
�������������������� ��
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

An Empirical Study on Design Diversity of

Functionally Equivalent Web Services

Amanda S. Nascimento Fernando Castor

Cecília M.F Rubira Rachel Burrows

Technical Report - IC-12-18 - Relatório Técnico

June - 2012 - Junho

The contents of this report are the sole responsibility of the authors.

O conteúdo do presente relatório é de única responsabilidade dos autores.

An Empirical Study on Design Diversity of Functionally

Equivalent Web Services

Amanda S. Nascimento∗ Fernando Castor† Cećılia M.F. Rubira‡

Rachel Burrows§

Abstract

A number of approaches leverage software fault tolerance techniques based on design
diversity to tolerate software faults in service-oriented applications. These solutions
moderate the communication between clients and functionally equivalent services, i.e.,
variant services. The use of design diversity depends on the assumption that variants
rarely fail on the same input case. Nevertheless, it is unclear whether variant services
are actually diverse and fail on disjoint subsets of the input space. In a previous work,
we proposed an experimental setup to assess design diversity of variant services that
realize a requirements specification. In this work, we utilize the proposed experimental
setup to assess the design diversity of a number of third-party Web services adhering to
seven different requirements specifications. In this paper, we describe in detail the main
findings and lessons learned from this empirical study. Firstly, we investigate whether
variant services present difference in their outputs and failure behaviours to look for
evidence that variants are provided by different design and implementations. Secondly,
we investigate the effectiveness of service diversity for tolerating faults. The results
suggest that there is diversity in the implementation of variant services. However, in
some cases, this diversity might not be sufficient to improve system reliability. Our
findings provide an important knowledge basis for engineering effective fault-tolerant
service applications.

1 Introduction

The design diversity approaches have specifically been developed to tolerate design faults in
software arising out of wrong specifications and incorrect coding [1]. Design diversity is the
provision of functionally equivalent software components, called variants, through different
design and implementations [2]. The philosophy behind design diversity is to increase the
probability that variants fail on disjoint subsets of the input space, when they do fail [2, 3].
In software fault-tolerant architectures based on design diversity, called FT-architectures,
a task is executed by several variants. The results of these executions are provided to an

∗Institute of Computing,University of Campinas,Campinas, SP, Brazil
†Informatics Center, Federal University of Pernambuco, Recife, PE, Brazil
‡Institute of Computing,University of Campinas,Campinas, SP, Brazil
§School of Computing, Lancaster Univeristy, Lancaster, UK

1

2 Nascimento, Castor, Rubira and Burrows

adjudicator, which operates upon them to determine which one to output as the presumably
correct result [2]. We focus on voters as adjudicators [2]. Voters might fail, when coincident
failures occur. A coincident failure is said to have occurred if variants fail on the same
input case [2, 4]. Hence, FT-architectures might not support an improvement in reliability
over a single software component [2, 5].

Nowadays, society is dependent on systems based on Service-Oriented Architecture
(SOA) for its basic day-to-day functioning [6]. The cost and consequences of these sys-
tems failing can range from mildly annoying to catastrophic, with the possibility of great
financial losses [6, 7, 8]. In order to achieve high levels of reliability, for applications com-
prising of autonomous services, usually controlled by third parties, it is necessary to tolerate
design faults [2, 7]. When considering open and dynamic environments like the Web, a num-
ber of functionally equivalent services (i.e. variant services) exist to achieve a particular
task [6, 8, 9, 10]. Due to the low cost of reusing variant services, several diversity-based
solutions exist in the context of SOA. These solutions operate in the communication be-
tween clients and variant services. The latter are structured in fault-tolerant composite
services [7, 8, 11], called FT-compositions. From the clients’ viewpoint, the FT-composition
works as a single, reliable service.

A considerable number of empirical studies aim to assess the effectiveness of diversity-
based fault-tolerant applications. In these studies, the development teams, the adopted
platform to implement variants and their source code are well known [5, 12, 13, 14]. However,
in service-oriented computing, there is often a separation in time and space between service
development and system integration [15]. On one hand, developers of services often do not
have full knowledge of the different contexts in which the services will be used [15]. On
the other hand, system integrators usually have no access to the internal design, source
code and full specification of these services (i.e. services are black boxes) [15]. In addition,
although there are services that aim to solve similar problems, the specifications of these
problems are often diverse, developed by different organizations, with different members
exhibiting different competences and understanding of the problem, and targeting different
platforms. As a consequence of these factors, it is difficult to extrapolate the results of
previous studies about the effectiveness of design diversity to the context of SOAs.

In our previous work, we proposed a set of directives to organize the preparation and
execution of an experiment to assess, given a requirements specification, to what extent its
variant services are able to tolerate software faults [16]. In this paper, we utilize the direc-
tives proposed in our previous work and execute the experimental procedures on a number
of third-party, stateless, read-only Web Services adhering to seven different requirements
specifications. This empirical study aims to provide more insight on the effectiveness of de-
sign diversity in service-oriented applications and its implications. Firstly, it is well known
that variant services should be diverse to be usable for tolerating software faults [2, 3].
Moreover, the probabilities of coincident failures are decreased when variant exhibit diver-
sity at the level of design, implementation and also in terms of failure behaviour [17]. Since
services are black boxes, it is difficult to accurately quantify how different they are. Hence,
we focused on looking for evidence on whether they are diverse from clients’ viewpoint. We
checked whether variant services presented significant differences in their outputs and failure
behaviours. If variants have distinguishable observed behaviour, it suggests that they are

Design Diversity of Variant Services 3

in fact provided by different design and implementations [16]. Secondly, even when variants
present design diversity, it is recommended to actually assess how often variants fail on the
same input case [17]. As previously suggested [16], by analysing the frequency of coincident
failures, we estimated by how much the use of FT-compositions improved reliability over
single services.

We found out that services implementing the seven requirements specifications are actu-
ally diverse at a 0.05 significance level. However, for three of the specifications, coincident
failures of variant services are frequent enough that using the most reliable single service in
isolation yields the best results. That is, the benefits of diversity-based solutions applied
to SOAs are not straightforward. Data and observations regarding our studies are available
at our study webpage [18]. Furthermore, we emphasize that empirical studies are needed
from an Software Engineering (SE) perspective because they enable the development of
scientific knowledge about how useful different SE solutions are, thus allowing for informed
and well-grounded decision [19].

2 Background

In this section, we present an overview of service-oriented architecture and design diversity.

2.1 Service-Oriented Architecture

Many systems are being implemented following the Service-Oriented Architecture (SOA)
approach in order to achieve higher levels of interoperability [6, 20]. SOA is described as a
component-based model which interrelates different functional units (or services) by means
of well-defined interfaces that should be neutral, platform- and language-independent [6].
Services running over heterogeneous systems may then interact and be used as building
blocks for new applications [6]. A composite service, the basis for the construction of
applications in the SOA world, can be regarded as a combination of activities invoked in a
predefined order and executed as a whole [6].

SOA is most frequently found in Web service applications. Web Services often rely on
XML-based standards such as SOAP (originally defined as Simple Object Access Protocol)
and WSDL (Web Services Description Language) to exchange information with other ap-
plications over the Internet [21]. Web services can be read-only, which means that, given
a request, these services provide access to data that may be read but not changed or
deleted [16]. They can also be classified as stateless or stateful. Stateless services support
no mechanism within themselves to handle state across requests [21]. Stateful services keep
state information across requests [21].

2.2 Reliability

Reliability is defined as ‘the ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time’ [22]. According to Lyu [3],
when the execution time is not readily available, approximations such as the number of
test cases executed may be used. In this sense, the successful execution rate (i.e. relative

4 Nascimento, Castor, Rubira and Burrows

frequency of successes) can be adopted to estimate the reliability of a system. The suc-
cessful execution rate qrate(s) of a system s is the estimated probability that a request is
correctly responded within the maximum expected time frame. The value of the success
rate is computed from data of past invocations using the expression proposed by Zeng et.
al. [23] qrate(s) = Nc(s)/k(s), where Nc(s) is the number of successful results provided by
a system s within the maximum expected time frame, and K(s) is the total number of
invocations of the system.

Moreover, by means of successful execution rate, we are able to estimate the difference
in reliability of a FT-architecture and single non-fault-tolerant variants in order to find
out evidence on whether the first supports a reliability improvement over the latter. A
positive difference in reliability indicates an increase in reliability [3], that is, the FT-
architecture tolerated faults of its variants, which rarely fail on the same input cases [2].
On the other hand, a negative difference indicates a reliability decrease [3]. The introduction
of design diversity might lead to occurrence of coincident failures, which might defeat most
voters [2, 3, 5].

2.3 Diversity-based Architectures

With software fault tolerance, we want to prevent failures by tolerating faults whose oc-
currences are known when errors are detected [2]. One of the means to protect against
software faults and thus enhance software reliability is to use software fault tolerance tech-
niques based on design diversity [2]. The use of design diversity depends on the assumption
that variant components rarely fail on the same input case because this makes failures of
variants detectable [2, 3].

In software fault-tolerant architectures based on design diversity, input is distributed to
the variants, or versions, which then execute their operations. Potentially, several alternate
results can be produced, from which a single correct or acceptable result must be derived [2].
The mechanism responsible for this task is called an adjudicator, or decider. There are two
main types of adjudicators: voters and acceptance tests (ATs). When voters are employed,
all the variants are executed and the voter compares all the produced results. With ATs,
only one variant is executed at a time. The AT is responsible for checking whether the
produced result is correct. In case it is not, another variant is executed until a correct
result is obtained, if possible. In general, ATs are more difficult to construct in practice
because they are strongly application-dependent and it is not always possible to determine a
criterion to judge variant results [2], which further motivates our work. We focus on voters
as adjudicators.

2.3.1 Voter Adjudicators

In particular, we are interested in three-variant voting systems since this is the minimum
number of variants that allows a service composition to tolerate faults from one of its
services. In a three-variant system, three kind of results are possible: (i) correct result-
executions of a majority of the variants in the triplet result in identical or similar correct
results from which a single correct result is adjudicated [13]; (ii) failure- a majority of

Design Diversity of Variant Services 5

variants fail on the same input case resulting in similar or identical incorrect results (i.e.
coincident failures) therefore the voter returns either an incorrect result as the presumably
‘correct one’, or no output [2, 13]; (iii) failure exception- three results that are not within an
acceptable range (i.e. they are not similar) are returned by execution of variants, therefore,
a voter is not able to decide whether results were successful or not [13].

3 Study Setting and Execution

In this section, we present study setting and execution, including, our hypotheses, target
requirements specifications, variants and inputs; and how we collected the data. The data
obtained is also described by means of set and mathematical notations to provide clear and
concise understanding. Most of these notations were previously proposed in our experimen-
tal setup [16].

3.1 Research Questions and Hypotheses of the Study

To conduct our investigation, we analysed variant services adhering to seven different re-
quirements specifications. This strategy has benefits compared with single-specification
analyses: results will be more representative. This work aims to answer the following re-
search questions.

RQ0: Do functionally equivalent services (i.e. variant services) present diversity in their
design and implementations?

To empirically investigate research question RQ0, for each specification, we hypothesize
the following:

Null hypotheses (H01...07): There is no difference in observed outputs with respect to
variant services.

Null hypotheses (H11...17): There is no difference in observed frequency (or proportion)
of failures with respect to variant services.

Although hypotheses are assigned to each requirements specification, we do not focus
on understanding the real impact of each specification individually, only of the results.
Furthermore, given any individual requirements specification, if we cannot reject at least
one of its related hypotheses, within the scope of this work, we will report that there is not
enough evidence to either confirm or deny the existence of diversity in the implementation
of its variant services.

RQ1: Does the use of a FT-compositions, built with variant services and voters, support an
improvement in reliability when compared to single services?

3.2 Target Requirements Specifications and Variants

We selected seven requirements specifications that are performed by a population of third-
party, stateless, read-only SOAP/WSDL-based Web services. We will refer to these as
services, for simplicity. The selection of these services required cost-free variant availability
of services and the possibility of comparing variant results. Table 1 briefly describes the
requirements specifications. Variant services adhering to these specifications were selected

6 Nascimento, Castor, Rubira and Burrows

at online services repositories [25, 26]. For all variants, we identified their corresponding
descriptions, specified in WSDL documents. Based on these descriptions, we created Web
service clients by adopting the Java API for XML Web Services (JAX-WS), a Java pro-
gramming language API for creating and invoking Web services [21]. For each one of the
variant services, the Java client is responsible for invoking its operation for all related input
cases, thus, obtaining the output values.

Table 1: Target Requirements Specifications.

Requirements Specification (Functionality)

(1)Email Validations validates email addresses for client applications.

(2)Credit Card Validations validates credit card numbers.

(3)Distance By ZIP Codes finds the distance between any two ZIP Codes.

(4)Currency Trading returns ‘up-to-date’ currency rates.

(5)Temperature Conversion converts temperature from Kelvin to Celsius.

(6)Weather Forecast provides weather forecast for cities.

(7)ZIP code geocoding converts ZIP codes into geographic coordinates.

Definition 1. Let R = {r1, r2, r3, r4, r5, r6, r7} be the set of all analysed requirements spec-
ifications.

Definition 2. For each requirements specification r ∈ R, let V (r) be the set of variant
services in r, such as V (r) = {v1, v2, v3} [16].

The V (r) set contains exactly three elements, the minimum number of variants employed
by diversity-based techniques that leverage voters [2] (Section 2.3.1).

3.3 Target Input Cases

For each requirements specification r ∈ R, we select input cases at random from the input
space [17]. The same inputs were supplied to each variant v ∈ V (r) in order to improve the
precision of the experiment [16, 19, 27]. The input cases were generated as follows:
(1) Email Validations: We choose three popular domains (i.e. Yahoo, Gmail and Hotmail)
and two unpopular domains (i.e. ic.unicamp.br, ige.unicamp.br). Each one of these mail
servers specifies its restrictions on login specifications. Based on these restrictions, we
randomly generate 1149 mail addresses as inputs to our experiment. We generated valid
email addresses including existing ones and not-valid addresses.
(2) Credit Card Validations: We randomly generated 1046 credit card numbers. The valid
credit card numbers were generated conforming to the Luhn formula (MOD 10 check) [28].
MOD 10 check is a simple checksum formula used to validate a variety of identification
numbers, including credit card numbers [28]. The adopted valid credit card types were
MasterCard, VISA 16 digit, VISA 13 digit, American Express, Discover, Diners Club, en-
Route, JCB 15 digit, JCB 16 digit and Voyager. Invalid credit card numbers were randomly
generated and they did not conform to the Luhn formula.

Design Diversity of Variant Services 7

(3) Distance By Zip Codes: We generated 1021 input pairs comprising of an origin Zip
code and a destination one: < Starting ZIP code,Ending ZIP code >. Both codes
were randomly selected from a database that contains 13137 Zip Codes within the United
States [29].
(4) Currency Trading: The following currencies compose the input set used to get ‘up-to-
date’ currency exchange rates: AUD (Australian Dollars), CAD (Canadian Dollars), CHF
(Swiss Francs), DKK (Danish Kroner), EUR (Euros), HKD (Hong Kong Dollars), JPY
(Japanese Yen), NOK (Norwegian Kroner), NZD (New Zealand Dollars), SEK (Swedish
Krona), SGD (Singapore Dollars), TWD (Taiwan Dollars), USD (US Dollars) and ZAR
(South African Rand).
(5) Temperature Conversion: We randomly generated 1049 real numbers as input case in-
cluding values below absolute zero, the lowest possible temperature [30].
(6) Weather Forecast: We randomly selected 926 Zip Codes from the database that contains
13137 US Zip Codes [29].
(7) US Zip code geocoding: We randomly selected 1200 Zip codes from a database with
13137 US Zip Codes [29].

Definition 3. For each requirements specification r ∈ R, let X(r) bet the set of input cases
in r [16].

3.4 Execution of Variant Services

The investigation was based on the analysis of the output space. For each requirements
specification r ∈ R, we distributed the input cases x ∈ X(r) to the variants v ∈ V (r),
which then execute their operations. We adopted the exe(v, x) function that returns the
output value resulting from the execution of a variant v under input x [16]. Afterwards, we
identified sets of outputs, as follows.

Definition 4. For each r ∈ R and its variants v ∈ V (r), let O(r, v) be the set of outputs in

r and v. Such as, O(r, v) =

{
(v, x, exe(v, x))|x ∈ X(r)

}
, that is, it is the set that associates

the v variant service, inputs x ∈ X(r) and the corresponding outputs exe(v, x) [16].

It should be noticed that the whole investigation was made based on the comparison
of third elements of identified triples. The first two elements of the triples are identifiers
adopted to guarantee that there is no duplicate element, which is not allowed (or is ignored)
in sets [16].

3.5 Target Gold Versions and Acceptance Criteria

For each requirements specification r ∈ R, given its variant services v ∈ V (r) and its inputs
x ∈ X(r), we identified whether a variant fails or not under certain input. Usually, in this
type of experiment, the experiment administrator employs a ‘gold’ version as a means to
identify failures [5, 13]. It is used by comparing the output of the variant service, for a
given input case, to the output that is known to be correct, the one returned by the gold
version [5, 13]. For each particular set of requirements r ∈ R, we either wrote or employed

8 Nascimento, Castor, Rubira and Burrows

a third-party gold version g(r). In a complementary way, for some variant services, we
adopted acceptance criteria, which is used to evaluate whether a variant result is acceptable
compared to the one returned by the gold version, as follows.

Gold Versions: For the (1) Email validations, we implemented a program based on the
restrictions on login specifications defined by the adopted mail servers. For (2) Credit card
validations, we implemented a routine based on the Luhn algorithm. This algorithm is
described in ISO/IEC 7812-1[31]. For the (3) Distance by ZIP codes, we implemented an
algorithm based on Google API [32]. The gold version for (4) Currency trading is based
on the values provided by CNN Money [33]. For the (5) Temperature conversion, our
implementation was based on the relationship between Kelvin and Celsius scales [30]. For
(6) Weather forecast, we implemented a routine based on information for weather forecast
provided by Weather.com. The (7) Geocoder gold version is based on the Google API [32].

Acceptance Criteria The (3) Distances by ZIP codes, (4) Currency Trading, (5) Temper-
ature Conversions and (6) Code Geocoding are realized by services that use floating-point
arithmetic (FPA). The use of FPA in general computing produces a result that is accu-
rate only within a certain range [2]. The use of design diversity, especially if FPA is used,
can also produce individual variant results that differ within a certain range [2]. In this
way, Pullum defines a tolerance as a variance allowed by a decision algorithm to decide
whether results were successful [2]. Consequently, for the services whose outputs use FPA,
we adopted acceptance criteria to check whether variant services ‘disagree’or not with gold
versions. We specify tolerance ranges based on measures of dispersion under all variant
results and the gold version result, thus, reducing subjectiveness of the specified criterion.

3.6 Identification of Failing Inputs

We identified input cases under which at least one variant fails. This was performed in order
to analyse and understand the failure behaviour of variant services [16]. To identify failing
inputs, we adopted the performance function p(v, x), defined by Littlewood and Miller [17].
This function indicates whether a variant v, when executed under the input x, returns either
a correct result or a failure within the maximum expected time frame TF . The performance
function p(v, x) is defined as follows [17]:

p(v, x) =

{
1 if v does not fail on x within TF

0 otherwise
(1)

Therefore, for a specification r ∈ R, p(v, x) = 1, where v ∈ V (r) and x ∈ X(r), iff the
output of a variant v on input x is correct or acceptable compared with the output of the
g(r) gold version on input x. For instance, the maximum expected time frame (TF) was of
5 minutes.

The FX(r) set of failing inputs, is defined as follows.

Definition 5. For each requirements specification r ∈ R, let FX(r) ⊆ X(r) be the set of
failing inputs in r, such as, FX(r) = {x|x ∈ X(r) ∧ (∃v ∈ V (r) | p(v, x) = 0)} [16].

Design Diversity of Variant Services 9

We emphasize that for all analysed requirements specifications |FX(r)| ≥ 1. That is,
for each specification r ∈ R, given its variant services belonging to V (r) and its inputs from
the X(r) set, at least one variant fails on at least one input case.

3.7 Variant Performances under Failing Input Cases

For each input case under which a variant fails, if any other variant does not fail on the
same input case, there is evidence that (i) a diversity-based technique might tolerate that
fault [34]; (ii) variant services fail on disjoint subsets of the input space [2]; (iii) variant
services have distinguishable frequency of failures [5]. In order to look for such evidence, we
analysed the performance of each variant under failing input cases [16]. We observed the
outputs produced by all the variants under the inputs from the FX(r) set and determined
which variants failed under those inputs.

Definition 6. For each requirements specification r ∈ R and its variants v ∈ V (r), let
PF (r, v) be the set of variant performances under failing inputs. Such as, PF (r, v) ={
(v, x, p(v, x))|x ∈ FX(r)

}
, i.e., it is the set that associates the v variant service, failing

inputs x ∈ FX(r) and the related variant performance p(v, x) [16].

In a complementary way, for each requirements specification r ∈ R, we define:

Definition 7. Let FS(r) = PF (r, v1)∪PF (r, v2)∪PF (r, v3) be the set of all variant per-
formances under failing inputs in specification r. That is, the FS(r) associates all variants
services belonging to V (r), failing input cases from FX(r) and variant performances under
such failing inputs. The FS(r) set is called as failure scenario, for simplicity.

3.8 Estimated Reliability of the Architectural Solutions

To measure the reliability of single services and of FT-compositions, we adopted, respec-
tively, the reliability estimators Rel EstNFT Srv and Rel EstFT SOAr , which were proposed
in our experimental setup [16]. These estimators were defined by means of the successful
execution rate (Section 2.2). To improve the precision of the obtained measures, all the
reliability estimators are based on the analysis of failing inputs, which belong to the FX(r)
set [16].
Estimator for Single Services

The Rel EstNFT Srv estimator for NFT-services is defined as follows [16]:

Rel EstNFT Srv =

∑
x∈FX(r) p(v, x)

|FX(r)|
(2)

Where, |FX(r)| ≥ 1, as already mentioned, and 0 ≤ Rel EstNFT Srv ≤ 1.
If Rel EstNFT Srv = 1, it implies that the analysed variant service returned correct

results for all failing input cases from FXr. If Rel EstNFT Srv = 0, the analysed variant
service failed on all failing inputs [16].
Estimators for a FT-Composition

10 Nascimento, Castor, Rubira and Burrows

The reliability estimator for a FT-composition Rel EstFT SOAr , is based on the general
definitions of voters (Section 2.3.1) [16]. Specifically, we are interested in cases where a
majority of the variants were successful and a voter is able to adjudicate a correct result [2,
3]. We assume that the voter is perfect. Previous studies evaluating design diversity as a
technique to improve overall system reliability have made the same assumption [2, 5, 13].
We adopted the following reliability estimator Rel EstFT SOAr for a FT-composition [16]:

Rel EstFT SOAr = (3)∑
x∈FX(r) geq

(
(p(v1, x) + p(v2, x) + p(v3, x)), 2

)
|FX(r)|

where, geq is an operator that returns 1 if the first argument is greater than or equal
to the second one and 0 otherwise, |FX(r)| ≥ 1, and 0 ≤ Rel EstFT SOAr ≤ 1. If
Rel EstFT SOAr = 1, it implies that voters were always able to adjudicate a single correct
result from all variant results, where variants were executed under input cases belonging
to the FX(r) set. Hence, voters were able to tolerate all faults whose activation has led
to failure of variants. If Rel EstFT SOAr = 0, voters were not able to tolerate any faults
whose activation has led to coincident failures [16].

4 Study Results and Discussion

Once all data has been collected, we analysed them to provide an in-depth analysis of
design diversity in service-oriented applications. In this section, we present and discusses
the results and their implications.

4.1 Investigating Research Question RQ0

For each requirements specification r ∈ R (Def. 1), the set of its input cases in X(r) (Def.
3) is subjected to different treatments, that is, it is processed by variant services from the
V (r) set (Def. 2) [16]. We investigated whether different treatments have distinguishable
effect on the observed behaviour from client’s viewpoint, in particular, on the output values
and frequency of failures [16]. In this way, regarding research question RQ0, we found
the probabilities p01,...,07 and p11,...,17 of rejecting, respectively, the null hypotheses H01,...,07

and H11,...,17 at the significance level α, where α = 0.05. That is, given all probabilities
p01,...,07,11...,17, if a probability was less than the significance level α, we rejected its related
null hypothesis with 95% confidence. To find out all probabilities, which are estimated based
on observed data, we adopted R, a language and environment for statistical computing and
graphics language [35]. Details on the calculations and our R working environment are
available at our study webpage [18].

Design Diversity of Variant Services 11

4.1.1 Comparison of resulting outputs

For each requirements specification r ∈ R, given its variant services v ∈ V (r), we checked
whether its set of outputs (O(r, v) - Def. 4) are significantly different among themselves.
We test the null hypotheses H01,...,07 at the significance level α (α = 0.05). On one hand,
for (1) Email Validations and (2) Credit Card Validations, the output values returned by
their variants are categorical data. On the other hand, for (3) Distances By Zip Codes, (4)
Currency Trading, (5) Temperature Conversions, (6) Weather Forecasts and (7) ZIP code
geocoding, the output values are data in at least an ordinal scale. Therefore, we adopted
different statistical tests for testing H01,02 and H03...07.

To test the null hypotheses H01 and H02, we adopted the Cochran Q test. The Cochran
Q test provides a method for testing whether three or more matched sets of frequencies or
proportions differ significantly among themselves [27]. The Cochran Q Test is particularly
applicable when categorical data are dichotomized (e.g. the value of each sample is either
‘0’ or ‘1’) [27]. We emphasize this test is suitable for out study because (i) the data are
from |V (r)| > 2 related groups; (ii) the data are dichotomized as valid and not-valid ;
(iii) we want to examine whether the frequency of both ‘valid’ and ‘not-valid’ as outputs
are the same for all variant services when they are executed under the same sequence of
inputs [16, 27]. To test the null hypotheses H03...07, we adopted the Friedman two-way
analysis of variance by ranks. The Friedman analysis tests statistically whether k samples
have been drawn from identical populations [27]. This analysis is suitable for our study
because (i) we want to find out whether variant services are from the same population or
not, that is, have similar output values when executed under the same input cases; (ii) the
analysed data are in at least an ordinal scale [16, 27].

According to the results, the probabilities p01, p02, p03, p04, p05, p06 and p07 were
less than the significance level (α = 0.05). Regarding research question RQ0, we have
enough evidence to reject the hypothesesH01...07. Hence, for each requirements specification,
outputs provided by its variant services differed significantly at a 0.05 significance level [27].
These results suggest that diversity is applied to variant services, otherwise, they would
have had similar or identical outputs values when executed under the same sequence of
inputs. We refer to Siegel and Castellan Jr. [27] for further details on both Cochran Q test
and Friedman analysis procedures.

4.1.2 Comparison of frequencies of failures

Table 2 lists the absolute size of the set of input cases (X(r) - Def. 3) and the set of failing
input cases (FX(r) - Def. 5) for all analysed requirements specifications. For (1) Email
Validation, for example, we have identified 454 input cases under which at least one variant
failed, out of a total of 1449 input cases.

For each requirements specification r ∈ R, given its variants v ∈ V (r), we checked
whether its set of variant performances (PF (r, v) - Def. 5) are significantly different among
themselves. We test the null hypotheses H11...17 at the significance level α (α = 0.05).
We adopted the Cochran Q test which is suitable for this study because (i) the data are
from (|V (r)| > 2) related groups; (ii) the data are dichotomized as ‘1 ’(i.e. success) and

12 Nascimento, Castor, Rubira and Burrows

Table 2: Frequency of Failures

Requirements Specification |Xr| |FXr|
(1) Email validations 1449 454

(2) Credit Card Validations 1046 262

(3) Distance By ZIP Codes 1021 238

(4) Currency Trading 15 1

(5) Temperature Conversion 1049 765

(6) Weather Forecast 925 224

(7) ZIP code geocoding 1200 210

‘0’(i.e. failure); and (iii) we want to examine whether the frequency of both correct results
and failures are the same for all variant services, which are executed under the same input
cases [16]. According to the results the probabilities p11, p12, p13, p15, p16 and p17 were
less than the significance level (α). Therefore, the results provide us evidence to reject the
null hypotheses H11,12,13,15,16,17. Hence, for all requirements specifications, except for (4)
Currency Trading, we conclude that frequencies of failures are dependent on their variant
services with 95% confidence [27]. That is, variant services have a distinguishable effect on
the distribution of failures. For (4) Currency Trading, there is only one failing input, thus
we did not adopt the Cochran Q test to either accept or reject H14.

For each specification r ∈ R, we graphically illustrate the relative frequency of both
correct results and failures of each individual variant v ∈ V (r) by means of |R| bar charts.
These charts are represented in Figure 1. Failures and correct results are represented,
respectively, under label Failure and Success. Variant identifiers (i.e. v1, v2, v3) and Total
represent the analysed categories. Overall success rate, under label ‘Total’, give us the
total frequency of failures and successes presented into a failure scenario (the FS(r) set,
Def. 7). For each particular specification, differences regarding the observed behaviour of
its variants and the grand total might suggest that the proportion of failures is dependent
on the variant services. Otherwise, proportions of outputs of a particular kind would be
similar or identical for all bars in the related chart [36]. In Figure 1, we can notice that
differences among frequencies of failures are less pronounced for variant services belonging
to (5) Temperature Conversions (Figure 1(5)). For other requirements specifications, at
least two of their variants have marked differences on their proportions of failures (e.g.
Figure 1(1); Figure 1(2); Figure1(7)). Moreover, Figure 1(4) suggests that we can reject
the hypothesis H14, otherwise its variants should present the same proportion of failures
and correct results. All these observations reinforce our conclusions that variant services
are diverse.

4.2 Investigating Research Question RQ1

To investigate research question RQ1, we examined which variants fail coincidentally and
which ones return similar (or identical) correct results coincidentally (Section 2.3). Figure 2

Design Diversity of Variant Services 13

Figure 1: Joint frequency distribution of failures and successes in failure scenarios

presents the relative frequency of both coincident failures and similar correct results in each
failure scenario (i.e. PF (r, v), Def. 7) from a specification r ∈ R. Coincident failures are
represented under the label ‘Failure’, while similar correct results are represented under label
‘Success’. Since we analysed three variant services, we represented all possible coincident
failures, that is: v1v2 (v1 and v2 fail, v3 does not fail), v2v3 (v2 and v3 fail,v1 does not
fail), v1v3 (v1 and v3 fail, v2 does not fail) and v1v2v3 (all variants fail). In a similar
way, we represented similar correct results, that is, v1v2 (v1 and v2 are successful, v3 fails),
v2v3 (v2 and v3 are successful, v1 fails) and v1v3 (v1 and v3 are successful, v2 fails). The

14 Nascimento, Castor, Rubira and Burrows

case where v1, v2 and v3 are correct does not belong to the set of failure scenarios, which
is composed by variant performances under failing input cases. Moreover, we represented,
under label ‘Total’, the total proportion of coincident failures and coincident similar results
into a failure scenario.

By analysing Figure 2, it is possible to notice that frequencies of coincident failures
are not the same under different matched subsets of variant services. Otherwise, for each
particular requirements specification, in its related chart, proportions of coincident failures
would be similar or identical for all five bars [36]. For example, regarding coincident failures,
in Figure 2(1), the variants v1 and v2 fail coincidentally in approximately 20% of the input
cases which compose the failure scenario, while v1 and v3 do not fail on the same input case.
Related to similar correct results, e.g., in Figure 2(3), the variants v1 and v3 return similar
correct results coincidentally in approximately 4% of the input cases, while the variants v2
and v3 are coincidentally successful in approximately 88% of the input cases which belong
to the failure scenario.

Moreover, we can notice that behaviours in terms of both coincident failures and similar
correct results differ among failure scenarios belonging to different requirements specifica-
tions. For example, in some circumstances, failure scenarios are composed predominantly
by coincident failures, e.g. Figure 2(5), while other scenarios are mainly composed by
similar correct results, e.g. Figure 2(2) and Figure 2(3). Moreover, for some requirement
specifications, similar or identical correct results represent approximately 100% of failures
scenarios (e.g. Figure 2(2); Figure 2(3) and Figure 2(4)). It is rare for all three variants to
fail coincidentally. However, related to the (5) Temperature Conversions, in Figure 2(5), we
can notice that all variants fail in some 36% of input cases. All these observations suggest
that frequency of coincident failures is dependent on both the requirements specifications
and their variant services.

On the basis of the data represented in Figures 1 and 2, for each requirements specifi-
cation r ∈ R, we estimated the reliability of: (i) each single variant service v ∈ V (r); and
(ii) the FT-composition that leverages voters. These estimations were measured by adopt-
ing, respectively, the reliability estimators Rel EstNFT Srv (Eq. 2) and Rel EstFT SOAr

(Eq. 3). Among individual variant services, we selected the one that exhibits the greatest
reliability, according to our estimates. Figure 3 summarized the obtained values for such
estimators. For example, for (1) Email Validations, the reliability estimated for the most
reliable single service is about 0.95, while the one estimated for the FT-Composition is
about 0.80.

Based on the values represented in Figure 3, we estimated the overall differences in relia-
bility achieved by adopting different architectural solutions by calculating (Rel EstFT SOAr−
Rel EstNFT Srv), for each specification r ∈ R. The obtained values, expressed as a percent-
age, are summarized in Table 3. A positive difference in reliability indicates an increase in
reliability [3], that is, the FT-composition tolerated faults of its variants, which rarely fail
on the same input cases [2]. On the other hand, a negative difference indicates a reliability
decrease [3]. The introduction of design diversity might lead to the occurrence of coincident
failures, which might defeat most voters [2, 3, 5].

In Figure 3 we can observe that, for three specifications (i.e. Figure 3 (1); Figure 3
(4); Figure 3 (5)) the reliability estimation of fault-tolerant composite service is equal to or

Design Diversity of Variant Services 15

Figure 2: Relative frequency of coincident failures and similar correct results in failure
scenarios FSr, with r ∈ R.

less than the one achieved by a single service (i.e. the overall reliability either remains the
same or decreases). Such fact is confirmed across the second column of Table 3. Therefore,
regarding research question RQ1, we cannot be confident that service diversity is always
efficient to tolerate software faults.

16 Nascimento, Castor, Rubira and Burrows

(1) (2) (3) (4) (5) (6) (7)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
s
ti

m
a
te

d
 R

e
li
a
b
il
it

y
 M

e
a
s
u
re

m
e
n
t

Rel_Est_SingleService
Rel_Est_FT_Composition

Figure 3: Reliability estimations for the different architectural solutions

Table 3: Estimation of the overall difference in reliability

Requirements Specification Percentage of reliability improvement

(1) Email validations (-15.90)

(2) Credit Card Validations 1.50

(3) Distance By ZIP Codes 1.30

(4) Currency Trading 0.00

(5) Temperature Conversions 0.00

(6) Weather Forecasts 4.90

(7) ZIP code geocoding 12.30

4.3 Lessons Learned:

We investigated design diversity of functionally equivalent services when facing software
design faults. First, diversity-based fault tolerance techniques require some form of diversity
among variants [2]. For all analysed requirements specifications, we found out that output
samples returned by the execution of different variant services differ significantly among
themselves. That is, the output values are dependent on the variant services. Therefore,
we have sufficient evidence to conclude that variant services in fact seem to be diverse
and usable for software fault tolerance. Second, design diversity aims to make variants as
diverse as possible in order to minimize identical design faults and implementation mistakes.
However, for some requirements specifications, the number of input cases under which most
or all variants failed coincidentally was high enough that using the most reliable service in
isolation yields the best results. Therefore, this study has shown that diverse designs in
SOAs do not always result in increased overall service reliability.

For all analysed requirements specifications, the results also suggest that the frequency
of failures depends on the variant service. Therefore, since there is difference in observed
proportion of failures with respect to variant services, we can also conclude that the fre-

Design Diversity of Variant Services 17

quency of coincident failures seems to be dependent on adopted variant services. That is,
different combination of variant services, which are structured in FT-compositions, might
imply in different measures of enhanced reliability. As we already mentioned, in the context
of SOA, several services exist to achieve a particular task. Hence, in order to try to achieve
higher measures of reliability by adopting diversity-fault tolerance techniques, we should
first observe effects of combining different variant services.

Furthermore, care needs to be taken by software developers when selecting variant ser-
vices based solely on diversity of their failure rates. In fact, the FT-composition that
exhibited the highest increase in reliability was composed of variants that had only ≈ 30%
difference in the failure-rates between the most faulty and least faulty variant. For five of
the requirements specifications, variants with higher variance in failure-rate actually dis-
played a lower improvement in reliability. For this reason, additional indicators must be
utilized to assess how effective service diversity is to tolerate software faults, such as taking
into consideration the individual failure rate of each variant. By applying a failure-rate
threshold that a variant service must satisfy may help software designers pinpoint variants
that are likely to negatively contribute to the overall service reliability. Once potentially
problematic variants have been isolated, appropriate action can be taken such as eliminat-
ing the variant from the FT-composition or, alternatively, by increasing the total number
of variants to the design so that the higher coincident failure-rates have less influence on
the overall FT-composition. These findings are in line with those already published in the
literature. In studies on the effectiveness of voting algorithms, it was shown that voters
have a high probability of selecting the correct result value when the reliability estimated
for each variant is greater than 0.5. However, when the probability of variant failure exceeds
0.5 then voters performed poorly [2, 37].

5 Study Limitations

In this section we discuss the limitations of our study based on the categories of validity
threats presented by Wohlin et al. [19]. For each category, we identified the possible threats
to validity and, whenever it is applicable, the measures we took to reduce the risks.

Internal Validity: One threat to internal validity we identified is guaranteeing that gold
versions result in correct results under all input cases. Regarding identification of failures,
the gold version actually just provides another version to check against [13]. It is, of
course, possible that failures common to all of the versions, including the gold one, were
not detected [3, 5, 13]. This is an unavoidable consequence of this type of experiment as
pointed out in the related literature [3, 5, 13]. Hence, both variant services and analysed
FT-compositions might produce results that are more or less reliable than the measured
ones. To mitigate this risk, as part of the experiment, the gold version has been subjected
to several test cases.

Construct Validity: This work does not address at all the aspects related to voter im-
plementation problems (e.g. synchronization of the variants, delays due to communica-
tion between the end-user servers and the various remote servers, maintainability issues of
fault-tolerant compositions). That is, the adoption of voters might affect other constructs

18 Nascimento, Castor, Rubira and Burrows

negatively. Since we do not observe these unintended side effects of voters, we identify one
more threat to the construct validity: the restricted generalizability across constructs, as
suggested by Wohlin et al. [19]. However, it should be noticed that the study of side effects
of voters is outside the scope of this paper. We performed an investigation, specifically,
on design diversity of variant services and we assume that one is able to develop a perfect
voter, as already mentioned.

External Validity: We identified one threat to external validity. The variant services
may not be representative of industrial practice since all of them are based on simple
functionality. Regarding such risk, since we were looking for evidence on whether variant
services are able to face software faults, the complexity of service functionality would have
no negative effect on our final conclusions because more complex systems have larger design
spaces. Therefore, there are more opportunities for the introduction of problems that have
different causes [2, 5]. Furthermore, while the empirical analysis of design diversity was a
hotly-debated topic in the mid-1980s and early 1990s [2], no studies so far have been carried
out in the context of Web services and this study represents a step stone in this direction.

Conclusion Validity: We identified three threats to conclusion validity: (i) the number
of requirements specifications i.e., sample size; (ii) the homogeneity of input cases; and
(iii) the time-out setting for the request. Risk (i) cannot be completely avoided due to
the lack of requirements specifications implemented by cost-free, functionally equivalent
SOAP/WSDL-based Web Services. Moreover, existing empirical studies on effectiveness
of design diversity for fault tolerance are based on the analysis of only one requirements
specification, which is implemented by several variant components [5, 38, 34]. Therefore,
seven requirements functionalities seem to be sufficient to derive preliminary conclusions
about the general design diversity of services. Regarding risk (ii), according to Littlewood
and Miller [17], in order to assess whether variants fail independently, it is necessary to
guarantee that input cases are also independent, i.e., heterogeneous. In this way, to mit-
igate risk (ii), inputs from the input space were chosen at random for each requirements
specification. Related to the risk (iii), it is well known that services might take a variable
amount of time to respond requests due to the dynamic and unpredictable nature of com-
munication links. Consequently, some of the failures might be observed because services
do not respond within the expected time frame. To mitigate this risk, we specified a high
value of the time-out setting for requests (i.e. 5 minutes).

6 Related Work

A number of approaches [7, 8, 11, 39] operate in the communication between a service’s
clients and functionally equivalent services in order to tolerate software faults. In general,
these solutions support different types of adjudicators (e.g. voters and acceptance test)
and schemes to execute the variant services (e.g. sequential and parallel schemes). Never-
theless, for these existing diversity-based solutions, there is an underlying assumption that
variant services can always be efficiently employed by means of diversity-based techniques.
Nevertheless, findings from our studies indicate that variant services might not be able to
tolerate software faults.

Design Diversity of Variant Services 19

Knight and Leveson [5] and Eckhardt et al. [38], describe an experiment to investigate
whether it is valuable to use N-version programming, a design-diversity technique based
on voters, to achieve high levels of reliability. Their experiments are based on the analysis
of the failure behaviour of several variants of a program. All variants were developed and
validated according to a common specification using independent programming teams [5,
38]. These authors conclude that N-version programming must be used with care because
the number of input cases under which most or all variants failed coincidentally was more
than expected [5, 38].

Gashi et al. [34] studied design diversity as a means for tolerating design faults of four
popular off-the-shelf SQL servers. Their study is based on an analysis of the bug reports
available for the SQL servers. They conclude that design diversity is effective in this category
of products since none of identified bugs affected more than two products. Findings from
these empirical studies [5, 34, 38] reveal different conclusions regarding the effectiveness of
software that relies on design diversity to tolerate faults. This in turn reinforces the necessity
for a thorough assessment of the reliability of FT-compositions built with variant services.
To the best of our knowledge, there is no studies assessing how effective is service diversity
for tolerating faults. Our findings suggest opportunities for greater progress related to the
design and implementation of fault-tolerant service-oriented applications.

In a previous work [16], we proposed an experimental setup that encompasses a set of
directives to organize the preparation and execution of the experiment to investigate, given
a requirements specification, (i) whether its variant services are diverse; and (ii) whether the
reliability of a FT-composition that leverages voters is an improvement over one that uses
a single service [16]. To exemplify and evaluate the experimental setup, it was employed
to assess diversity of variant services adhering to two different requirements specifications,
which were analysed individually [16]. In this work, we utilize directives of the proposed
experimental setup to conduct our study. However, we focus on providing more insight of
effectiveness of design diversity in service-oriented applications. We investigated whether
variant services adhering to seven different requirements specifications are able to tolerate
software faults and we discuss in detail our findings and lessons learned from this study.
That is, this paper is a more elaborated case study to the already proposed method.

7 Concluding Remarks

We presented the results of a novel study, in the context of SOAs, to investigate whether
functionally equivalent services (i.e. variant services) are able to tolerate software faults. We
analysed 21 third-parties, cost-free, ready-only, stateless SOAP/WSDL-based Web Services
adhering to 7 different requirements specifications. Since services are black boxes, it is a
challenge issue to quantity how different they are. Due of this, we focused on looking for
evidence on whether they are diverse from clients’ viewpoint. We analysed whether variant
services presented difference in their outputs and frequency of failures, thus indicating the
presence of diversity among their design and implementations. Moreover, we investigated
whether fault-tolerant composite services, called FT-composition, which structures variant
services and leverages voters as adjudicators, are more reliable than single services.

20 Nascimento, Castor, Rubira and Burrows

We concluded that services seem to be in fact diverse. However, in some cases, coinci-
dent failures of two or more services might be frequent enough that using FT-compositions
do not support an improvement in reliability compared to single services. We also demon-
strated that the frequency of failures is dependent on individual variants. Consequently,
the frequencies of coincident failures seem to be dependent on the set of selected variants.
Therefore, variant services should be combined with care because there are differences in
choosing different triplets for the same application.

We emphasize that our findings are similar to those already published in the literature.
Existing work also reveals threats to the effectiveness of software that relies on design diver-
sity to tolerate software faults. However, unlike other studies, we have investigated software
components that are black boxes and independently developed by different organizations.
We have conducted only one iteration of the experiments. In future work, we intend to reit-
erate the experiment by several times in order to analyse availability of variant services. We
also intend to investigate whether our findings also apply to REST (i.e. Representational
State Transfer) services.

Acknowledgment

This research was sponsored by UOL (www.uol.com.br), through its UOL Bolsa Pesquisa
program, process number 20120217172801. Fernando is supported by CNPq (306619/2011-
3 and 475157/2010-9), FACEPE (APQ-0395-1.03/10), and by INES (CNPq 573964/2008-4
and FACEPE APQ-1037-1.03/08). Cećılia is supported by CNPq (305331/2009-4) and
FAPESP (2010/00628-1).

References

[1] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation and availability
assurance techniques,” International Journal of Systems Assurance Engineering and
Management, vol. 1, no. 4, pp. 340 – 350, 2010.

[2] L. L. Pullum, Software fault tolerance techniques and implementation. Norwood, MA,
USA: Artech House, Inc., 2001.

[3] M. R. Lyu, Ed., Handbook of software reliability engineering. Hightstown, NJ, USA:
McGraw-Hill, Inc., 1996.

[4] D. E. J. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of multiversion
software subject to coincident errors,” IEEE Transactions on Software Engineering,
vol. SE-11, no. 12, pp. 1511 – 1517, Dec. 1985.

[5] J. C. Knight and N. G. Leveson, “An experimental evaluation of the assumption of
independence in multiversion programming,” IEEE Transactions on Software Engi-
neering, vol. 12, no. 1, pp. 692–702, Jul. 1986.

Design Diversity of Variant Services 21

[6] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented com-
puting: State of the art and research challenges,” Computer, vol. 40, no. 11, pp. 38 –
45, Nov. 2007.

[7] A. S. Nascimento, C. M. F. Rubira, and J. Lee, “An spl approach for adaptive fault
tolerance in soa,” in Proceedings of the 15th International Software Product Line Con-
ference, vol. 2, no. 15, pp. 1 – 8, Aug. 2011.

[8] Z. Zheng and M. R. Lyu, “An adaptive qos-aware fault tolerance strategy for web
services,” Empirical Software Engineering, vol. 15, no. 4, pp. 323 – 345, Aug. 2010.

[9] A. Papageorgiou, T. Krop, S. Ahlfeld, S. Schulte, J. Eckert, and R. Steinmetz, “En-
hancing availability through dynamic monitoring and management in a self-adaptive
soa platform,” International Journal on Advances in Software, vol. 3, no. 3&4, pp.
434–446, Feb. 2011.

[10] S. Colucci, T. D. Noia, E. D. Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli, and
G. Rossi, “An agency for semantic-based automatic discovery of web services,” in AIAI,
pp. 315–328, 2004.

[11] E. M. Gonçalves and C. M. F. Rubira, “Archmeds: An infrastructure for dependable
service-oriented architectures,” in Proceedings of the 17th IEEE International Confer-
ence and Workshops on the Engineering of Computer-Based Systems, pp. 371 –378,
Mar. 2010.

[12] J. L. Gersting, R. L. Nist, D. B. Roberts, and R. L. Van Valkenburg, “A comparison
of voting algorithms for n-version programming,” in Proceedings of the Twenty-Fourth
Annual Hawaii International Conference, vol. 2, pp. 253 –262, Jan. 1991.

[13] T. J. Shimeall and N. G. Leveson, “An empirical comparison of software fault tolerance
and fault elimination,” in Proceedings of the Second Workshop on Software Testing
Verification and Analysis, vol. 17, no. 2, pp. 180–187, Jul. 1998.

[14] N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall, “The use of self checks
and voting in software error detection: an empirical study,” IEEE Transactions on
Software Engineering, vol. 16, no. 4, pp. 432 –443, Apr. 1990.

[15] F. Castor, P. A. C. Guerra, V. A. Pagano, and C. M. F. Rubira, “A systematic approach
for structuring exception handling in robust component-based software,” Journal of the
Brazilian Computer Society, vol. 10, no. 3, pp. 5 – 19, Apr. 2005.

[16] A. S. Nascimento, F. Castor, C. M. F. Rubira, and R. Burrows, “An experimental
setup to assess design diversity of functionally equivalent services,” in Proceedings of
16th International Conference on Evaluation and Assessment in Software Engineering
(TO APPEAR), 2012.

[17] B. Littlewood and D. R. Miller, “Conceptual modeling of coincident failures in mul-
tiversion software,” IEEE Transactions on Software Engineering, vol. 15, no. 12, pp.
1596 –1614, Dec. 1989.

22 Nascimento, Castor, Rubira and Burrows

[18] “Variant Services - Study Webpage.” last access: May. 2012. [Online]. Available:
https://sites.google.com/site/variantservices2s11/home

[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Ex-
perimentation in software engineering: an introduction. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

[20] V. Casola, E. Mancini, N. Mazzocca, M. Rak, and U. Villano, “Building autonomic and
secure service oriented architectures with mawes,” in Autonomic and Trusted Comput-
ing, ser. Lecture Notes in Computer Science, vol. 4610, pp. 82–93, 2007.

[21] “JAX-WS Reference implementation,” last access: Dec. 2011. [Online]. Available:
https://jax-ws.dev.java.net/

[22] A. Geraci, IEEE Standard Computer Dictionary: Compilation of IEEE Standard Com-
puter Glossaries. Piscataway, NJ, USA: IEEE Press, 1991.

[23] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,
“Qos-aware middleware for web services composition,” IEEE Transactions on Software
Engineering, vol. 30, no. 5, pp. 311 – 327, May. 2004.

[24] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11 – 33, Jan.-Mar. 2004.

[25] “Seekda’s Web Services portal ,” last access: Dec. 2011. [Online]. Available: http:

//webservices.seekda.com/

[26] “ProgrammableWeb Repository,” last access: Dec. 2011. [Online]. Available: http:

//www.programmableweb.com/apis/directory/

[27] S. Siegel and N. Castellan, Nonparametric statistics for the behavioral sciences, 2nd ed.
New York, USA: McGraw–Hill, Inc., 1988.

[28] H. P. Luhn, “A statistical approach to mechanized encoding and searching of literary
information,” IBM Journal of Research and Development, vol. 1, no. 4, pp. 309 – 317,
Oct. 1957.

[29] “US Zip Codes,” last access: Dec. 2011. [Online]. Available: http://www.census.gov/
tiger/tms/gazetteer/zips.txt

[30] F. A. Bettelheim, W. H. Brown, and M. K. Campbell, Introduction to general, organic
and biochemistry. Thomson Brooks/Cole, 2007.

[31] “ISO/IEC 7812-1:2006: Identification cards,” last access: Dec. 2011. [Online]. Avail-
able: http://www.iso.org/iso/isocatalogue/cataloguetc/catalogue/detail.

htm?csnumber=39698

Design Diversity of Variant Services 23

[32] “Google API for Geocoding,” last access: Dec. 2011. [Online]. Available: http://

code.google.com/apis/maps/documentation/geocoding/

[33] “CNN Money,” last access: Dec. 2011. [Online]. Available: http://money.cnn.com/

data/currencies/

[34] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via diversity for off-the-shelf
products: A study with sql database servers,” IEEE Transactions on Dependable and
Secure Computing, vol. 4, no. 4, pp. 280 –294, Oct.-Dec. 2007.

[35] “The R Project for Statistical Computing,” last access: Dec. 2011. [Online]. Available:
http://www.r-project.org/

[36] D. S. Moore, The Basic Practice of Statistics with Cdrom, 2nd ed. New York, NY,
USA: W. H. Freeman & Co., 1999.

[37] D. Blough and G. Sullivan, “A comparison of voting strategies for fault-tolerant dis-
tributed systems,” in Proceedings of the Ninth Symposium on Reliable Distributed Sys-
tems, pp. 136 –145, Oct. 1990.

[38] D. Eckhardt, A. Caglayan, J. Knight, L. Lee, D. McAllister, M. Vouk, and J. Kelly, “An
experimental evaluation of software redundancy as a strategy for improving reliability,”
IEEE Transactions on Software Engineering, vol. 17, no. 7, pp. 692 –702, Jul 1991.

[39] Y. Chen, “Ws-mediator for improving dependability of service composition,” Ph.D.
dissertation, Newcastle University, Newcastle upon Tyne, United Kingdom, 2008.

