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O conteúdo do presente relatório é de única responsabilidade dos autores.



A fast quantum algorithm for the closest bichromatic pair

problem

Nilton Volpato∗ Arnaldo Moura†

Abstract

We present an algorithm for solving the two-color bichromatic closest pair prob-
lem using O(N1/2M1/4 logM logN) queries if N ≤ M ≤ N2, or O(M1/2 log2N) if
M > N2. This result contrasts with the classical probabilistic time complexity of
O((NM logN logM)2/3 +M log2N +N log2M). We also show how to solve the clos-
est pair problem—that is a special case of the bichromatic closest pair problem—using
O(N3/4 log2N) queries. And, we also show a quantum lower bound of Ω(N2/3) queries
for this problem, and discuss some open issues.

1 Introduction

In this article we present a new, and faster than classical, quantum algorithm for the two-
color bichromatic closest pair and closest pair problems. We also provide a lower bound for
the closest pair problem. Some of these results also appeared in a simplified form in [13].

The closest pair problem is defined as follows. Here [N ] stands for the set {1, . . . , N}.

Definition 1 (Closest pair problem) Given N unique points P = {pi : i ∈ [N ]} in k-
dimensional space and a distance function d : P × P → R, find a pair of points which are
closest to each other.

The closest bichromatic pair, defined below, is a generalization of the closest pair prob-
lem. By providing an algorithm for the former we also provide an algorithm for the latter.

Definition 2 (Closest bichromatic pair problem) Given a set of N unique points P =
{pi : i ∈ [N ]} and M unique points Q = {qi : i ∈ [M ]} in k-dimensional space, and a
distance function d : (P ∪Q)× (P ∪Q)→ R, find a pair of points (p, q) ∈ P ×Q which are
closest to each other.

The points in P and Q may be regarded as colored with different colors, therefore the
name closest bichromatic pair. The problem may be viewed as finding a point p and a point
q that have different colors, such that the distance between p and q is minimum among all
such bichromatic pairs.
∗Research supported by CNPq grant: 140756/2004-3
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Note that we only consider the problem where each point is colored by one of two
colors. In the general closest bichromatic pair problem each point may be labeled with a
color chosen from a given set, which may contain more than two colors.

The closest pair problem is a fundamental one in many applications, and is also a key step
in many algorithms, being widely studied in classical computational geometry problems.
The closest bichromatic pair problem, with two colors, has applications, for instance, in
solving the Euclidean minimum spanning tree problem, and was described by [2].

To simplify the exposition, we consider that the points are all distinct and have non-
negative coordinates. These restrictions are not impeditive and the algorithm can be easily
adapted to the general case.

The algorithm we present here relies on a total order of the points. This consideration
only makes sense for the unidimensional case, and this is the case we consider. To perform
comparisons of distances between pairs of points, we resort to an oracle given as an uni-
tary transformation, which, given two pairs of indices to points (i, j) and (k, l), decides if
d(pi, pj) < d(pk, pl). The complexity measure we use is the number of oracle calls.

The rest of the paper is organized as follows. In Section 2 we expose some important
results, we show how one could build a simple algorithm for the two color bichromatic closest
pair problem with running time O(

√
NM), and we present the quantum lower bound for

the closest pair problem. In Section 3, we present the closest pair algorithm itself, which
includes an auxiliar algorithm, together with the corresponding complexity and success
probability analyses. Section 4, contain some further discussions and open problems. It is
followed by Section 5 with some concluding remarks.

2 Preliminaries

In this section some supporting algorithms are listed. We also present a näıve quantum
algorithm for the bichromatic closest pair problem and a lower bound for the quantum
closest pair problem.

2.1 Requisites

In our algorithm we make use of the algorithm for finding the minimum [7], a summary of
which is given here.

Theorem 1 (Minimum algorithm [7]) Let T [0 . . . N − 1] be an unsorted table of N
items, each holding a value from an ordered set. Let

O |i〉 |j〉 →
{
− |i〉 |j〉 if T [i] < T [j]
|i〉 |j〉 otherwise,

be an oracle that marks all elements that satisfy the less-than condition. Then, there exists
a quantum algorithm that finds the index k such that T [k] is minimum with probability at
least 1/2 and with running time O(

√
N).

We also find it useful to outline, in a simplified form, the quantum amplitude amplifica-
tion algorithm [4], which also appears in [6].
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Theorem 2 (Amplitude Amplification [4]) Let A be any quantum algorithm that uses
no measurements, and let χ : Z→ {0, 1} be any Boolean function. Let α denote the initial
success probability of A finding a solution (i.e. the probability of outputting z such that
χ(z) = 1). Then, there exists a quantum algorithm that finds a solution using an expected
number of O(1/

√
α) applications of A and A−1 if α > 0, and otherwise runs forever. Also,

if α is known then O(1/
√
α) is the worst case complexity of the resulting algorithm.

It is worth noting that if α = 0, then amplitude amplification will not change the
success probability in the resulting algorithm, however, we can obtain the same complexity
by limiting the running time of the algorithm.

2.2 The näıve algorithm

In the quantum setting, we can build a näıve algorithm for the bichromatic closest pair
problem, which is based on Dürr and Høyer’s algorithm for finding the minimum [7]. The
latter, in turn, is based on Grover’s algorithm [8, 9]. First, we can consider that each
element being searched is, in fact, a pair of points identified by their indices. So, the pair
(pi, pj), where pi ∈ P and pj ∈ Q, could be identified as (i, j) and each pair (i, j) can be
identified with a number from 0 to NM − 1 (and with states |0〉 to |NM − 1〉) and can,
thus, be represented by logN + logM qubits.

Let T [(0, 0) . . . (N−1,M−1)], according to Theorem 1, be a table of NM items, holding
all the MN bichromatic pairs. The problem is to find (i, j) such that d(pi, pj) is minimum.
For this, we can use the following oracle:

O |i, j〉 |k, l〉 →
{
− |i, j〉 |k, l〉 if d(pi, pj) < d(pk, pl)
|i, j〉 |k, l〉 otherwise.

Also, in the first step of the algorithm, we must select a random pair of indices (k, l).
The rest of the algorithm follows from the algorithm presented in [7]. For a table of K
items, the algorithm running time is O(

√
K). Since we have K = NM , the running time

of this algorithm is O(
√
NM).

We can use this same algorithm to solve the simple closest pair problem, in which case
the complexity reduces to O(N), by making M = N and not allowing a pair of the form
(i, i) to be selected.

2.3 Closest-pair lower bound

In the classical deterministic model, it is known that Θ(N logN) queries are necessary and
sufficient [11] for finding the closest pair. For the classical probabilistic case, there is a
number of algorithms that run in O(N) time, for example [12, 10].

Classically, the lower bound stems from the fact that the closest pair problem can be
reduced to the element distinctness problem [3, 14]. As the latter has an Ω(N logN) lower
bound, the former inherits the same bound.

In the quantum case we can use a similar argument, reducing the quantum closest pair
problem to the quantum element distinctness problem. The element distinctness problem
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has a lower bound of Ω(N2/3) queries [1, 5]. Since solving the quantum closest pair problem
allows us to solve the quantum element distinctness problem, we obtain a lower bound of
Ω(N2/3) for the closest pair problem on a quantum computer.

The reduction is as follows. We are given an input to the element distinctness problem
consisting of a set of N elements {xi : i ∈ [N ]} and an oracle which can compare the
elements for equality. We consider it as being an input to the closest pair problem, where
xi is the position of point pi, and define the distance function as d(pi, pj) = 0 if xi = xj and
i 6= j, or d(pi, pj) = 1 otherwise. It is easy to see that the closest pair has distance zero if
and only if the element distinctness problem has a non unique element.

It is worth noting that this lower bound for the element distinctness problem is based
on evaluation queries, that is, given i one can obtain the element value xi. Our algorithm
is based on comparison queries, that is, given i and j one can only decide if xi < xj . The
first model is stronger than the second, because, by evaluating, one can still compare the
elements, but not the other way around, so this bound is valid for both cases.

3 The algorithm

Our purpose is to design an algorithm for solving the two-color closest bichromatic pair
problem. We start by discussing about an algorithm to solve a similar problem. This
algorithm is based on the one presented in [6], which also contains other interesting remarks.

Instead of finding the bichromatic pair which have the minimum distance, we are looking
for any bichromatic pair whose distance is less than a threshold distance, given as the
distance between two points whose indices (k, l) are passed as a parameter to the algorithm.
The return of this algorithm is an index i, such that d(pi, pj) < d, where d = d(pk, pl) is the
distance threshold, pi ∈ P , and pj ∈ Q, which must be computed, is the closest point to pi.

To obtain pj one can just use a simple application of the algorithm for finding the
minimum, which is able to find the closest point to a given one, that is, to find the index j
given index i, in O(

√
|Q|) = O(

√
M) time.

Algorithm A(k,l)

1. Select a random subset A ⊂ [N ] of size L.

2. Select a random subset B ⊂ [M ] of size L2.

3. Sort the elements of A according to their distances to the origin.

4. Use Grover’s Algorithm on the elements of the B set to search for pairs in A×B
such that their distance is less than the distance threshold d(pk, pl). For this,
use the following oracle:

• Mark an item i ∈ B if the distance from i to its closest point in A is less
than d(pk, pl).
• Use binary search to determine the point in A closest to a given point, and

let j be the index to this point.
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We analyze the query complexity of Algorithm A, by choosing L = min{N,
√
M}.

Step 3 takes L logL + O(L) comparisons, using classical sorting. Step 4 takes O(
√
|B|)

applications of the oracle, which, in turn, does O(log |A|) comparisons, yielding a complexity
of O(L logL). This results in an overall O(L logL) query comparisons for Algorithm A.

Now, for the success probability of algorithm A. If there are no pair of points such that
their distance is less than d, then the algorithm will not succeed. Suppose there is at least
one pair of points such that their distance is less than the threshold, say (px, py). Then, the
probability of (x, y) belonging to (A,B) is at least (L/N)(L2/M) = L3/(MN), and if indeed
(x, y) ∈ A×B, then step 4 will find this (or some other) pair of points with probability at
least 1/2 in at most O(L logL) queries. Hence, the overall success probability of Algorithm
A is at least α = L3/(2MN). This probability is small, but can be amplified by taking
advantage of the amplitude amplification algorithm.

Algorithm Bichromatic Closest Pair

1. Choose uniformly a random index k ∈ [N ]. Compute the index l such that pl ∈ Q
is the closest point to pk ∈ P .

2. Repeat the following steps for 2m times (m is defined below):

(a) Apply amplitude amplification on Algorithm A with distance threshold d(pk, pl).
(b) Observe the outcome, obtaining i and computing j, such that pj ∈ Q is the

closest point to pi ∈ P .
(c) If d(pi, pj) < d(pk, pl), then set (k, l) to (i, j).

3. Return (k, l).

We first analyze the query complexity of step 2a. As we remarked above, the success
probability of Algorithm A is at least α = L3/(2MN), hence the amplitude amplification
step requires a worst case number of O(1/

√
α) = O(

√
MN/L3) applications of Algorithm

A. Therefore, taking into consideration that L = min{N,
√
M}, the total number of queries

for step 2a is O(
√
NM1/4 logM) if N ≤M ≤ N2, or O(

√
M logN) if M > N2. The query

complexity of step 1 and step 2b is
√
M due to the closest point search. Step 2c, uses one

oracle query.
Now, for the number of times we need to repeat step 2. We want to derive the expected

time to find the minimum.

Lemma 1 The expected number of times that step 2 should be repeated so that (k, l) holds
the closest pair is at most m = 2 logN + 2.

Proof. We can rank, from 1 to N , each element selected in steps 1 and 2b because we
just select one of the points from set [N ], the other is deterministically obtained.

Define S(r) as the number of times step 2 should be repeated before (k, l) holds the
closest pair if we choose the element with rank r as a threshold. By calculating S(N) we
can find an upper bound to the expected number of times step 2 should be repeated, because
selecting the element with rank N is the worst case for the first step of the algorithm.
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In any step, any element with a distance less than the threshold can be chosen with
equal probability. Also, in step 2a, the algorithm may fail with probability at most 1/2, in
which case we re-execute the step with the same element as a threshold. So we can define
S(N) recursively as:

S(N) = 1 +
1
2

(
1

N − 1

N−1∑
i=1

S(i)

)
+

1
2
S(N),

which, by considering S(1) = 0, has as solution S(N) = 2HN−1, where Hk is the k-th
harmonic number. So S(N) ≤ 2 log(N − 1) + 2 ≤ 2 logN + 2.

Lemma 2 To achieve at least 1/2 probability of success, we should run step 2 of the algo-
rithm for at least 2 times the expected number, i.e., 2m = 2(2 logN + 2) times.

Proof. Simply apply Markov’s Inequality.

Theorem 3 The number of queries performed by the algorithm for finding the two-color
closest bichromatic pair is O(N1/2M1/4 logM logN) if N ≤ M ≤ N2, or O(M1/2 log2N)
if M > N2.

Proof. From Lemmas 1 and 2, and the above complexity analysis, step 2a is executed
4 logN + 4 times. By considering the number of queries in each execution, the result easily
follows.

Corollary 1 The number of queries performed by the algorithm for finding the closest pair
is O(N3/4 log2N).

Proof. Let M = N , and modify the algorithm to avoid selecting points of the form
(i, i).

4 Remarks and open issues

Let Q2(P ) be the worst-case number of queries required for solving problem P by a quantum
bounded error algorithm. Then, the query comparison complexity of the quantum closest
pair problem currently is:

Ω(N2/3) ≤ Q2(Closest-Pair) ≤ O(N3/4 log2N).

For the bichromatic closest pair problem, there is still no quantum lower bound, even
for the two-color case. Such lower bound would preferably involve variables N and M ,
regarding the number of points labeled with each color.

The specific algorithm used relies on sorting, so the derived upper bound applies only
to the 1-dimensional case. We also use an oracle for comparing distances, so our queries are
comparison-based.
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The fact that distances between points in space may be non-rational numbers, even
if all the coordinates are integers, may pose some problems if we were to use evaluation
queries for the closest pair problem. The only exception to this is the 1-dimensional case.
Hence, it would be possible to solve the closest pair problem using evaluation queries and
the traditional distance function only in 1 dimension. For higher dimensions, it would be
necessary to use comparison queries or simpler distance functions returning only rational
numbers.

Also, it seems that the lower bound for the closest pair problem using comparison-based
oracles could be raised, possibly by a factor of logN . Note that evaluation queries are
stronger than comparison queries, and the former can simulate the latter by using binary
search, which usually involves doing logN additional operations.

5 Conclusion

We presented a faster than classical algorithm for solving the two-color bichromatic closest
pair problem and, as a special case, the closest pair problem. Both algorithms are assymp-
totically superior than their classical deterministic and probabilistic versions. They also
provide an speedup against a näıve approach.

There is still room for improvement, by raising the lower bound or by reducing the upper
bounds. This might be true specially for the closest pair problem, for which we obtained
the aforementioned lower bound.

There is still no lower bound for the closest pair problem for an oracle exclusively based
on comparisons.
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