
one for each distinct color, representing the probability of a pixel being of that
color. This approach uses uniform quantization and normalization to reduce the
number of distinct colors and to avoid scaling bias. The L1 (City-block) or L2

(Euclidean) are the most used metrics for histogram comparison.
Pass et al. [9] have presented an approach to compare images based on color

coherence vectors (CCVs). They define color’s coherence as the degree to which
pixels of that color are members of large similarly-colored regions. These signif-
icant regions are refered as coherent regions. Coherent pixels are part of some
sizable contiguous region (connected components), while incoherent pixels are
not. After the image pixels are classified, two color histograms are computed:
one for coherent pixels and another for incoherent pixels.

Stehling et al. [12] have presented the border/interior pixel classification (BIC).
This approach relies on the RGB color-space uniformly quantized in 4×4×4 = 64
colors. After that, the image pixels are classified as border or interior. A pixel
is classified as interior if its 4-neighbors (top, bottom, left, and right) have the
same quantized color. Otherwise, it is classified as border. Next, two color his-
tograms are computed: one for border pixels and another for interior pixels.

4 DAHC

The Divisive-Agglomerative Hierarchical Clustering (DAHC) is a hybrid clus-
tering technique that relies on the combination of features from both divisive
and agglomerative clustering paradigms. This combination yields good-quality

clustering solutions with fewer computational operations. By constructing a tree
structure as a result of the clustering task, the method allows a substantial
reduction in the query processing time. This is possible because instead of per-
forming a linear scan of the data set, DAHC compares the query element only to
representative elements of clusters. Hence, a large number of otherwise potential
candidate answers need not be inspected at all.

Before we present the proposed technique, we introduce the notation used in
the same in Table 1.

Table 1. Symbol definitions.

Symbol Meaning

c, crep, cchild A cluster; a representative element of the cluster c; and a reference
to the lower level c in a hierarchy of clusters

Ci Set of clusters at the ith level
k The number of clusters for each clustering task
f ∈ [0, 1) The factor of re-clustering
Ei Set of elements under analysis at ith level
D A metric measuring the dissimilarities among elements in E

z The number of levels in a given hierarchy

Figure 1 shows an illustration of DAHC. At the beginning, we have E ele-
ments to be clustered. After the first iteration, we have the set of clusters C1

at the level 1 of the hierarchy with k clusters c1 . . . ck. Note that any cluster-
ing technique that can be parameterized to produce a given number of clusters
(k in this case) can be used in this step. Next, for each cluster ci in C1, we
find the ⌊f × k⌋ closest clusters to ci and combine them, creating a new set
of elements Eci

. This is the agglomerative step of our approach. We assume
that, by construction, each cluster has a representative image, thus, the notion
of closeness between clusters reduces to closeness between their representative
images. (The similarity function defined by a given image descriptor is used to
yield the notion of closeness.) For each of these sets Eci

, the same steps above

E

c1 c2 c3 ck

Ec1 Ec3 Eck

c11 c12 c1k c31 c32 c3k ck1 ck2 ckk

Fig. 1. A representation of DAHC.

are repeated generating the next level in the hierarchy of clusters with nodes
c11 . . . c1k . . . ck1 . . . ckk. We iterate this process while |Eci

| > k. Note that k is
an important parameter as it allows one to be more or less aggressive in the
agglomerative step, and it has a direct impact on the shape of the resulting tree.
Algorithm 1 formalizes the DAHC approach.

Algorithm 1 DAHC

Require: The number of clusters k, the re-clustering factor f ∈ [0, 1),the set of ele-
ments E, and a metric D;

1: function DAHC(k, f, E, D)
2: C ← Cluster(k, E, D) ⊲ Divisive step
3: for each c ∈ C do

4: C∗ ← ⌊f × k⌋ closest clusters of c ∈ C

5: E∗ ← {}
6: for each c∗ ∈ C∗ do ⊲ Agglomerative step
7: E∗ ← E∗ ∪ c∗

8: end for each

9: if cardinality(E∗) > k then ⊲ Deepening
10: cchild ← DAHC(k, f, E∗, D)
11: end if

12: end for each

13: end function

It should be clear now that DAHC employs both the divisive (in the first
step) and agglomerative approaches (in the second step), hence the hybrid na-
ture of our proposal. The function Cluster(k, E, D) can use any partitional
clustering method such as K-means or K-medoids [4]. The partitional algorithm
is responsible for finding the representative elements (crep) within each level and
at each cluster. Furthermore, we can use any similarity function supported by
the chosen clustering technique, which leads to the flexibility of our proposal.

In our implementation, we use the K-medoids as it is independent of the
metric space. K-medoids only needs a dissimilarity matrix between elements
while K-means requires an Euclidean-space dissimilarity metric. The metric-
space independence make DAHC truly flexible, and potentially applicable to
other domains besides CBIR.

Sometimes, depending on the data set, descriptor used, or even the technique
to find the cluster representatives, a hierarchical tree can be non-balanced. The
f and k factors together reduce the impact of a possible degenerate DAHC’s
tree. Greater values of k lead to lower and wider trees. Greater values of f

lead to deeper trees given that there will be more elements to cluster providing
more child nodes. Given that for each level, only the representatives need to be
compared to the query element, and that only some branches are chosen during a
retrieval, the possible DAHC’s tree unbalancing can be reduced using a properly
selected f and k combination.

Processing a query using the DAHC’s structure is rather simple. Given a
query image, we need to choose, at each level, the sub-tree that will be traversed.
This is done by comparing each cluster representative to the query and choosing
the one with highest level of similarity. Once the lowest level (leaf) of the tree
is reached, we sort the cluster representatives. Finally, we gather the elements
in each cluster using the sorted representatives until we complete the minimum
required number of elements in the retrieval.

Figure 2 illustrates a simple hierarchical structure obtained when using the
DAHC technique on 24 images of 8 classes (3 images per class) using the Corel
Photo Gallery. Each rectangle represents a group hierarchy C. Due to space
constraints, we show all nodes in the first level but the child nodes of only one
single first-level node, namely c5. The top image in each rectangle is the cluster
representative crep, and the images bellow constitute the set of elements in c.
Each inner rectangle represents a new level cchild.

c1 c2 c3 c4

c5

c51 c52 c53 c54 c55

c511 c512 c513 c514 c515 c541 c542 c543 c544 c545

Fig. 2. DAHC sample for 24 images and 8 classes.

Figure 3 depicts the method’s effectiveness for the toy example in Figure 2.
In (a), we show a query image Q and its top-3 results using the BIC descriptor
— the most effective one used in our experiments — and a linear scan. One can
clearly see that the rightmost image of the figure is not similar to the query. In the
DAHC’s structure, the wrong result R3 for the query Q in (a) is inserted in the
cluster c5. However, in the next level it is put in a separate cluster (c54), whose
representative is not similar to Q. Consequently that cluster is not investigated
and R3 is not retrieved as showed in (b). Note that using a similar reasoning
many other sub-trees are not traversed, thus speeding up query processing time.

We conclude by stating the following theorem, which leads to a corollary
regarding the finiteness of the DAHC construction.

Theorem 1. For any given branch in the DAHC tree, its leaf clusters, at some
point, will have less than M elements for any value of M > 1.

Q R1 R2 R3

(a) Linear scan retrieves wrong result R3.

Q R1 R2 R3

(b) DAHC retrieves all images correctly.

Fig. 3. Q top-3 results using the sample image set in Figure 2.

Proof. We have to show that there is a finite value z such that the number of
elements clustered at level z for a given branch, |Ez |, is less than M , where
M > 1. This means that, at some level of the tree, there will be less than the
M elements required to trigger a new clustering task within that branch.

The creation of new clusters and hence the deepening from a given branch is
controlled by the factor of re-clustering f . Given that f < 1, we have {c1, . . . , cj ,

. . . , ck} ∈ Ci, |cj| < |Ei|, i.e., the size of each generated cluster is always less
than |Ei| and where | · | denotes the number of elements.

Furthermore, we see that
∑k

j=1
|cj | = |Ei|, i.e., the sum of the number of

elements of all clusters in a tree branch is always equal to |Ei|. Therefore, we
generate the next level of the hierarchy, Ci+1, for the cluster cj selecting its
⌊f × k⌋ closest clusters. The number of selected clusters for a branch in the next
level, i+1, is always less than k given that f ∈ [0, 1), we have ⌊f × k⌋ < k. Thus

⌊f×k⌋∑

j=1

|cj | < |Ei| (1)

i.e., the sum of the elements for all selected clusters in the re-clustering stage
for branch cj is always less than the total number of elements to be clustered in
this level Ei. However, the number of elements to be clustered in the next level
branch is given by

|Ei+1| =

⌊f×k⌋∑

i=j

|cj |. (2)

From Equations 1 and 2, we have that |Ei+1| < |Ei|. From this equation and
the fact that at each new level |Ei+1| is, at least, one element less than in the
previous level, we have that there is a level z such that |Ez| ≤ M for any M > 1
which proves that the DAHC branch converges.

Corollary 1. DAHC method always converges in the number of clusters (width)
and in the number of levels (depth).

Proof. To prove DAHC convergence, we have to show that for every given cluster
of DAHC tree, the number of elements to be clustered will eventually be less than
the minimum required number of elements to trigger a new clustering task. We
have two possibilities: (1) the width convergence and (2) the depth convergence.

DAHC width is controlled by the function Cluster(k, E, D). As any parti-
tional clustering technique can be used in this step, if such approach converges

than DAHC converges in width. Partitional clustering techniques assume: (a)
k > 1 (i.e., the clustering only makes sense if there are, at least, two clusters);
(b) non-empty clusters; and (c) non-overlapping clusters (hard assignment)

They always converge to the solution either by stability or by a fixed number
of iterations [4]. As a consequence, DAHC always converge in width.

The depth convergence is readily derived from Theorem 1. From that theo-
rem, we have that for any given cluster in the DAHC tree, no matter its branches
depth, it converges. As the number of clusters is limited for each level (width
limit in f and k) it follows that the DAHC is finite, as we wanted to prove.

5 Experiments and Results

In this work, we have used the query-by-example (QBE) paradigm [3]. In QBE,
we provide a query image to the system and we expect in return images that are
similar to the given query image.

In our experiments, we use the set of image descriptors described in Section 3.
We compare DAHC to (1) a linear scan of the data set with no clustering,
(2) a partitional clustering technique (denoted by PC), and also (3) a divisive
hierarchical clustering technique (denoted by DHC). Note that the last one also
results in a tree that can be traversed at query time, similarly to what it is done
within the DAHC. Furthermore, all these four solutions can be equipped with
the similarity function provided along with the image descriptors, yielding 12
different combinations of image descriptors and cluster-and-search approaches.

We used two data sets. The first one comprises 1,624 images from Corel
Photo Gallery3 reported in [12]. This database contains 50 image categories and
is referred to as the Corel Relevant sets (RRSets). The second set is from the
FreeFoto collection4. It comprises 3,462 natural images divided into nine classes.

To assess the system effectiveness, we divide an image database into training
and testing sets. We perform 5-fold cross-validation in the evaluation process.
We repeat this process 10 times and provide average results. In the clustering
tasks, we use K-medoids technique [4]. In the cross-validation, we use the training
elements to build the tree and the testing elements to perform the retrievals.

We use the average Precision [3] metric to assess the retrieval effectiveness.
Precision is the ratio of the number of relevant images retrieved to the total
number of irrelevant and relevant images retrieved.

In the experiments, we have calculated the average Precision using the top
30 retrieved images. This represents the number of relevant images in the top
30 resulting images for each query. This value is an estimation of the number
of retrieved images an user would accept to inspect in order to determine their
relevance to his/her needs and it was previously reported in [12].

In this section, we present results for our method and provide comparisons to
the state-of-the-art approaches. PC stands for Partitional Clustering [4], DHC

3 http://www.cs.ualberta.ca/~mn/BIC/queries.html
4 http://www.liv.ic.unicamp.br/~undersun/pub/communications.html

stands for Divisive Hierarchical Clustering [4] and DAHC-f is our Divisive-
Agglomerative Hierarchical Clustering with factor of re-clustering f , denoted in
percentage values. In the experiments, we use values of k that are multiples of 5,
and we report results using f ∈ {5%, 10%, 20%}. High values of f lead to high
overload in the offline creation of the hierarchical structure. We provide results
for GCH, CCV, and BIC image descriptors. We show effectiveness loss and the
performance gain results with respect to the linear search over the entire data
sets using each of the image descriptors presented earlier.

Table 2 shows the reference values for the average precision and average
number of image comparisons to obtain the top 30 images for each query. Fig-
ures 4 to 6 show the (small) effectiveness loss and the performance gain results
for all clustering approaches (PC, DHC, and DAHC) with respect to the full
linear scan of the data sets.

(a) Average ptop30 for each image descriptor.

BIC GCH CCV

Corel RRSets 53.0% 41.8% 40.7%
FreeFoto 68.1% 55.3% 59.9%

(b) Number of image comparisons.

Corel RRSets FreeFoto

≈ 21, 000 ≈ 48, 000

Table 2. Reference values using a linear search.

Number of Clusters (k)

E
ff
ec

ti
v
en

es
s

lo
ss

w
rt

.
L
in

ea
r

S
ca

n
(%

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

2

4

6

8

10

12

14

16

18

20

20

22

24

26

40 60 80 100 120 140 160 180 200 220

Number of Clusters (k)P
er

fo
rm

a
n
ce

g
a
in

w
rt

.
L
in

ea
r

S
ca

n
(t

im
es

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0
5

10
15

20

20
25
30
35

40

40
45
50
55

60

60
65
70
75

80

80

100 120 140 160 180 200 220

(a) Corel RRSets data set.

Number of Clusters (k)

E
ff
ec

ti
v
en

es
s

lo
ss

w
rt

.
L
in

ea
r

S
ca

n
(%

)

Linear

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

2

4

6

8

10

12

14

20 40 60 80 100 120 140 160 180 200 220

Number of Clusters (k)P
er

fo
rm

a
n
ce

g
a
in

w
rt

.
L
in

ea
r

S
ca

n
(t

im
es

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

10

20

20
30

40

40
50

60

60
70

80

80
90

100

100
110

120

120
130

140

140
150

160

160
170

180 200 220

(b) FreeFoto data set.

Fig. 4. Effectiveness loss (left) and performance gain (right) for GCH descriptor.

Number of Clusters (k)

E
ff
ec

ti
v
en

es
s

lo
ss

w
rt

.
L
in

ea
r

S
ca

n
(%

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

2

4

6

8

10

12

14

16

18

20

20

22

24

26

28

40 60 80 100 120 140 160 180 200 220

Number of Clusters (k)P
er

fo
rm

a
n
ce

g
a
in

w
rt

.
L
in

ea
r

S
ca

n
(t

im
es

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0
5

10
15

20

20
25
30
35

40

40
45
50
55

60

60
65
70
75

80 100 120 140 160 180 200 220

(a) Corel RRSets data set.

Number of Clusters (k)

E
ff
ec

ti
v
en

es
s

lo
ss

w
rt

.
L
in

ea
r

S
ca

n
(%

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

2

4

6

8

10

12

14

16

18

20 40 60 80 100 120 140 160 180 200 220

Number of Clusters (k)P
er

fo
rm

a
n
ce

g
a
in

w
rt

.
L
in

ea
r

S
ca

n
(t

im
es

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

10

20

20
30

40

40
50

60

60
70

80

80
90

100

100
110

120

120
130

140

140
150

160

160
170

180 200 220

(b) FreeFoto data set.

Fig. 5. Effectiveness loss (left) and performance gain (right) for CCV descriptor.

Number of Clusters (k)

E
ff
ec

ti
v
en

es
s

lo
ss

w
rt

.
L
in

ea
r

S
ca

n
(%

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

2

4

6

8

10

12

14

16

18

20

20

22

24

40 60 80 100 120 140 160 180 200 220

Number of Clusters (k)P
er

fo
rm

a
n
ce

g
a
in

w
rt

.
L
in

ea
r

S
ca

n
(t

im
es

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0
5

10
15

20

20
25
30
35

40

40
45
50
55

60

60
65
70
75

80 100 120 140 160 180 200 220

(a) Corel RRSets data set.

Number of Clusters (k)

E
ff
ec

ti
v
en

es
s

lo
ss

w
rt

.
L
in

ea
r

S
ca

n
(%

)

Linear

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

2

4

6

8

10

12

20 40 60 80 100 120 140 160 180 200 220

Number of Clusters (k)P
er

fo
rm

a
n
ce

g
a
in

w
rt

.
L
in

ea
r

S
ca

n
(t

im
es

)

PC
DHC

DAHC-05
DAHC-10
DAHC-20

0
0

10

20

20
30

40

40
50

60

60
70

80

80
90

100

100
110

120

120
130

140

140
150

160

160

180 200 220

(b) FreeFoto data set.

Fig. 6. Effectiveness loss (left) and performance gain (right) for BIC descriptor.

Clearly, DAHC is more efficient and more effective than using either a divisive-
hierarchical-only or partitional-only clustering approach, and (2) it improves
search time by up to two orders of magnitude while incurring in small loss of
effectiveness (typically 5-15%) regardless the database and the image descriptors
when compared to the full linear scan of the data sets.

For instance, for the Corel RRSets database and using the BIC image de-
scriptor (Figure 6), DAHC, with factor of re-clustering f = 20% and k = 140
clusters, yields about 2.4% of effectiveness loss with respect to the full linear scan
of the database. However, this is a small loss when compared to its efficiency
gain. For this same configuration, DAHC is 20 times faster than the full linear
scan of the database and about 10 to 15 times faster than partitional clustering
or divisive hierarchical clustering approaches.

We have found that there is a trade-off between f and k in order to produce
good results (both in efficiency and effectiveness). On one hand, if we increase
k, i.e., the number of clusters, we increase the number of required operations
to perform a retrieval given that we have more representative elements to take
into account. On the other hand, if we increase the value of f , i.e., the factor of
re-clustering, we smooth the re-clustering stages and, consequently, improve the
overall effectiveness results. Nevertheless, if the value of f becomes higher, we
increase the offline overload when creating the hierarchical structure.

The values of f and k is strictly connected to the application. In our case,
we have found that f = 20% is a good trade-off for offline efficiency and online
effectiveness. In each stage, 70 < k < 140 is a good choice for k.

6 Conclusions

In this paper, we have presented a new flexible cluster-and-search approach for
Content-Based Image Retrieval that is able to reuse any previously proposed
image descriptor as long as a suitable similarity function is provided. For that,
we have proposed a Divisive-Agglomerative Hierarchical Clustering approach
(DAHC) that organizes the clusters in a tree that can be then traversed efficiently
using the similarity function associated with the chosen image descriptors.

We have provided several experiments showing that our technique is suitable
for CBIR and that it reduces the number of required operations to perform
a retrieval and still provides good effectiveness when compared to partitional
and divisive hierarchical clustering approaches and also to the full linear scan of
the data set. The small effectiveness losses are acceptable in practical situations
given the reduction by orders of magnitude in the number of required operations
in each retrieval task.

DAHC relies on the choice of two factors: the number of clusters k and the re-
clustering factor f . On one hand, if we increase k, we improve the effectiveness.
However, high values of k lead to more required operations in order to perform
a retrieval. On the other hand, high values of f improve the re-clustering stage
and the online efficiency. Notwithstanding, the greater f the greater the overload

in the offline creation of the hierarchical structure of the database. In addition,
we have provided a formal proof of DAHC’s convergence.

Finally, although not investigated in this work, it is conceptually possible
that DAHC can be used within other domains, such as textual information re-
trieval. Our future work include the application of our method for text retrieval
and indexing using the state-of-the-art text descriptors in the literature. Fur-
thermore, we intend to validate the method on a web-scale CBIR environment
such as one containing several thousands of images.

Acknowledgments

The authors thank the financial support of Fapesp (Grants 05/58103-3 and
05/52959-3), CNPq (Grants 301278/2004, 311309/2006-2, and 477039/2006-5),
Capes (Grant 01P05866/2007) and Microsoft EScience Project. Mario A. Nasci-
mento’s work has been partially supported by NSERC Canada.

References

1. S. Antani, R. Long, and G. Thoma. Content-based image retrieval for large biomed-
ical image archives. In MEDINFO, 2004.

2. S. Bhatia. Hierarchical clustering for image databases. In Intl. Conference on

Electro Information Technology, pages 6–12, 2005.
3. A. D. Bimbo. Visual Information Retrieval. Morgan Kaufmann, San Francisco,

CA, USA, 1 edition, 1999.
4. C. Bishop. Pattern Recognition and Machine Learning. Springer, 1 edition, 2006.
5. C. Thies, A. Malik, D. Keysers et al. Hierarchical feature clustering for CBIR in

medical image databases. In Medical Imaging, pages 598–608, 2003.
6. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-

mann, San Francisco, CA, USA, 1 edition, 2005.
7. D. Kinoshenko, V. Mashtalir, and E. Yegorova. Machine Learning and Data Mining

in Pattern Recognition, chapter Hierarchical Partitions for Content Image Retrieval
from Large-Scale Database. Springer, 2005.

8. M-L. Shyu, S-C. Chen, M. Chen et al. A unified framework for image database
clustering and CBIR. In MMDBS, pages 19–27, 2004.

9. G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors.
In ACMMM, 1997.

10. J. Seo and B. Shneiderman. Interactive Exploration of Multidimensional Microar-

ray Data: Scatterplot Ordering, Gene Ontology Browser, and Profile Search. Phd
thesis, University of Maryland, College Park, 2003.

11. R. Stehling, M. Nascimento, and A. Falcão. An adaptive and efficient clustering-
based approach for CBIR in image databases. In IDEAS, pages 356–365, 2001.

12. R. Stehling, M. Nascimento, and A. Falcão. A compact and efficient image retrieval
approach based on border/interior classification. In CIKM, pages 102–109, 2002.

13. M. J. Swain and D. H. Ballard. Color indexing. IJCV, 7(1):11–32, 1991.
14. W. Wu, H. Xiong, and S. Shekhar, editors. Clustering and Information Retrieval.

Kluwer, 2003.

