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Intrinsic Mesh Segmentation

Fernando de Goés  Siome Goldenstein Luiz Velhot

Abstract

Mesh segmentation offers a desirable divide-and-condtegegy for many graphics appli-
cations. In this paper, we present a novel, efficient, anghgit method to segment meshes
following the minima rule. The eigenfunctions of the LapaBeltrami operator define locality
and volume-shape preserving functions over a surface.irétspn Manifold learning theory,
we use these functions as the basis of an embedding space$brvartices and group them
usingk-means clustering. We also present a new kind of segmentaigoarchy built from the
analysis of the Laplace-Beltrami operator spectrum.

1 Introduction

Mesh segmentation offers a desirable divide-and-conquer strategyafty graphics applications.
Essentially, there are two main types of mesh segmentation algorithms: the ohesurtiteon
meshes into patches and the ones that decompose meshes into parts. feaselgityentation cre-
ates disk-like sub-meshes and is used for texture mapping, building ahadk,simplification, and
geometry-image creation. Part-type segmentation recovers meaningfubgentp and can be used
for morphing, compression, skeleton extraction, animation, and modelirgg[SBa04, AKM 06,
Sha06] for recent surveys on mesh segmentation.

In this work, we focus on part-type segmentation following the minima rule [HS®7}he
last years, several approaches have been proposed to this proldieny. of them are based on
clustering methods using mesh attributes such as curvature, dihedral,angleyeodesic distances.
In [PKAO3], a fast marching watershed algorithm was used with curgatalues to assist shape
matching. In [STKO2]k-means clustering with geodesic distances decomposes meshes into parts
for morphing purposes. In [KT03], a fuzzy clustering with graph cutddihierarchical segments
extracting mesh skeleton. In [LZ04], Liu and Zhang explored the Polasizéheory to achieve
segmentation using a spectral clustering on the eigenvectors of an affinity besed on geodesic
distances and dihedral angles. In [ZLO05], Zhang and Liu improvedqus work computing eigen-
vectors through Nystrom approximation and finding segments by a linesrhse@h salient cut
metrics. A boundary approach to mesh segmentation is proposed irfQBL.SThis work used
curvature estimation and geometric-snakes to scissor mesh through satitnirs.
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Despite of good results, the wide variety of mesh attributes may induce ualdlegiroblems to
previous techniques. Curvature attributes tend to create over-segmeatatimd local concavities
and make the algorithms sensitive to pose. Metrics based on geodesic eista@@lso sensitive
to pose and to topologic changes. Besides, irregular meshes complicatdrdati@n of small
features and hierarchical segmentations. Recent works treat atwdterps through pose invariant
tools. In [KLTO5], a Multi-dimensional scaling tranforms meshes into cararposes enabling
detection of mesh features and hierarchical components. In [SCOS&/presented a volume-
shape function to examine the diameter of the neighborhood of surfactspdéfining a pose
oblivous shape signature for meshes.

This paper presents a novel part-type mesh segmentation based on|¥&rafoing theory
and the Laplace-Beltrami operator. The algorithm is close to linear on meslarsizon number
of segments. It uses only intrinsic properties of the surface, resultinghéwaand more natural
kind of hierarchical segmentation, extracting small features, and intrilysiodowing the minima
rule. The main idea of our approach is to explore the locality preservinuepsoof the Laplace-
Beltrami eigenfunctions to define a new embedding for mesh vertices, ashbaesin Manifold
learning theory. Then mesh vertices are grouped kyreeans clustering with Euclidian distances.
To decide the desired number of segments, we analyse the growth of theé-d&eltrami spectrum,
which follows surface geometry and topology.

Our work has the following contributions:

e Introduces an efficient and intrinsic mesh segmentation algorithm.

Proposes a new interpretation of the Laplace-Beltrami eigenfunctioresl ltas Manifold
learning theory.

Explores the Laplace-Beltrami spectrum to identify hierarchical and mganimesh seg-
ments.

Presents a new kind of hierarchy of segments aligned to the minima rule.

2 Laplace-Beltrami Operator

The Laplace-Beltrami operator (LBop) is a generalization of the LaplaciarD-manifolds. In-
tuitively, it measures the difference of a functidnbetween each point of the manifold and its
neighborhood.

2.1 Definition and Properties

FornD-manifolds, the Laplace-Beltrami operator is defined as:
1 0 d
A=VoV=0d4+dd=Y ——/|9|—, 1
) 2 Vaiox V190 W

whered andd are exterior calculus operators, ajui is the determinant of the manifold metric
tensor.
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As the definition suggests, the LBop contains information about the localitadi eegion
on the manifold. Specifically to surfaces, this feature ensures that tlatop#llows principal
curvatures and directions. Therefore, we can write the LBop of a poas a linear combination
of second derivatives of the surface aroymgharameterized by the arc lengths in the principal
directions ofp.

The LBop is a fundamental tool in many mathematics and physics problemstibutea, LBop
is used to solve the heat diffusion process and its eigenfunctions soli#zlimnoltz equation

Af = —\f, (2)

which solutions represent natural vibrations over manifolds.

The eigenfunctions of the LBop present interesting properties. Firatl,ofhey represent a
generalization of the function basis of Fourier analysigfidrmanifold. In [VLO7], these basis are
calledManifold Harmonic Basi$MHB). As a consequence of this property, the first MHB represent
low frequencies surface informations and recover the overall susiaape, while high frequencies
basis indicate finer details. Second, MHB functions are smooth, minimizing thehir energy.
Third, the zero set (also calletbdal lineg of the nth MHB subdivides the manifold into maximal
n subdomains with intersections at constant angles. For more results abgadimetry of eigen-
functions, see [JNTO1]. Based on above properties, we conclutinéhiiHB indicate locality and
volume-shape preserving surface functions.

The spectrum of the LBop is composed by the sequence of eigenvattids & A> < ... T oo
corresponding to squared spatial frequencies. It is well known tleaeitpenvalues are strongly
related to the surface geometry and topology, determining its area, Betti rmrabd Euler char-
acterist. In [RWPO06], the spectrum of the LBop was also used to defineameggnatures for shape
matching.

Research on heat equation proved that the asymptotic behavior of ttiesleed (t) is expressed
by

Z(t) =Y e Nt 3
(t) Z ®)

Consequently, the error approximation of a heat solution can be continll¢ide growth of the
spectrum [CLO6]. Geometrically, this fact means that the maxima gaps oféc&rgm indicate the
number of meaningful regions on the surface, providing a hierarchigglto segment meshes into
parts (Figure 1).

2.2 Discrete Case

In graphics, a surface is represented by a mdsk (V,E,F) and then LBop must have a dis-
crete version. The first approach given to the LBop of meshes wasvinticSpectral Graph the-
ory [Chu97] and it defines the LBop as a combinatorial madtrix D — A, whereD is a diagonal
matrix of vertices valences amis the graph adjacency matrix. However, this version of the LBop
does not take geometry into acount.

A geometric based version of the LBop was first presented by [PP@8ing cotangent
weights. In [MDSB02,VL07], a FEM (Finite Element Method) was used to completeldrezation
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Figure 1: Analysis of LBop spectrum and the hierarchy of segments.dllipses indicate the large
spectrum gaps.

of the discrete LBop. Following [VLO7], we define a discrete LBop of alm@gthe matrix.

L(i,j) = —(cot(ai;)+cot(Bij))/2Area(i)
o L 4)
LD = Yjena L),
whereN(i) is the set of neighbor vertices pfArea(i) is the Voronoi area arouridanda; j andf3;
are the angles opposite to the edgsg).

Note that the matrix is sparse, so efficient eigen-problem solvers can be used. In thés pap
use the ARPACK solver (seewv. caam ri ce. edu/ sof t war e/ ARPACK). To make computa-
tions faster, we use.B(L +L'), a symmetric version df [Lev06]. Figure 2 compares eigenvectors
of the LBop computed by the combinatorial version and the geometric one.

Figure 2: The 3rd eigenfunction of the combinatorial LBop (left) and ofdiserete LBop (right).
The color indicates values increasing from blue to red. The contouvs isltines and nodal lines
are the red ones.
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Besides the preservation of continuous properties, the discrete LBep goherent results
through multiresolution analysis. We verify that the initial band of the spec{tam frequen-
cies) is preserved after successive decimations of a mesh (Figure 8milfar result is shown
in [DBG*06], but Dong et al. used the LBop just witlotangent weightswhat requires a mass-
adjustment into its spectrum. Considering the vertices area into LBop, wevachind spectrum
preserving with no required adjustment. In the same way, the MHB of lovuénecjes are also
preserved, but it is worth noting that, as the frequency increases, dnemore oscilations on the
MHB and higher mesh resolutions are required to achieve good approxirsatio

horse 1k—
horse 2k—
horse 3k—
horse 4k—

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Index Index

Figure 3: Examples of the initial band of the LBop spectrum preservedsaftessive decimations.

2.3 Applications

In the recent years, the LBop has been used in a diverse set diiggapplications. Among them:
smoothing [NISA06], conformal parametrization [GY03], remeshing [DB&G TACSDO06], pose
transfer [Lev06], registration [RWP06], and spectral filtering [VL.G7or more, see [Tau00, Sor06].

3 Manifold Learning

Manifold learning is an area of machine learning that aims to recover intrinfsiomation about
a set of points of anD-manifold embedded iR" (m < n). Usually, it is desirable to have new
representations for the points that preserve manifold characteristiese iiew embeddings can be
applied to non-linear dimensionality reduction problem, data classification, dgdaipation, and
data clustering.

Many of the Manifold learning methods are based on spectral analysisassical approach
is the PCA (Principal Component Analysis) where the most relevant scitéetions of data set
are recovered computing the eigenvectors of high eigenvalues of aasm@matrix. To work with
non-linear spaces, Kernel-PCA modifies the distance metric between poikesrisl functions. In
Isomap [TdSLO0O0], the distance metric used is geodesic lengths over theotdaifl, using Multi-
dimensional scaling, a new point representation can be computed apptiogigeodesic distances
by Euclidian distances. Isomap is also used in graphics for surfaceptaazation [ZSGS04].

So far, the Manifold learning methods presented here work globally, tigipgeserve distance
values between all pair of points, even between distant ones. In [R&0@jv method called LLE
(Locally Linear Embedding) proposes to treat points as linear combinatfahsioneighbors and
then it shows that the important information to be preserved in the embeddicg &pthe point
locality, i.e., the relation of proximity among points and not distance values.
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Extending the idea of locality, eigenfunctions of the manifold LBop (MHB) banexplored
over the set of points. MHB result in a new embedding where Euclidian distameasure the
proximity between points on the manifold. The use of MHB was first introdircé@NO2] by the
name ofLaplacian EigenmapsA recent extension of this approach is tié&usion mapg [CLO6]),
where the distortion caused by the distribution of samples over the manifold is méeimiz

To show that the MHB define embedding spaces with Euclidian distance megserping
proximity, let’s review how the MHB of a set of points are computed. Giveatabpoints{x; }{' ,,
first we connect close points by edges and then we compute the LB@pghting an edgex;, X;)
by the functionw(x;,x;) — note that, for our purposes, both informations are given intrinsically by
the mesh. Now, to find an embedding that preserves the manifold locality, weute a vectoy
such that

y=argminzlz= argmir&Zw(i, )z —2z)% (5)
1]

Generalizing the above idea tavadimensional embedding, we use the f'msi;olutions{yi}im:l of
Equation 5 and define the embedding of a pajnais the vectol; = [yij]i”;l. Finally, it is easy to
verify that
Y = argmin,Z'LZ = argmin, 3 w(i, })|1Zi - Z;|* (6)
1]

In [MSO01], Meila and Shi presented a similiar MHB embedding but in a stdachf@shion. By
building a Markov chain over the data set and defining its LBop by a transitatnix, they proved
that an exack-partition of the data set is only possible when the #8tHB are piecewise constant.
They also noted that the correct number of partitikresin be determined automatically analysing
gaps between the eigenvalues of the LBop.

4 Our Method

The main motivation of our approach is to associate the properties of the Mid&rfaces (Sec-
tion 2) with the advantages of embedding points by MHB as exposed by Maférning theory
(Section 3).

4.1 Main Techniques

We now explain the three techniques necessary to accomplish the deswe@dtsn between MHB
with Manifold learning theory and describe our segmentation method.

Embedding and clustering vertices

The MHB compose an embedding space preserving the manifold locality arsdirimggproximity
by Euclidian distances. At the same time, MHB also represent volume-shiagigohs on surfaces.
Therefore, embedding mesh vertices by MHB gives us a way to groujgeginto meaningful
volumes.

Meaningful volumes are parts of a 3D object delimited by short boundaridsn concavity
regions. Such features also state the minima rule. Hence, MHB embeddimgliyatesults in a
part-type segmentation following the minima rule.
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To group vertices we uselkameans clustering [LI082] on the embedding space. KFheeans
procedure acts as &M optimization. On théexpectation phase, the data set is partitioned knto
groups minimizing the distance frokiseed points. On thklaximization phase, each seed point
is updated by the average of points inside its group. The quality of resylénds directly on the
choice of the initial seeds. In our implementation, we use the mutually furthestgnts as initial
seeds.

The dimension of the embedding space

In Section 2, we saw that thth MHB and, consequently, all lower MHB divide the surface up to
subdomains. As MHB are smooth functions, we can use this property &satren of the optimal
case of piecewise constant functions described by Meila and Shi [MBfdm this fact, we set the
dimension of the embedding space equal to the desired number of clusters.

The number of segments

The growth of the spectrum of the LBop depends on surface geomedryoaology such that
similiar eigenvalues correspond to related MHB. In Manifold learning, weelthat thek first
piecewise constant MHB are separated from the others MHB by a maximprim glae spectrum.
Therefore, looking for large gaps in the spectrum of the LBop, we baose different values d&f
to segment the mesh. In practice, we note that, when we chooskin a gap, the segmentation
usually generates non-compact parts.

As the value ok increases, more features of the mesh are segmented given us a new kind o

hierarchy among segments. In previous works, the hierarchy of segmetermines a tree where
one parent segment is split into others parts independently. In ouragtprior each level of the
hierarchy, current segments can be recombined and reorganizdiahgléa a more natural and
coherent segmentation.

We show the structure of our method in Algorithm 1.

Algorithm 1 Intrinsic Mesh Segmentation
Require: A meshM = (V,E,F).
Ensure: k sub-mesheM; = (M, E;,F).
1: Compute the LBoj of M.
2: Compute the initial ban® of the spectrum of.
3: Find gapk; in B. We identify a gap by th&-th
eigenvalue where it starts (See 4.2).
4: Choosek as the desired number of segments amgisg
5: Compute the firsk MHB [y/]_of L.

6: SetY; = [yi’]'j‘:1 as the embedding representation
for each vertex € V.

7: Apply k-meansverY to findk sub-meshes.

8: [OPTIONAL] Fit sub-meshes boundaries (See 4.3).
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4.2 Numerical Solution

The time complexity of our approach to segment a mésk: (V,E,F) into k parts depends es-
sentially on steps 2, 5, and 7 of Algorithm 1. The coskefeans (step 7) i®(ck|V|), wherec
indicates the number démeans iterations. In our experiments, the value «f negligible and,
ask < |V|, the cost of this step becomes linear on mesh size. In turn, the cost of2steys5
depends on eigen-problem solver. To compute the KildHB, the ARPACK solver used in our
implementation is superlinear &rend linear on the numbéE | of non-zero elements of the LBop.

It is well known that eigen-problem solvers are very expensive to coenllHB for surfaces
with more than a few thousand vertices. The reason for that is the poditioemumber to compute
lower frequencies of a matrix, requiring high number of iterations to cgevér a solution. To
compensate for this problem, we invert the spectrum of the LBop. For traswie compute the
maximum eigenvalu@ of the LBop matrixL and then we compute the highéseigenvectors of
Al —L. See [VLO7] for an alternative solution.

In step 2, we compute a bamlof the spectrum of the LBop. The length Bfused is 40, but
different lengths can be set. As the desired number of segrkestgery small compared to the
length of the bandB, step 2 turns to the dominant computation of our algorithm. However, we can
accelerate this computation through a multiresolution approach as descriBedtion 2.2. So we
decimate the orignal mesh to compute the bBraohd after that we return to the full mesh.

4.3 Fitting Boundary

Fitting boundary is a commom problem on part-type segmentation algorithmsllyJgusa related
with imprecisions on segmentation criteria. Hierarchical approaches &33[KKL05, KLTO5] ex-
plore the tree structure of the hierarchy to refine boundaries. Eadhafdtie three represents a
sub-mesh and it is partitioned independently from others nodes. As theenwhparts to divide
a node is small, the boundaries involve only pairs of segments and then cefineel by a graph
min-cut algorithm.

In our method, the boundary smoothing depends on the quality of the amartoon of the MHB
used in the embedding space. As discussed in Section 2.2, higher MHB emgnpnumerical
precision problems. So mesh segmentation into many parts (e.g., more than t&3dain jagged
boundaries, erroneously clustering boundary vertices. Usuallyp weemesh is decomposed into
many parts, the boundaries involve more than two segments and, for tlua rgeesph min-cut is not
enough to correct them. Nevertheless, for small number of segmentghies@good boundaries
with no adjustment.

5 Results

We have applied our method into different meshes up to 5000 vertices. pdfiexents were carried
on an Intel Pentium 4 3.2 GHz machine with 2 GB RAM. Table 5 reports time statistieshave
only used decimation to compute the inital band of the LBop spectrum for mestiesiore than
3000 vertices. It is also important to note that we do not fit boundaries.s€gments colors are
chosen at random.
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Table 1: Statistics of our algorithm. For each mesh, we give respectivelyutimder of vertices,
edges, and faces, the decimation resolution (if necessary), computingpfiies f40th first eigen-
values, the number of segmektscomputing time for thek first MHB, and computing time for
k-means. All times are in seconds.

Mesh Size Decimation Band | k | MHB | k-means
lion (2002,6000,4000) - 38 | 12| 6.5 0.8
dino-pet (1681,4970,3281) - 20 | 16| 153 0.7
duffy (4590,13761,9171) (2004,6003,3999) 49.5 | 13| 14.4 4.1
mouse (1872,5610,3740) - 50.9 | 11| 10.3 0.8
neptune (2996,9000,6000) - 29.3 | 13| 124 1.8
horse (4009,12008,8000) (2009,6008,4000) 53.4 | 7 | 27.5 2.1
julius (2107,6213,4107) - 131 | 6 | 4.4 0.7
camel (1900,5694,3796) - 555 | 6 | 24.8 0.4
rabbit (1238,3678,2442) - 78 | 9 2.7 0.3
hand (1453,4326,2874) - 7.4 7 3 0.3
bird (567,1695,1130) - 165 | 4 | 4.7 0.05
scarrow (1802,5350,3548) - 155 | 5 | 28.8 0.4
ET (429,1281,854) - 14 | 5 1.3 0.02
chess piece (250,744,496) - 093 | 3 | 0.57 0.01

Figures 1, 4, and 5 show examples of the hierarchical segmentatioragghby our approach.
In the dino-pet example of Figure 4(c)—(d), the body, the neck, anti¢hd are recombined and
split in different ways between the third and fourth level of the hierarfgaturing the new kind of
hierarchy of segments. Itis also immediate to verify that the segments repneseral parts of the
objects with small boundaries in concavity regions, following the minima rule.

Figure 6 shows that our approach is consistent to pose variations, isiggrtee different poses
of a horse into the same parts: e.g., head, legs, body, and tail. All horselgrtwle the same
resolution. More segmentation examples are in Figure 7.

In Figure 4(a)—(b), we compare our results to those presented in [L&Bith also us&-means
and eigenvectors of a matrix to segment meshes. Despite of similiar resultmethwd extracts
more natural components and takes only 36 seconds to compute four letreshierarchy, while
Liu and Zhang algorithm spends several minutes to compute only six segméigsdiscrepancy
occurs because the matrix computed in [LZ04] is dense and measuresititg b&tween each
pair of faces of the mesh, which cosB§|F|?log|F|) using Dijkstra’s algorithm and makes the
dimension of their matrix almost twice of ours.

6 Conclusion and Future Works

In this paper, we have presented a novel hierarchical part-type regstestation algorithm. Our
method is simple and totally intrinsic with respect to the properties of surfaddgguirany con-
straint or salient metric. We have also introduced a new kind of hierarchig matural to human
perception, recombining and splitting segments in each level of the hierarchy
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(a) [LZz04] (b) First level. (c) Third level. (d) Fourth level.

Figure 4: First row: comparision between [LZ04] and the first levelwfrmethod for the dino-pet
model. Second row: example of our hierarchy of segments. Note how the the@ neck, and the
head of the model are recombined and split in different parts.

Our approach is based on a new interpretation of the Laplace-Beltramifeigéions (MHB)
using Manifold learning theory. We define the MHB as a new embeddingdpacenesh vertices
where Euclidian distances measure vertices proximity. We also use the &dgddtcami spectrum
to identify the correct number of segments that decomposes meshesHiciyc

The complexity of our method is dominated by the eigen-problem solver. Iwuent im-
plementation, we use ARPACK solver, which is superlinear on the numbegaients and linear
on the number of nonzeros elements of the matrix. Even though it has a claseatoasymptotic
behavior, its cost increases drastically for meshes with more than a fewattasi of vertices. As
future work, we intend to use out-of-core computation as presented if7Vand to introduce
multiresolution solvers over meshes. Then we will be able to segment densesriato long
hierarchies.

Another direction for future work is the design of a new boundary refierg strategy to treat
complex boundaries among many segments. We also plan to exploit usexadefiars to pro-
duce different types of segmentation, and adapt our method to segnientipads from 3D laser
scanners.
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