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Abstract—In this paper, we present an algorithm to detect
the presence of diabetic retinopathy (DR) related lesions from
fundus images based on a common analytical approach that
is capable of identifying both red and bright lesions without
requiring specific pre- or post-processing. Our solution constructs
a visual word dictionary representing points of interest (PoIs)
located within regions marked by specialists that contain lesions
associated with DR and classifies the fundus images based
on the presence or absence of these PoIs as normal or DR-
related pathology. The novelty of our approach is in locating
DR lesions in the optic fundus images using visual words that
combines feature information contained within the images in a
framework easily extendible to different types of retinal lesions
or pathologies and builds a specific projection space for each
class of interest (e.g. white lesions such as exudates or normal
regions) instead of a common dictionary for all classes. The
visual words dictionary was applied to classifying bright and red
lesions with classical cross-validation and cross dataset validation
to indicate the robustness of this approach. We obtained an AUC
of 95.3% for white lesion detection and an AUC of 93.3% for
red lesion detection using 5-fold cross-validation and our own
data consisting of 687 images of normal retinae, 245 images
with bright lesions, 191 with red lesions and 109 with signs of
both bright and red lesions. For cross dataset analysis, the visual
dictionary also achieves compelling results using our images as
the training set and the RetiDB and Messidor images as test
sets. In this case, the image classification resulted in an AUC
of 88.1% when classifying the RetiDB dataset and in an AUC
of 89.3% when classifying the Messidor dataset, both cases for
bright lesion detection. The results indicate the potential for
training with different acquisition images under different setup
conditions with a high accuracy of referral based on the presence
of either red or bright lesions or both. The robustness of the
visual dictionary against image quality (blurring), resolution,
and retinal background, makes it a strong candidate for diabetic
retinopathy screening of large, diverse communities with varying
cameras and settings and levels of expertise for image capture.

Index Terms—Red and Bright Lesion Classification, Hard
Exudate Detection, Hemorrhage Detection, Microaneurysm De-
tection, Diabetic Retinopathy, Diabetes Automated Screening,
Visual Dictionaries.

I. INTRODUCTION

D IABETIC retinopathy (DR) is the result of microvascular
retinal changes triggered by diabetes that can lead to a

complete loss of sight if not treated in a timely manner. Recent
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reports have shown that approximately 25 thousand people
with diabetes go blind every year in the US due to diabetic
retinopathy [1]. According to [1], in the US and Europe, DR
is the major cause of blindness for the economically active
population and, according to [2], it is estimated that DR is
responsible for 5% of all the world’s blindness cases.

Early diagnosis of DR and treatment [3] can prevent blind-
ness and therefore systematic screening (by specialists) of
diabetic patients is a cost-effective health care practice [4].
However, due to the large number of people that require
screening and annual reviews, an automated and accurate
screening tool is a useful adjunct in diabetes clinics. Currently
several highly accurate programs exist for automated detection
of specific DR-related lesions [5], [6], [7]. These algorithms
require different pre- and post-processing steps of the retinal
images depending on the lesion of interest as well as cor-
rections for resolution and color normalization to account for
images with different fields of view and ethnicity [8].

The presence of microaneurysms and dot hemorrhages (red
lesions) and/or hard exudates (bright lesions) are indicative of
early stage diabetic retinopathy. Figure 1(a) depicts one exam-
ple with the main retinal regions highlighted. Microaneurysms
are focal dilatations of retinal capillaries (Figure 1(b)) and have
an appearance similar to red dots in these images. Intra-retinal
lipid exudates (hard exudates) are caused by the breakdown of
the blood-retinal barrier, which leads to fluid rich in lipids and
proteins to leave the parenchyma, causing retinal edema and
exudation (Figure 1(c)). Finally, dot hemorrhages are similar
to microaneurysms but slightly larger and are found where
capillary walls weaken. These may rupture causing intraretinal
hemorrhages (Figure 1(d)).

Automated bright lesion detection has resulted in highly
accurate classification and has been discussed recently by [9],
[10], [11]. For automated red lesion detection similar high sen-
sitivity and specificity has been reported. The Iowa retinopathy
online challenge published results by five research groups
using different algorithms for pre- and post-processing and
detection of microaneurysms [12]. More recent results reported
by Niemeijer and colleagues including Giancardo et al. [5] and
the group led by Antal [6] have shown a further improvement.

Addressing the detection of multiple DR-related lesions,
Abràmoff and coworkers combined several different lesion-
specific detectors into a single automatic detection program
and suggested that a single algorithm that is able to identify
multiple lesions is required [9]. Bright and red lesions have
different image characteristics and therefore require different
pre- and post-processing making automatic multi-lesion detec-
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Fig. 1. The retina’s main regions as well as examples of DR-related
pathologies.

tion difficult in practice. A program that allows for multiple
lesions to be detected without requiring different processing
of the images is an important step forward in the development
of automatic retinal fundus assessment programs. Detecting
the presence of a specific lesion or multiple different lesions
offers a solution to improve the accuracy of detecting DR and
correctly classifying images for the presence of either specific
single lesions or combinations there off. Computer-based
feature detection has the advantage of being able to utilize
characteristics of images that do not necessarily correspond to
DR-related lesion characteristics but rather use features such
as colourisation of a region of interest [13] or discontinuities
in the image such as texture, color or boundaries [14].

In clinical practice, machine vision learning algorithms
have been applied for screening of diabetic retinopathy in the
southern United States using content-based image retrieval for
automated diagnosis [15]. This system achieves a sensitivity
of 94.8% and a specificity of 78.7% with an area under the
curve (AUC) of 95.3% but requires extensive pre- and post-
processing to differentiate between different stages of DR
progression and type of lesions. Web-based applications of
machine learning tools have also been investigated to enhance
the uptake of current automated technologies [16].

This paper introduces an algorithm that addresses several
of the above issues. The solution is based on a unified feature
detection and analysis framework that is capable of identifying
different DR-related lesions such as hard exudates and mi-
croaneurysms by correlating image specific features with the
presence of specific lesions without the necessity of pre- and
post-processing of images. The approach utilizes experts to
indicate regions of interest containing specific lesions and then
identifies points of interest within these regions that become
‘words’ within a visual dictionary. Our approach extends
previous work as it is independent of the image resolution,
color space representation and amenable to detect different
lesions other than just microaneurysms. Finally, our approach
does not rely on any ad-hoc parameter (e.g., Gaussian standard

deviations) nor does it assume any pre-specific size of the
lesions such as required by some of the current microaneurysm
detectors in the literature.

The visual word dictionary is based on measuring metrics at
the image level and does not follow a ‘decision-support tool’
approach, where the system is used to aid diagnosis, as it is
found in most of the current methods. The decision-support
approach requires pinpointing the location of each lesion to
allow the specialist to evaluate the image for diagnosis. In this
case, metrics based on the accuracy of detecting each type of
lesion is more relevant. Using a visual words dictionary as
the basis for a classification algorithm was inspired by the
computer vision and image processing literature [17], [18],
[19], [20], [21], where visual dictionaries and points of interest
are used as a basis for several applications such as image
retrieval and classification.

Section II presents state-of-the-art achievements for auto-
matic DR-related lesion detection. Section III introduces our
method. Section IV reports the experimental setup and the
classification results for different retinal datasets. Finally, Sec-
tion V concludes the paper and discusses some considerations
regarding directions for future work.

II. DETECTION OF DIABETIC RETINOPATHY LESION

A number of recent reviews on automatic retinal analysis,
with emphasis on DR lesion detection have described some of
the major research results in the area. Abràmoff et al. [22] is
a more general review in retinal image processing, while [23]
and [24] are more specific to DR.

Most of the techniques used for automatic DR lesion detec-
tion are based on specific segmentation or feature extraction
techniques developed for identifying each specific lesion.
These techniques have been achieving increasing accuracy
rates but normally a technique developed for the detection of
one kind of lesion cannot be directly used to detect another
kind. Fleming and colleagues recently reported combining red
and bright lesion detection by adapting their microaneurysm
detector to identify bright lesions but requiring separate pro-
cessing of the images depending on whether bright or red
lesions detection was required [11].

Detection of bright or red lesions also relies heavily on
color [25] and thus some color normalization is needed [8],
[5]. Detecting microaneurysms requires additional processing
to remove retinal blood vessels and the optic disc. Thus,
detection and removal of these structures is a necessary initial
step when single lesion detection is required. Many of the
automatic detectors also use feature size (in terms of pixels)
as a criterion [26], and thus, require pre-processing due to
confounding by image resolution of the absolute pixel size.
For these algorithms to function, training and test sets usually
have to have identical resolution for the algorithm to function
optimally. An interesting example is [27] which presents
a microaneurysm detector trained on different images for
detection in an optometry clinic.

Single lesion detectors may also be sensitive to fundus
images with white reflection that is present in retinae of the
young [27]. We refer the reader to the recent reviews [23]
and [24] for more details on these techniques.
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Including regions of interest for detection of lesions was
reported by Agurto et al. [28] and [26]. Agurto et al. used 120
regions of 40×40 pixels representative of four types of lesions
commonly associated with diabetic retinopathy (i.e., microa-
neurysms, exudates, neovascularization, and hemorrhages).
The regions were characterized using texture descriptors at
multiple scales (e.g., cumulative distribution functions of the
amplitude, frequency magnitude, and relative instantaneous
frequency angle). Similar to Agurto et al.’s approach the
method described in this paper also uses region characteriza-
tion and performs multi-scale analysis of the images. Our work
uses representative regions in the image to identify lesions and
creates a dictionary to capture common properties among such
regions [26]. The main differences to Agurto et al’s work is
how the regions are characterized and that our method does
not specify a specific size for any of the regions of interest.

III. VISUAL DICTIONARIES FOR DR DETECTION

In this paper, we present a solution to classify DR-related
lesions based on the concept of selecting features around
locally invariant interest points and visual dictionaries of
images. This paradigm uses a set of highly extensible feature
representations, and characterizes red and bright lesions in
the optic fundus images using visual words that incorporates
information provided by specialists in a framework easily
extendible to different types of retinal abnormalities.

Two fundamental differences to previous work is
that: (1) the method builds a specific projection space
for each class of interest (e.g., exudates or normal regions)
instead of using a common dictionary for all classes;
and (2) points of interest are only considered during training
if they fall within the regions in the fundus image highlighted
by the specialists rather than including all points of interest
within the fundus images when training.

Visual dictionaries constitute a robust representation ap-
proach as each image is treated as a collection of regions.
In this representation, the only important information is the
appearance of each region [18]. Dictionary ‘words’ are not in
the space of images (or patches of images), but at the space
of feature description of the ‘points of interest’ in the image,
with the points of interest (PoIs) located within the regions of
interest.

The objective when creating a visual dictionary is to learn,
from a training set of examples, the optimal representative
PoIs for a given problem. The dictionary must be large
enough to distinguish relevant differences between images but
not include irrelevant variations [29], [30]. Given a visual
dictionary, an image can be represented according to the visual
words it contains.

We can summarize the approach we introduce in this paper
for DR-related lesion detection into two phases: training and
detection. The training phase consists of learning the overall
behavior of the lesions of interest and what makes the images
with lesions different to normal images. The detection phase
consists of using the learned knowledge in an automatic
fashion for testing unknown images. Algorithm 1 presents the
main training steps, whilst Algorithm 2 shows the detection

procedure. The next sections present details about each step
of the approach described in the two algorithms.

Algorithm 1 DR-Pathology training procedure.
Input: a collection of image examples containing the DR-related

pathology of interest, Xp;
Input: a collection of control images (normal images with no

pathology), Xc.
1: experts mark regions of interest (RoIs) in Xp images;
2: Pp ← points of interest in Xp constrained by the located RoIs;
3: Pc ← points of interest in Xc constrained by the retina’s region;
4: Dp ← a representative dictionary for the set of points of interest

in Pp via K-Means clustering;
5: Dc ← a representative dictionary for the set of points of interest

in Pc via K-Means clustering;
6: D ← Dp ∪ Dc;
7: for each image Ii in Xp ∪Xc do
8: project its points of interest onto D creating a signature

vector fvi for each image;
9: end for

10: train an SVM classifier using all signature vectors fvi generating
the classification model MSVM able to differentiate normal
images from the DR-pathology of interest.

Algorithm 2 DR-Pathology detection procedure.
Input: the test image Ij
Input: the pre-computed projection dictionary D
Input: the pre-computed training model MSVM

1: calculate a bounding box of Ij to limit the analysis to its
retina’s region. This is performed by means of Hough Trans-
form [31];

2: Pj ← points of interest in Ij constrained by the bounding box
in previous step;

3: project the points of interest Pj onto the pre-computed dictionary
D creating signature fvj ;

4: classify fvj as normal or DR-pathology by means of the learned
model MSVM

A. Background

Identifying features around locally invariant interest points
was originally developed for large baseline correspondence
applications and has recently been a focus of intense research
for other applications. A few attempts have been made to apply
this model for image retrieval and classification [32], [19],
[20], [21], [33]

The points of interest approach is based on the hypothesis
that PoIs within an image convey more information than
other points and that every image in a collection can be
represented using a large number of PoIs. It is then possible
to calculate a local descriptor around each PoI, and store
these local descriptors in an indexing data structure [34].
Local descriptors computed around points of interest are more
robust in identifying subtle changes within images compared
to global descriptors [19], [20], [21]. The advantage of using
PoIs is that they can be robustly estimated, even if the image
suffers distortions as the major criterion of quality for a PoI
algorithm is repeatability [34]. Robustness of this kind might
be interesting in retinal imagery since small changes can
occur during different equipment setup, motion blur, and small
geometric distortions.
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Although the discriminative power of the PoIs is an ex-
tremely important attribute and advantageous to use when
searching for a specific target, they are less than optimal when
searching for complex categories as the ability to generalize
becomes paramount. Therefore alternative techniques com-
bined with PoIs are required. A solution is to apply the concept
of visual dictionaries, which considers the high-dimensional
descriptor spaces associated with the PoIs and finds the ones
that best represent the whole set of PoIs by means of a non-
supervised learning technique (e.g., clustering).

The biggest challenge for developing an accurate algorithm
is to design a good visual dictionary. The creation of the
dictionary requires the quantization of the description space
which is achieved using clustering approaches and including
the information provided by the expert.

B. Identification of Points of Interest

The protocol we devised and followed for our tests are as
follows. To detect bright or red lesions, the specialists mark
regions of interest within the retinal images considered as good
representatives of bright or red lesions. For normal/control
images, the entire retinal region represented in the image
can be considered a region of interest (RoI). On average 2-
5 regions of interest for each training image with a given
DR-related lesion are marked by the specialists. The training
stage then locates points of interest within all images. The
parameters are a good tradeoff between classification accuracy
and computation efficiency for finding good representative
points of interest.

PoIs are found at discontinuities within the image, being
either textural or containing some other boundary condition. It
is desirable to choose scale-invariant points of interest in order
to achieve a representation that is robust to possible image
transformations (e.g., rotations, scale, and partial occlusions).
There are several options for finding and characterizing points
of interest such as Speeded-Up Robust Features (SURF) [35]
and Scale-Invariant Features Transform (SIFT) [32]. Both
methods achieve high repeatability and distinctiveness. Em-
pirically, we determined that the results using SURF were
somewhat better than the ones using SIFT, therefore we
present only results with SURF.

Using SURF, each image in the training set generates a
series of PoIs as illustrated in Figure 2. All of these PoIs
are then filtered and only PoIs within the regions of interest
marked by the specialist are kept for further processing. In
Figure 2, only the points lying within the dashed RoIs are
kept. To cover the most important characteristics within an
image, a reasonable number of PoIs need to be used. We have
found that, normally, 1,000 PoIs per image is optimal within
3-5 regions of interest for the images with lesions. Once the
points of interest in an image are found, their neighborhoods
are characterized by means of a local descriptor.

In brief, SURF has two steps: detection of the points
of interest and description of these points. The detection is
based on multi-scale decomposition of the image using the
convolution of Gaussian second order derivatives within the
image, at different scales. The PoI characterization considers

a square region of radius 20s centered around the PoI, where s
is the scale on which the point was detected. This square region
is then split into regular smaller 4×4 square sub-regions and,
for each sub-region, the method computes a number of features
(sums and differences) at 5×5 regularly-spaced sample points.

The result of the SURF is a set of PoIs each one represented
in n-dimensions. In this paper, we use each PoI with n = 128
dimensions. For more details about SURF, we refer the reader
to [35].

Fig. 2. Points of Interest located by SURF (white circles) and the regions of
interest markings performed by a medical specialist (yellow dashed polygons).

C. Visual Dictionary
A database of training examples comprising positive images

(i.e., images with bright or red lesions present) and negative
control images (i.e., considered normal by specialists) is
created.

As described in Section III-A, SURF is a good low-level
representative feature detector. To preserve the discriminatory
power of such descriptors found by SURF whilst increasing
their generalization, the concept of visual dictionaries [30] can
be introduced.

After finding the PoIs, a dictionary representing distinctive
features of images with a specific lesion of interest as well
as images tagged as normal by specialists is created. An
important parameter for classification is the number of words
k in this dictionary. A k too low groups together too many PoIs
into the same visual word and looses the ability to distinguish
important information. A k too high memorizes the details of
the PoIs in the training set and looses its ability to generalize.
To achieve this, the clustering task is performed using the
k-means algorithm [36] and all PoIs in normal images are
clustered into k

2 groups, as are the PoIs in the region of
interest containing bright or red lesions. This results in a
dictionary with k words. Applying k-means clustering at this
stage ensures that the visual dictionary has the same number of
normal and DR-related lesion words. However, it is not a strict
requirement to have the same number of words for control and
DR-related lesions. We have experimental results showing that,
for some lesions, other proportions may be better. However,
in this paper we focused on a 50%-50% proportion. We
empirically found the dictionary sizes considering a tradeoff
between classification accuracy and computational efficiency.
However, we can employ automatic approaches such as [37]
for this task.
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After creating the visual word dictionary, each of the
remaining PoIs within the regions of interest in the training
images are assigned to the closest visual word of the dictionary
using a process called projection or quantization [34], [17]. At
the end of the quantization process, each image is represented
by a signature or histogram of the visual words it contains,
which is the input to a machine learning classifier in the last
stage. Formally, the quantization performs a hard assignment
(each PoI is attributed to the closest visual word in the
dictionary) and the aggregation function is the sum [34] (once
a PoI is matched to a visual word the corresponding entry in
the signature is increased by one).

Figure 3 depicts two examples of typical signatures found
for images with and without lesions and provides an indication
of the discriminative power of the proposed approach. Each
plot shows a typical signature for normal images vs. images
with either bright or red lesions. The typical signature for
images showing bright and red lesions is calculated based on
averaging out all the signatures of a training set (DR1 in this
case, see Sec. IV-A).

(a) Bright lesions.

(b) Red lesions.

Fig. 3. Typical signatures for images showing bright and red lesions
calculated based on averaging out all the signatures of the training set
considering the average of a 5-fold cross-validation procedure for DR1
dataset (c.f., Sec. IV-A).

Specifically, each plot depicts 100 ‘visual words’ and their
frequency in the training set. Positions 1-50 represent lesion-
based visual words (e.g., bright or red lesions in this case)
whilst positions 51-100 represent words for the normal re-
gions. For positions 1-50, it is expected that the visual words
associated with lesions dominate (i.e., have a higher frequency

of occurrence) the normal visual words whilst the opposite is
the case for positions 51-100.

To perform the final classification, a two-class machine
learning classifier such as Support Vector Machine (SVM) was
selected [36]. For training the classifier, the signature vectors
of the training images containing examples of images with
a given lesion and normal/control images are fed into the
classifier. To test a new image, its points of interests are located
and projected onto the pre-computed dictionary to create its
signature vector, which forms the input to the trained classifier.
However, some points of interest may lie outside the retinal
boundary of the image. Therefore, before the quantization,
the points of interest lying within the retinal boundary are
identified by calculating a binary mask of the image using a
pixel thresholding procedure and then calculating the Hough
transform [31] of the resulting binary mask. Other possible
algorithms could be used but the Hough Transform is simple
and fast. The rationale for its use is that the binary mask of a
retinal image can contain several image portions not related to
the retina. The Hough Transform then finds the best circle that
encompasses the retina. Figure 4 shows an example of a retinal
image, its binarization, and the resulting Hough Transform
delimited retinal portion.

Figure 5 summarizes the sequence of steps of the proposed
approach (training and detection) and illustrates what we
discussed earlier in Algorithms 1 and 2.

IV. EXPERIMENTS AND VALIDATION

In this section, we present the experimental methods and
results we used to validate the approach. The experiments are
divided into two parts:

• Part #1. Experiments for identifying the optimal number
of words representing the classification dictionary using
the DR1 dataset described below. Here we use a cross-
validation protocol dividing the DR1 dataset into 5 folds.
The SVM parameters are tunned to the training examples
(four out of the five folds) and that parameterization is
used on the remaining (not used) fold. As this refers to
a 5-fold cross-validation protocol, each time the testing
fold changes, the parameters are recalculated on the
appropriate training sets.

• Part #2. Experiments using cross dataset classification
based on the visual word dictionary approach. Here, we
use the a cross-database validation protocol in which we
train on DR1 images and test on RetiDB and Messidor.
The SVM is tunned on all examples in the DR1.

No pre- or post-processing was undertaken prior to training
and classification. All experiments use SURF with 128 dimen-
sions for finding the points of interest and SVM as the final
classification method. The results are reported as ROC curves.
In both experiment sets, the SVM parameters are found using
the standard LibSVM’s grid search fine tuning algorithm [38].

A. Experiments – Part #1

The first part of our experiments was conducted using
the DR1 dataset from the Ophthalmology Department of the
Federal University of São Paulo, collected during 2010. The
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Fig. 4. Constraining the analysis of normal retina image using Hough Transform. (a) Original image. (b) Its binarization. (c) The result of a Hough Transform
to delimit the retina’s region.
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Fig. 5. Sequence of steps for classifying DR lesions (e.g., bright or red lesions) from fundus images.

images are clinical images from all retinal patients of the
department, including a diverse range of patients.

The DR1 dataset comprises 1,014 images with an average
resolution of 640 × 480 pixels, (687 are normal retinae,
245 images contain bright lesions, 191 contain red lesions
and 109 contain signs of both bright and red lesions). All
of the images in the DR1 dataset were manually annotated
for DR- related lesion (presence/absence) by three medical
specialists. For each image, the specialist tags the image as
having or not having bright or red lesions. All of the images
in which the three agree were kept in the final dataset. The
regions of interest (RoIs) were marked on some of the images
with red, bright or both lesions by a single ophthalmologist
with five years of experience. The expert draws a boundary
surrounding the lesion(s) and thus creates a region of interest
in the digital training images (see Figure 2). The images
were captured using a TRC50X (Topcon Inc., Tokyo, Japan)
mydriatic camera with maximum resolution of one megapixel
and a field of view (fov) of 45 degrees. This dataset is publicly
available1 and adds to currently existing images [39], [40].

In the first part of the experiments, we explored the impor-
tance of how the number of words considered to characterize
each lesion in the creation of the dictionary influences the

1http://www.recod.ic.unicamp.br/site/asdr/

outcome of the detector. We also investigated how changing
the discriminatory power of the SURF points of interest, that
is the space surrounding the PoIs influenced the classification
outcome and determined empirically that the characterization
of points of interest containing 128 orientations is more
effective than using 64 orientations. A possible reason for
this can be that discontinuities associated with lesions have
a higher number of subtle characteristics that require more
orientations to be captured. The results of training the classifier
using the DR1 dataset are based on the average of a 5-fold
cross-validation procedure (five independent evaluations of the
full algorithm using at each time one fold as test and the
remaining four as training).

Figure 6 shows the ROC classification results for images
with bright and red lesions with the best and worst dic-
tionary sizes. For bright lesions, the best-performing dictio-
nary size consisted of 500 words (250 bright lesions-based
words plus 250 normal-based words) with a corresponding
AUC = 95.3%. For reference, at 90% sensitivity, the system
achieves 87% specificity. The worst performing dictionary size
was 50. For red lesions, the differences among the different
dictionary sizes are not as significant, but nevertheless, the
best performing dictionary has 200 words (100 for lesion-
based words and 100 for normal), with a corresponding
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AUC = 93.3%. For reference, at 90% sensitivity, the system
achieves 83% specificity.

Fig. 6. Clasification results for images showing bright and red lesions using
visual dictionaries. Experiments were performed with 5-fold cross validation
using the DR1 data set. The two ROC curves for red and bright lesions
represent the best and worst choices for the dictionary size. AUC = 95.3%.
for bright lesions, AUC=93.3% for red lesions

In the case of bright lesion classification, there is a large
difference between the characterizing PoIs for bright lesion
and non-lesion structures and a 500-word, being a sparse large
dictionary, is able to best capture the characteristics associated
with white lesions. On the other hand, for red lesions and
some non-lesions, the PoIs are more difficult to differentiate,
which means a small and dense (200-word) dictionary is more
appropriate since the visual words quantified is the main factor
that distinguishes among these.

B. Experiments – Part #2

The second part of our experiments consisted of cross
dataset classification. The experiments were conducted using
the DR1 dataset as the training data and the RetiDB and
Messidor datasets as the testing datasets. The dictionary size
was fixed based on the outcome of experiments in Part #1.

The RetiDB2 dataset contains 22 normal images, 71 images
tagged as having bright lesions and 106 tagged as having red
lesions. The images are in 1, 500×1, 152-pixel resolution. An
image can be normal or contain either bright, red, or both
lesions.

The Messidor3 dataset contains 1,200 images with three
resolutions (1, 440 × 960, 2, 240 × 1, 488, or 2, 304 × 1, 536
pixels). The images are tagged by specialists according to:

1) Risk of macular edema: whether or not the image con-
tains hard exudates. It comprises three groups, G0,1,2.
G0 contains images with no visible exudates and G1,2

contain images with exudates. For our experiments, we
used all the images in these three groups. Groups G1

and G2 together contain 226 images.
2) Retinopathy grade: grading was performed with respect

to the presence of red lesions. The grading resulted in

2http://www2.it.lut.fi/project/imageret/diaretdb1/
3http://messidor.crihan.fr

four groups (Risk1,2,3 and normal images). We consid-
ered the normal images and the Risk2 and Risk3 images
only, which contain examples of, at least, five microa-
neurysms or at least one hemorrhage spot. The Risk2 and
Risk3 groups contain 247 and 254 images, respectively.
Currently, our approach still does not classify images
with less than five spots of MAs. Therefore we did not
include Risk1 in this paper.

The normal group contains 546 images with no lesions.
During training, the parameters of the SVM were automati-

cally determined using the standard LibSVM’s grid search fine
tuning algorithm [38] on the DR1 images only. The best SVM
parameters were: SVM regularizer C = 32.0 and the kernel
RBF parameter γ = 0.0078125 for the bright lesion classifier.
For the red lesion classifier, C = 8.0 and γ = 0.03125.

Figure 7 shows the cross dataset classification results for
images with bright and red lesions for RetiBD. For bright
lesion detection, our approach used a dictionary with 500
words and resulted in an AUC = 88.1% with images from
the RetiDB dataset. For comparison purposes, [41] provides
results using the RetiDB dataset for training and classification.
The authors reported a 70%/99% sensitivity/specificity result.
For this level of sensitivity, our approach results in 85%
specificity. However, in our case the training data does not
include any images from RetiDB. For red lesions, our method
achieved an AUC = 76.4%. For reference, at 90% sensitivity,
the cross dataset method yielded a 60% specificity.

Fig. 7. Cross training-testing classification results for images showing bright
and red lesion classification. Training with the DR1 dataset and testing over
the RetiDB dataset. AUC = 88.1% for bright lesions and AUC=76.4% for red
lesions.

Figure 8 depicts the classification results for Messidor im-
ages showing bright lesions, and three results for red lesions:
the result for Risk2 and Risk3 separated, and the union of
both sets. For bright lesions, AUC = 89.3%, and for a 90%
sensitivity the result was a 64% specificity. For red lesions,
AUC = 86.2%, 63.3% and 72.2% for Risk3 alone, Risk2 alone,
and both combined.

The results for red lesions show a negative characteristic of
our method — it is somewhat sensitive to the number of red
lesions, and images with a low number of red lesions are not
detected as such. We are currently exploring two alternatives
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Fig. 8. Cross dataset training-testing classification results for images showing
bright and red lesions classification. Training with the DR1 dataset and testing
over the Messidor dataset. AUC = 89.3% for bright lesion and AUC=86.2%,
63.3% and 72.2% for Risk3 alone, Risk2 alone, and both combined.

to explain this limitation, and correct it. The first explanation
is that the PoI detector in SURF is not detecting most of the
points relevant to detection of the red lesion (microaneurysms,
MAs). Indeed, the PoI in SURF uses discontinuities to mark a
point as interesting, and sometimes MAs are not too different
to their surroundings — and that is why they are so hard
to detect. If this explanation is correct, then there are two
alternatives to improve the results for a low number of MAs:
either pre-processing the image so that MAs become more
discontinuous from their surroundings, and thus more likely
to be detected by SURF, or dropping SURF’s point detection
itself and performing a more dense sample of the retina,
following the method used by Li and Perona for general scene
categorization [29].

The alternative explanation is that the points are being
detected, but they are too few that their influence on the image
signature is too small to be detected by the learning method
(SVM). A solution to the problem is to alter the quantization
step. The current quantization is a hard assignment with sum
aggregation. There are alternatives of soft assignment (each
PoI is attributed to all visual words inversely proportional to
its distance) and the aggregation using the max function (each
entry remembers only the largest PoI attribution).

V. CONCLUSIONS

Automated screening algorithms need to be accurate in
detecting lesions, identifying the type of lesions, be easily
applied across diverse populations and the use of different
image capturing equipment. Locating precisely a specific le-
sion necessitates extensive pre- and post-processing of images.
In addition, similar acquisition conditions are often needed for
good performance. This is not often possible in large screening
programs and processing centers, where local screening pro-
grams often use different technology, have varying expertise in
image capture and consist of diverse ethnic groups. Therefore
an automated method needs to be robust against these con-
ditions. The approach described in this paper addresses these
issues by being able to identify the presence of specific lesions.

The objective of this paper was to describe a solution for
detecting different lesions (a task that normally require differ-
ent pre-processing depending on the lesion) without deploying
any pre- or post-processing operations. We introduced a visual
word dictionary-based approach that applies points of interest
and visual dictionaries for classifying bright or red lesions
found in optic fundus images.

The main requirement of the method was to use a training
set where ophthalmic specialists have marked regions of
interest within the retinal image that contain the lesion. The
approach automatically calculates points of interest that are
representative and highly distinctive of such regions and, at the
same time, are scale-invariant and robust to some image trans-
formations. The method builds a powerful visual dictionary
upon the points of interest. After the projection of the points of
interest of a test image onto the dictionary (projection) space,
the method uses a machine learning classifier to point out the
classification of such an image.

The novelty of our approach is in the characterization of
lesions using visual words that incorporate information such
as texture and boundary discontinuities with the specialists’
knowledge in a framework easily extendible to different types
of DR-related lesions. The approach also extends the cur-
rent state-of-the-art dictionary-based classification techniques
(e.g., [17], [18], [19], [20], [21]) by building a specific
projection space for each lesion of interest (e.g., normal, bright
or red lesions) instead of a common dictionary for all types of
lesions. This has the advantage of correctly capturing the sub-
tleties of the lesion of interest and avoiding areas of the image
dominating the calculus where no lesions are present as is the
case for the majority of images. Finally, the incorporation of
regions of interest as defined by the specialists, which then
define the boundaries within which the points of interest are
located into the dictionary calculus is also innovative. Current
state-of-the-art dictionary-based classification techniques tend
to find points of interest anywhere in the training images and
not within specific regions of interest.

We validated the proposed approach with a series of exper-
iments on publicly available datasets of retinal images. Our
work adds to previous reports using cross dataset training,
which is an important area of research and an important
component in clinical practice where classifiers can not always
be trained on an identical image set (same camera, resolution,
operator, FOV) that needs to be classified.

The best results were achieved using SURF, for the detection
and description of the points of interest and a visual dictionary
with 500 visual words for images showing bright lesions
and 200 visual words for images showing red lesions. The
approach achieved results comparable to those in the literature.
However comparing our results for classification of bright or
red lesions directly is difficult as our classifier classifies the
images as having signs of specific lesions and accuracy is not
determined by identifying the correct location.

By focusing on the goal of image-based metrics, as opposed
to DR-related lesion detection per se, the method is able to
learn what images containing the lesion ‘look like’ (based on
the quantity and distribution of the visual words in the image)
instead of detecting the lesion in the image itself.
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The visual dictionary is an elegant method to learn and
represent important features of a specific lesion, and allows
classifying whether or not an image contains these lesions with
a unified approach. This approach is independent of the image
resolution, color space representation, and does not assume
any specific size of the lesions. Furthermore, the approach
is robust across differences in the appearance of the lesions
and the retina across different ethnicities. In [14], we report
the result of applying this technique on Australian aboriginal
cases, with better results than any other approach published.

Cross-dataset learning — training of one dataset to test the
performance on an entirely different dataset — is the ultimate
test to expose the weaknesses and robustness of a method.
As we report here, it showed us that there is still some room
for improvement and adjustment on the deployment details of
our approach. We strongly believe the community as a whole
should adopt this validation procedure from now on.

A. Future work

This paper has shown how to construct detectors for two
of the most common lesions in DR. The work continues
in three different directions. As mentioned, the red lesion
detector is still dependent on the number of spot signs in the
images. We are currently exploring the alternatives discussed
in Section IV-B – pre-processing the image, dense SURF, and
soft quantization with max aggregation [34].

On the other hand, it is possible that even a combination of
techniques will not be enough to detect a very small number
of microaneurysms. However retinae with fewer than three
microaneurysms have a higher disappearance rate compared
to retinae with four or more aneurysms. This suggests that
identification of five microaneurysms can be seen as the stage
where a referral is necessary [42], [43]. Our results are in line
with current clinical practice as the Wisconsin work was based
on seven-field ETDRS criteria and the UK Prospective study
on four retinal fields while current automated screening uses
one or two retinal views (foveal field and optic disc centered).
Microaneurysms outside of the foveal field are not immedi-
ately sight threatening and only 50% of microaneurysms were
within this region reported by Klein et al. [44]. A plausible
conclusion is that, for screening purposes, detection of less
than five microaneurysms is not that useful4.

The second direction of future research involves the de-
velopment of an automatic DR screening system, that can
detect the presence of many abnormalities related to DR. Thus
we are developing detectors for other lesions (cotton wool
spots, drusen, superficial hemorrhage, neovascularization) and
defining a way to combine the output of each of these detectors
into a single decision on whether or not the patient should be
referred to a specialist and the level of disease progression.
The development of other detectors follows in part the steps
laid down by the two detectors described herein — detecting
PoIs, mapping them to visual words and learning a classifier to
distinguish the different histograms. However, not all forms of
lesions are equally amenable to such approach — and some of
them may require some changes to the process. For example,

4Personal Communication, Allan Luckie, Albury Eye Clinic, Australia.

neovascularization suffers the problem of not having highly
discontinuous points to be detected by SURF, and thus we are
following the dense traditional SURF approach in such cases.

The third direction of future research is how to combine the
results of each of the detectors. In principle, the combination
is simple if any detector identifies a lesion, the patient should
be referred to the specialist. This is what we call an OR-rule.
Figure 9 presents the result of using the OR rule for red and
bright lesion fusion. The figure shows the average of a 5-
fold cross-validations using the DR1 data. The combination
of detectors has a promising AUC of 95.2. But we can go
beyond the OR-rule. The SVM classifiers used in the detectors
may return not just the class to which the image belongs to,
but some measure of distance of that image to the boundary
region. Thus we can use this information to combine the results
in other ways. For example, if all identify that the image is
normal but with a low certainty of that determination (this may
be the case if there are dust particles captured in the image
during photography), it might be prudent to refer the patient
to the specialist. We are currently exploring some of these
alternatives to combine the output of each detector.

Fig. 9. Results with combining the two detectors with an OR. The average
result of a 5-fold cross validation on DR1 alone. The images are only the
ones in DR1 where either bright or red lesions were detected. AUC=95.2%
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“Retinopathy online challenge: automatic detection of microaneurysms
in digital color fundus photographs,” IEEE Transactions on Medical
Imaging, vol. 29, no. 1, pp. 185–195, 2010.

[13] H. F. Jelinek, K. Al-Saedi, and L. Backlund, “Computer assisted
top-down assessment of diabetic retinopathy,” in World Congress of
Biophysics and Biomedical Engineering, 2009, pp. 127–130.

[14] H. F. Jelinek, A. Rocha, T. Carvalho, S. Goldenstein, and J. Wainer,
“Machine learning and pattern classification in identification of indige-
nous retinal pathology,” in Intl. Conference of the IEEE Engineering in
Medicine and Biology Society, 2011, pp. 5951–5954.

[15] Y. Li, T. P. Karnowski, K. W. Tobin, L. Giancardo, S. Morris, S. E.
Sparrow, S. Garg, K. Fox, and E. Chaum, “A health insurance porta-
bility and accountability act-compliant ocular telehealth network for the
remote diagnosis and management of diabetic retinopathy,” Telemedicine
and e-Health, vol. 17, no. 8, pp. 627–634, 2011.

[16] A. Ruggeri, E. Poletti, D. Fioroin, and L. Tramontan, “From laboratory
to clinic: the development of web-based tools for the estimation of retinal
diagnostic parameters,” in Intl. Conference of the IEEE Engineering in
Medicine and Biology Society, 2011, pp. 3379–3382.

[17] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval Approach
to Object Matching in Videos,” in IEEE Intl. Conference on Computer
Vision, 2003, pp. 1470–1477.

[18] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned
universal visual dictionary,” in IEEE Intl. Conference on Computer
Vision, 2005, pp. 1800–1807.

[19] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” Intl. Journal of Computer Vision, vol. 60, no. 1, pp. 63–86,
January 2004.

[20] E. N. Mortensen, H. Deng, and L. G. Shapiro, “A SIFT descriptor
with global context,” in IEEE Intl. Conference on Computer Vision and
Pattern Recognition, 2005, pp. 184–190.

[21] M. F. Demirci, A. Shokoufandesh, Y. Keselman, L. Bretzner, and
S. Dickinson, “Object recognition as many-to-many feature matching,”
Intl. Journal of Computer Vision, vol. 69, no. 2, pp. 203–222, 2006.

[22] M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and
image analysis,” IEEE Reviews in Biomedical Engineering, vol. 3, pp.
169–208, 2010.

[23] R. Winder, P. Morrow, I. McRitchie, J. Bailie, and P. Hart, “Algorithms
for digital image processing in diabetic retinopathy,” Computerized
Medical Imaging and Graphics, vol. 33, pp. 608 – 622, 2009.

[24] O. Faust, R. Acharya, E. Y. K. Ng, K.-H. Ng, and J. S. Suri, “Algorithms
for the automated detection of diabetic retinopathy using digital fundus
images: A review,” Journal of Medical Systems, p. Published online
before print, 2010.

[25] H. Wang, W. Hsu, K. G. Goh, and M. L. Lee, “An effective approach
to detect lesions in color retinal images,” in IEEE Intl. Conference on
Computer Vision and Pattern Recognition, 2000, pp. 181–186.

[26] B. Zhang, K. Karray, L. Zhang, and J. You, “Microaneurism (MA)
Detection via Sparse Representation Classifier with MA and Non-MA
Dictionary Learning,” in Intl. Conference on Pattern Recognition, 2010,
pp. 277–280.

[27] H. F. Jelinek, M. J. Cree, D. Worsley, A. Luckie, and P. Nixon, “An
automated microaneurysm detector as a tool for identification of diabetic
retinopathy in rural optometric practice,” Clinical and Experimental
Optometry, vol. 89, pp. 299–305, 2006.

[28] C. Agurto, V. Murray, E. Barriga, S. Murillo, M. Pattichis, H. Davis,
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