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A new method for nonlinear optimization

Danillo Roberto Pereira Jorge Stol� Rafael Felipe Veiga Saracchini�

Abstract

In this work we present a new method for nonlinear optmization based on quadratic
interpolation, on the search for stationary point and edge-divided simplex. We show
some results of the convergence of our method applied in various functions to one or
more guesses.

1 Function optmization by the edge-divided simplex method

1.1 Quadratic interpolation

We consider �rst the problem of determining a quadratic function Q : Rn ! R from given
values at certain sample points. The function can be written in matrix form as

Q(x) = x> A x + x> B + C (1)

where A is a symmetric n � n matrix, B is a column n-vector and C is a constant. The
coe�cients A, B and C have m = ( n + 1)( n + 2) =2 unknown elements, and therefore
they could be obtained in principle from the values of Q(qi ) of Q at m sampling points
qi , i 2 f 0::m � 1g by solving a system with m linear equations. However, depending on
the placement of the sampling pointsqi , the system may be indeterminate or numerically
unstable. We show that by proper selection of the sample points, the function can be
determined directly by a simple stable formula.

Our method samplesQ at the corners and edge midpoints of an arbitrary simplex in
Rn . We start with a simplex S = ( p0; p1; :::; pn ) with n + 1 points not all in the same
hyperplane. Then we compute the midpointspij = ( pi + pj )=2 between the verticespi and
pj , for 0 � i; j � n. Note that pii = pi and pij = pji , so there are onlyn(n � 1)=2 midpoints
to be computed. In total we have the minimum required number m = ( n + 2)( n + 1) =2 of
sample points. See �gure 1.
Next we express the functionQ in terms of barycentric coordinates relative to the simplex
S. Namely, we write

Q(x) = ~Q(z) = z> T z (2)

� Institute of Computing { University of Campinas (UNICAMP). This research is supported by FAPESP
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Figure 1: A simplex of R2 and the derived sampling pointspij .

where z is the column vector of n + 1 barycentric coordinates of the point x relative to the
simplex verticesp0; p1; :::; pn . That is, z = ( z0; z1; :::; zn ) such that

nX

i =0

zi = 1 and
nX

i =0

zi pi = x (3)

The vector z is an element of thecanonical a�ne n-space An , the set of all vectors ofRn+1

that have unit sum.
Let yij be the given function value at point pij . Then the interpolating homogeneous

quadratic function ~Q can be obtained by the formula

~Q(z) =
nX

i =0

yii � i (z) +
nX

i;j =0
i 6= j

yij  ij (z) (4)

where � i and  ij are the elements of the quadratic interpolating basis for the sampling
points pii and pij in barycentric coordinates. Namely,

� i (z) = 2 zi (zi � 1=2) (5)

 ij (z) = 2 zi zj (6)

Observe that
� i (prs ) = ( i = r )( i = s) (7)

for all i; r; s 2 f 0:::mg, and

 ij (prs ) = (( i = r )( j = s) + ( i = s)( j = r ))=2 (8)

for all i; j; r; s 2 f 0:::mg with i 6= j . Therefore the matrix T in formula (2) is given by

Tij =
�

yi if i = j
2yij � (yi + yj )=2 if i 6= j

(9)



A new method for nonlinear optimization 3

1.2 Quadratic optimization

Now consider the problem of �nding the stationary point (minimum, maximum, or saddle
point) of a quadratic function Q : Rn ! R. If Q is given by formula (1), the solution is the
point x � 2 Rn such that OQ(x � ) = 0 where

OQ(x � ) = 2 A x � + B (10)

If Q is expressed in barycentric coordinates by formula (2), the minimum, maximum or
saddle point of the corresponding function ~Q is the point z� 2 An such that O ~Q(z� ) =
(�; �; :::; � ) for some � 2 R, where O ~Q is the gradient of ~Q in Rn+1 ; that is

O ~Q(z� ) = 2 T z� (11)

Therefore the point z� can be found by solving the linear systemMz � = D where M is the
matrix with n + 2 lines and n + 2 columns

M =

0

B
B
B
B
B
B
@

1
1

2T 1
1
1

1 1 1 1 1 1 0

1

C
C
C
C
C
C
A

D is the column (n + 2)-vector (0 ; 0; ::; 0; 1)> , and z� is the column vector of the (n + 2)
unknowns (z�

0; z�
1; :::; z�

n ; � )> . Then the point x � can be computed fromz� by the formula
(3).

This method will probably fail if the matrix A of formula (1) has a null or a very small
eigenvalue; that is, if there is a principal direction along which the original function Q is
approximately a�ne (�rst degree polynomial). In those cases the matrix M will be singular
or near-singular.

1.3 Iterative quadratic optimization

Suppose now that we want to �nd a local stationary point (minimum, maximum, or saddle
point) x � of a nonlinear function f : Rn ! R (the goal function) that is twice di�erentiable.
Suppose also we have an initial guessx(0) for the solution and an upper bound � (0) for
the distance from x(0) to the true solution x � . We can do so by an iterating the quadratic
optmization algorithm of section 1.2. See algorithm 1. The source code available at [1].
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Algorithm 1 DivSmpMin (f; x; �; �; t; �; �; �; � )
Requires: A function f ; the number n of variables, an initial guessx 2 Rn ; the initial

error estimate � ; the error tolerance � ; the maximum number of iterations t; the relative
simplex radius � ; the uncertainty adjustment factors � and � ; and the optmization
direction � 2 f� 1; 0 + 1g.

Computes: The local optimum point x � of f and the new uncertainty estimate �
1: while t � 0 do
2: r  � � ;
3: (p; y)  SimplexSample(f; n; x; r );
4: z�  OptQuad(f; n; y );
5: x �  

P n+1
i =0 z�

i pii ;
6: d  k x � x � k;
7: if (d > � ) then x �  x + � (x � x � )=d;
8: if (� = +1) then
9: Let yij the maximum sample function value;

10: if (f (x � ) < y ij ) then x �  pij ; d  k x � x � k;
11: if (� = � 1) then
12: Let yij the minimum sample function value;
13: if (f (x � ) > y ij ) then x �  pij ; d  k x � x � k;
14: � � = min f ��; �

p
d2 + ng

15: x  x � ; �  � � ; t  t � 1;
16: if (� � < � ) then return ( x; � );
17: end while
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At each step, our algorithm �rst generates a simplex S with circumradius �� surrounding
the current guessx, where � is some �xed parameter usually smaller than 1. Then we
interpolate the goal function f by a quadratic function Q at the vertices and midpoints of
S, as described in section 1.1. Next we compute the stationary pointx � of Q as described
in section 1.2. If the new guess is adequate, we compute a new uncertainty� based on the
current � and the distance kx � � xk, and we set the next guessx to x � . This process is
repeated until the estimated uncertainty � is less than a prescribed tolerance� , or a �xed
computation budget is exhausted.

The input parameter � indicates whether the algorithm should search for a maximum
(� = +1), a minimum ( � = � 1) or any stationary point ( � = 0). The new guessx � is
considered to be inadequate if the lengthkx � � xk of the displacement is greater than� . In
that case we truncate to displacement to length� preserving its direction (step 7). When
looking for a minimum (� = � 1) or a maximum (� = +1), the new guess x � is inadequate
also if its function value is not better than the sample values. If so, we setx � to the point
pij that has the best value of f (pij )and adjust x according (steps 8 to 13).

To justify this method we observe that if the vertices of S are su�ciently close to the
optimum x � , then Q is to close to f ; and if f is positive de�nite at x � , then the stationary
point x � of Q will be close to true optimum x � of f . In fact, convergence is expected to be
quadratic as in Newton's root-�nding method, for the same reasons.

This method generally fails if the quadratic interpolant Q is not a good match to the
goal function; either because function is \noisy" or because the initial guess is not close
enough to the minimum, or because the initial simplex radius�� is too large.

1.4 Examples

To ilustrate the method we test it with various functions and various starting guesses. For
each test we ran the algorithm for several starting guesses located on a regular array around
the true minimum. We show the results as an \arrow plot" (such as �gure 3) where each
arrow, representing one run of algorithm, connects the starting guess to the �nal result of
that run. We also show a trace of a single run of the algorithm (such as �gure 4) where each
arrow connects one intermediate guessx to the next guessx � , and each circle has center
at the current guessx and radius equal to the uncertainty � . In all tests, we set � = 0 :9,
� = 0 :9, � = 0 :5, � = 0 :001 andt = 10.

1.4.1 Quadratic function

For this test, the goal function is a quadratic polynomial in two variables [3].

f 1(x0; x1) = ( x0 + 2x1 � 7)2 + (2 x0 + x1 � 5)2 (12)

The minimum x � of f 1 is the point (1; 3) where f 1 has the value 0. As expected for a
quadratic function the algorithm �nds the minimum in a single iteration.
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Figure 2: Graph of the function f 1. The plotted region is [� 11; 11] � [� 11; 11].
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Figure 3: The initial guesses and �nal results of our algorithm applied to f 1 at several
points in the square [� 10; 10] � [� 10; 10]. The plotted region is [� 11; 11] � [� 11; 11]. The
uncertainty initial � was set to 15.
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Figure 4: Behavior of our algorithm applied to f 1 with initial guess x = ( � 10; 10) and
uncertainty � = 15. The plotted region is [� 11; 11] � [� 11; 11].

1.4.2 Trigonometric polynomial

For this test, the goal function f 2 [3] is a sum of sinusoidal waves alongx0 and x1, with
various frequencies and phases

f 2(x0; x1) =
[cos(2x1 + 1) + 2 cos(3x1 + 2)+
3 cos(4x1 + 3) + 4 cos(5x1 + 4) + 5 cos(6x1 + 5)]
[cos(1) + 2 cos(x0 + 2)+
3 cos(2x0 + 3) + 4 cos(3x0 + 4) + 5 cos(4x0 + 5)]

(13)

The minimum point x � of f 2 is approximately (4:97648; 4:85806), where has value� � 176:542.
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Figure 5: Graph of the function f 2. The plotted regions is [3:95; 5:95] � [3:85; 5:85].
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Figure 6: The initial guesses and �nal results of our algorithm applied tof 2 at several points
in the square [4:2; 5:7] � [4:1; 5:6]. The initial uncertainty � was set to 0:85. The plotted
region is [3:95; 5:95] � [3:85; 5:85].
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Figure 7: Behavior of our algorithm applied f 2 at initial guess x = (4 :25; 4:25) and uncer-
tainty � = 1 :25. The plotted region is [3:95; 5:95] � [3:85; 5:85].

1.4.3 Sextic polynomial

For this test, the goal function f 3 is the \six-hump camel back function," [2] a polynomial
of the sixth degree

f 3(x0; x1) = (4 �
21
10

x2
0 +

x4
0

3
) x2

0 + x0 x1 + ( � 4 + 4x2
1)x2

1 (14)

This function has two local minima, approximately at ( � 0:0898; 0:7126) and (0:0898; � 0:7126),
both with value � � 1:0316.
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Figure 8: Graph of the function f 3. The plotted region is [� 1:25; 1:25] � [� 1:25; 1:25].
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Figure 9: The initial guesses and �nal results of our algorithm applied tof 3 at several points
in the square [� 1; 1] � [� 1; 1], with initial uncertainty � was set to 0:85. The plotted region
is [� 1:25; 1:25] � [� 1:25; 1:25].
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Figure 10: Behavior of our algorithm applied to f 3 with initial guess x = (0 :75; 0), uncer-
tainty � = 1 :1. The plotted region is [� 1:25; 1:25] � [� 1:25; 1:25].

1.4.4 Trigonometric noise function

For this test, the goal function f 4 is a sum of four sinusoidal waves of various directions and
phases, and widely di�erent frequencies

f 4(x0; x1) = 2 cos(3x0 + 4x1) + cos(5x0 � 2x1)
+ 1

12 cos(30x0 + 12x1) + 1
15 cos(13x0 � 27x1)

(15)

This function has several local minima; some of them are approximately located at (0:6829; 0:22),
(� 0:6829; � 0:22), (1:218; 1:418) and (� 1:218; � 1:418), with slightly di�erent function values
close to � 3:041.
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Figure 11: Graph of the function f 4. The plotted region is [� 2; 2] � [� 2; 2].
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Figure 12: The initial guesses and �nal results of our algorithm applied to f 4 at several
points in the square [� 1; 1] � [� 1; 1]. The initial uncertainty � was set to 0:95. The plotted
region is [� 2; 2] � [� 2; 2].
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Figure 13: Behavior of our algorithm applied to f 4 with initial guess x = (0 ; 0), uncertainty
� = 0 :85. The plotted region is [� 2; 2] � [� 2; 2].
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