
Subhash Suri UC Santa Barbara

Multi-Dimensional Data

Q

X

Y

• Range searching in higher dimensions?

• kD-trees [Jon Bentley 1975]. Stands for
k-dimensional trees.

• Simple, general, and arbitrary
dimensional. Asymptotic search
complexity not very good.

• Extends 1D tree, but alternates using x-
y-coordinates to split. In k-dimensions,
cycle through the dimensions.

Pedro J. de Rezende




Subhash Suri UC Santa Barbara

kD-Trees

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

Subdivision Tree structure

• A binary tree. Each node has two values:
split dimension, and split value.

• If split along x, at coordinate s, then left
child has points with x-coordinate ≤ s;
right child has remaining points. Same for
y.

• When O(1) points remain, put them in a
leaf node.

• Data points at leaves only; internal nodes
for branching and splitting.



Subhash Suri UC Santa Barbara

Splitting

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

Subdivision Tree structure

• To get balanced trees, use the median
coordinate for splitting—median itself can
be put in either half.

• With median splitting, the height of the
tree guaranteed to be O(log n).

• Either cycle through the splitting
dimensions, or make data-dependent
choices. E.g. select dimension with max
spread.



Subhash Suri UC Santa Barbara

Space Partitioning View

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

Subdivision Tree structure

• kD-tree induces a space subdivision—each
node introduces a x- or y-aligned cut.

• Points lying on two sides of the cut are
passed to two children nodes.

• The subdivision consists of rectangular
regions, called cells (possibly unbounded).

• Root corresponds to entire space; each
child inherits one of the halfspaces, so on.

• Leaves correspond to the terminal cells.

• Special case of a general partition BSP.



Subhash Suri UC Santa Barbara

Construction

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

Subdivision Tree structure

• Can be built in O(n log n) time recursively.

• Presort points by x and y-coordinates, and
cross-link these two sorted lists.

• Find the x-median, say, by scanning the x

list. Split the list into two. Use the
cross-links to split the y-list in O(n) time.

• Now two subproblems, each of size n/2,
and with their own sorted lists. Recurse.

• Recurrence T (n) = 2T (n/2) + n, which
solves to T (n) = O(n log n).



Subhash Suri UC Santa Barbara

Searching kD-Trees

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
5

p
8

p
3

p
4

p
6

p
7

p
9

p
10

Nodes visited in searchThe range

• Suppose query rectangle is R. Start at
root node.

• Suppose current splitting line is vertical
(analogous for horizontal). Let v, w be left
and right children nodes.

• If v a leaf, report cell(v) ∩R;
if cell(v) ⊆ R, report all points of cell(v);
if cell(v) ∩R = ∅, skip;
otherwise, search subtree of v recursively.

• Do the same for w.

• Procedure obviously correct. What is the
time complexity?



Subhash Suri UC Santa Barbara

Search Complexity

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
5

p
8

p
3

p
4

p
6

p
7

p
9

p
10

Nodes visited in searchThe range

• When cell(v) ⊆ R, complexity is linear in
output size.

• It suffices to bound the number of nodes v

visited for which the boundaries of cell(v)
and R intersect.

• If cell(v) outside R, we don’t search it; if
cell(v) inside R, we enumerate all points in
region of v; a recursive call is made only if
cell(v) partially overlaps R; the kD-tree
height is O(log n).

• Let � be the line defining one side of R.

• We prove a bound on the number of cells
that intersect �; this is more than what is
needed; multiply by 4 for total bound.



Subhash Suri UC Santa Barbara

Search Complexity

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
5

p
8

p
3

p
4

p
6

p
7

p
9

p
10

Nodes visited in searchThe range

• How many cells can a line intersect?

• Since splitting dimensions alternate, the
key idea is to consider two levels of the
tree at a time.

• Suppose the first cut is vertical, and
second horizontal. We have 4 cells, each
with n/4 points.

• A line intersects exactly two cells; the
others cells will be either outside or
entirely inside R.

• The recurrence is

Q(n) =
�

1 if n = 1,
2Q(n/4) + 2 otherwise.



Subhash Suri UC Santa Barbara

Search Complexity

p
7

p
6

p
4 p

5

p
9

p
10

p
1

p
8

p
2

p
3

p
1

p
2

p
5

p
8

p
3

p
4

p
6

p
7

p
9

p
10

Nodes visited in searchThe range

• The recurrence Q(n) = 2Q(n/4) + 2 solves
to

Q(n) = O(
√

n)

• kD-Tree is an O(n) space data structure
that solves 2D range query in worst-case
time O(

√
n + m), where m is the output

size.



Subhash Suri UC Santa Barbara

d-Dim Search Complexity

• What’s the complexity in higher
dimensions?

• Try 3D, and then generalize.

• The recurrence is

Q(n) = 2d−1
Q(n/2d) + 1

• It solves to

Q(n) = O(n1−1/d)

• kD-Tree is an O(dn) space data structure
that solves d-dim range query in
worst-case time O(n1−1/d + m), where m is
the output size.


