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Intrinsic Mesh Segmentation

Fernando de Goes∗ Siome Goldenstein† Luiz Velho‡

Abstract

Mesh segmentation offers a desirable divide-and-conquer strategy for many graphics appli-
cations. In this paper, we present a novel, efficient, and intrinsic method to segment meshes
following the minima rule. The eigenfunctions of the Laplace-Beltrami operator define locality
and volume-shape preserving functions over a surface. Inspired on Manifold learning theory,
we use these functions as the basis of an embedding space for mesh vertices and group them
usingk-means clustering. We also present a new kind of segmentation hierarchy built from the
analysis of the Laplace-Beltrami operator spectrum.

1 Introduction

Mesh segmentation offers a desirable divide-and-conquer strategy for many graphics applications.
Essentially, there are two main types of mesh segmentation algorithms: the ones that partition
meshes into patches and the ones that decompose meshes into parts. Patch-type segmentation cre-
ates disk-like sub-meshes and is used for texture mapping, building charts,mesh simplification, and
geometry-image creation. Part-type segmentation recovers meaningful components and can be used
for morphing, compression, skeleton extraction, animation, and modeling. See [Sha04, AKM∗06,
Sha06] for recent surveys on mesh segmentation.

In this work, we focus on part-type segmentation following the minima rule [HS97]. In the
last years, several approaches have been proposed to this problem.Many of them are based on
clustering methods using mesh attributes such as curvature, dihedral angles, and geodesic distances.
In [PKA03], a fast marching watershed algorithm was used with curvature values to assist shape
matching. In [STK02],k-means clustering with geodesic distances decomposes meshes into parts
for morphing purposes. In [KT03], a fuzzy clustering with graph cuts finds hierarchical segments
extracting mesh skeleton. In [LZ04], Liu and Zhang explored the Polarization theory to achieve
segmentation using a spectral clustering on the eigenvectors of an affinity matrix based on geodesic
distances and dihedral angles. In [ZL05], Zhang and Liu improved previous work computing eigen-
vectors through Nyström approximation and finding segments by a linear search with salient cut
metrics. A boundary approach to mesh segmentation is proposed in [LLS∗05]. This work used
curvature estimation and geometric-snakes to scissor mesh through salient contours.

∗Institute of Computing - UNICAMP - Brazil
†Institute of Computing - UNICAMP - Brazil
‡VISGRAF Project - IMPA - Brazil
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2 de Goes, Goldenstein, Velho

Despite of good results, the wide variety of mesh attributes may induce undesirable problems to
previous techniques. Curvature attributes tend to create over-segmentation around local concavities
and make the algorithms sensitive to pose. Metrics based on geodesic distances are also sensitive
to pose and to topologic changes. Besides, irregular meshes complicate the extraction of small
features and hierarchical segmentations. Recent works treat above problems through pose invariant
tools. In [KLT05], a Multi-dimensional scaling tranforms meshes into canonical poses enabling
detection of mesh features and hierarchical components. In [SCOS07],it is presented a volume-
shape function to examine the diameter of the neighborhood of surface points, defining a pose
oblivous shape signature for meshes.

This paper presents a novel part-type mesh segmentation based on Manifold learning theory
and the Laplace-Beltrami operator. The algorithm is close to linear on mesh size and on number
of segments. It uses only intrinsic properties of the surface, resulting in anew and more natural
kind of hierarchical segmentation, extracting small features, and intrinsically following the minima
rule. The main idea of our approach is to explore the locality preserving property of the Laplace-
Beltrami eigenfunctions to define a new embedding for mesh vertices, as described in Manifold
learning theory. Then mesh vertices are grouped by ak-means clustering with Euclidian distances.
To decide the desired number of segments, we analyse the growth of the Laplace-Beltrami spectrum,
which follows surface geometry and topology.

Our work has the following contributions:

• Introduces an efficient and intrinsic mesh segmentation algorithm.

• Proposes a new interpretation of the Laplace-Beltrami eigenfunctions based on Manifold
learning theory.

• Explores the Laplace-Beltrami spectrum to identify hierarchical and meaningful mesh seg-
ments.

• Presents a new kind of hierarchy of segments aligned to the minima rule.

2 Laplace-Beltrami Operator

The Laplace-Beltrami operator (LBop) is a generalization of the Laplacianto nD-manifolds. In-
tuitively, it measures the difference of a functionf between each point of the manifold and its
neighborhood.

2.1 Definition and Properties

For nD-manifolds, the Laplace-Beltrami operator is defined as:

∆ = ∇◦∇ = δd+dδ = ∑
i

1
√

|g|

∂
∂xi

√

|g|
∂

∂xi
, (1)

whereδ andd are exterior calculus operators, and|g| is the determinant of the manifold metric
tensor.
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As the definition suggests, the LBop contains information about the locality of each region
on the manifold. Specifically to surfaces, this feature ensures that the operator follows principal
curvatures and directions. Therefore, we can write the LBop of a pointp as a linear combination
of second derivatives of the surface aroundp parameterized by the arc lengths in the principal
directions ofp.

The LBop is a fundamental tool in many mathematics and physics problems. In particular, LBop
is used to solve the heat diffusion process and its eigenfunctions solve theHelmholtz equation

∆ f = −λ f , (2)

which solutions represent natural vibrations over manifolds.
The eigenfunctions of the LBop present interesting properties. First ofall, they represent a

generalization of the function basis of Fourier analysis fornD-manifold. In [VL07], these basis are
calledManifold Harmonic Basis(MHB). As a consequence of this property, the first MHB represent
low frequencies surface informations and recover the overall surface shape, while high frequencies
basis indicate finer details. Second, MHB functions are smooth, minimizing the Dirichlet energy.
Third, the zero set (also callednodal lines) of thenth MHB subdivides the manifold into maximal
n subdomains with intersections at constant angles. For more results about the geometry of eigen-
functions, see [JNT01]. Based on above properties, we conclude that the MHB indicate locality and
volume-shape preserving surface functions.

The spectrum of the LBop is composed by the sequence of eigenvalues 0≤ λ1 ≤ λ2 ≤ . . . ↑ ∞
corresponding to squared spatial frequencies. It is well known that the eigenvalues are strongly
related to the surface geometry and topology, determining its area, Betti numbers, and Euler char-
acterist. In [RWP06], the spectrum of the LBop was also used to define meshes signatures for shape
matching.

Research on heat equation proved that the asymptotic behavior of the heat traceZ(t) is expressed
by

Z(t) = ∑
i

e−λit . (3)

Consequently, the error approximation of a heat solution can be controlledby the growth of the
spectrum [CL06]. Geometrically, this fact means that the maxima gaps of the spectrum indicate the
number of meaningful regions on the surface, providing a hierarchicalway to segment meshes into
parts (Figure 1).

2.2 Discrete Case

In graphics, a surface is represented by a meshM = (V,E,F) and then LBop must have a dis-
crete version. The first approach given to the LBop of meshes was following Spectral Graph the-
ory [Chu97] and it defines the LBop as a combinatorial matrixL = D−A, whereD is a diagonal
matrix of vertices valences andA is the graph adjacency matrix. However, this version of the LBop
does not take geometry into acount.

A geometric based version of the LBop was first presented by [PP93], defining cotangent
weights. In [MDSB02,VL07], a FEM (Finite Element Method) was used to complete thederivation
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Index
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Figure 1: Analysis of LBop spectrum and the hierarchy of segments. Blueellipses indicate the large
spectrum gaps.

of the discrete LBop. Following [VL07], we define a discrete LBop of a mesh by the matrixL

L(i, j) = −(cot(αi, j)+cot(βi, j))/2Area(i)
L(i, i) = ∑ j∈N(i) L(i, j),

(4)

whereN(i) is the set of neighbor vertices ofi, Area(i) is the Voronoi area aroundi, andαi, j andβi, j

are the angles opposite to the edge(i, j).
Note that the matrixL is sparse, so efficient eigen-problem solvers can be used. In this paper, we

use the ARPACK solver (seewww.caam.rice.edu/software/ARPACK). To make computa-
tions faster, we use 0.5(L+Lt), a symmetric version ofL [Lev06]. Figure 2 compares eigenvectors
of the LBop computed by the combinatorial version and the geometric one.

Figure 2: The 3rd eigenfunction of the combinatorial LBop (left) and of thediscrete LBop (right).
The color indicates values increasing from blue to red. The contours show isolines and nodal lines
are the red ones.
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Besides the preservation of continuous properties, the discrete LBop gives coherent results
through multiresolution analysis. We verify that the initial band of the spectrum(low frequen-
cies) is preserved after successive decimations of a mesh (Figure 3). Asimiliar result is shown
in [DBG∗06], but Dong et al. used the LBop just withcotangent weights, what requires a mass-
adjustment into its spectrum. Considering the vertices area into LBop, we achieve a band spectrum
preserving with no required adjustment. In the same way, the MHB of low frequencies are also
preserved, but it is worth noting that, as the frequency increases, there are more oscilations on the
MHB and higher mesh resolutions are required to achieve good approximations.

Index

duffy 2k
duffy 3k
duffy 4k
duffy 5k

0 5 10 15 20 25 30 35 40
Index

horse 1k
horse 2k
horse 3k
horse 4k

0 5 10 15 20 25 30 35 40

Figure 3: Examples of the initial band of the LBop spectrum preserved after sucessive decimations.

2.3 Applications

In the recent years, the LBop has been used in a diverse set of graphics applications. Among them:
smoothing [NISA06], conformal parametrization [GY03], remeshing [DBG∗06, TACSD06], pose
transfer [Lev06], registration [RWP06], and spectral filtering [VL07]. For more, see [Tau00,Sor06].

3 Manifold Learning

Manifold learning is an area of machine learning that aims to recover intrinsic information about
a set of points of amD-manifold embedded inRn (m < n). Usually, it is desirable to have new
representations for the points that preserve manifold characteristics. These new embeddings can be
applied to non-linear dimensionality reduction problem, data classification, data organization, and
data clustering.

Many of the Manifold learning methods are based on spectral analysis. A classical approach
is the PCA (Principal Component Analysis) where the most relevant scatterdirections of data set
are recovered computing the eigenvectors of high eigenvalues of a covariance matrix. To work with
non-linear spaces, Kernel-PCA modifies the distance metric between points bykernel functions. In
Isomap [TdSL00], the distance metric used is geodesic lengths over the manifold and, using Multi-
dimensional scaling, a new point representation can be computed approximating geodesic distances
by Euclidian distances. Isomap is also used in graphics for surface parameterization [ZSGS04].

So far, the Manifold learning methods presented here work globally, tryingto preserve distance
values between all pair of points, even between distant ones. In [RS00], a new method called LLE
(Locally Linear Embedding) proposes to treat points as linear combinations of their neighbors and
then it shows that the important information to be preserved in the embedding space is the point
locality, i.e., the relation of proximity among points and not distance values.
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Extending the idea of locality, eigenfunctions of the manifold LBop (MHB) canbe explored
over the set of points. MHB result in a new embedding where Euclidian distances measure the
proximity between points on the manifold. The use of MHB was first introducedin [BN02] by the
name ofLaplacian Eigenmaps. A recent extension of this approach is theDiffusion maps( [CL06]),
where the distortion caused by the distribution of samples over the manifold is minimized.

To show that the MHB define embedding spaces with Euclidian distance metric preserving
proximity, let’s review how the MHB of a set of points are computed. Given a set of points{xi}

n
i=1,

first we connect close points by edges and then we compute the LBopL weighting an edge(xi ,x j)
by the functionw(xi ,x j) – note that, for our purposes, both informations are given intrinsically by
the mesh. Now, to find an embedding that preserves the manifold locality, we compute a vectory
such that

y = argminzz
tLz= argminz∑

i, j

w(i, j)(zi −zj)
2. (5)

Generalizing the above idea to am dimensional embedding, we use the firstm solutions{yi}m
i=1 of

Equation 5 and define the embedding of a pointx j as the vectorYj = [yi
j ]

m
i=1. Finally, it is easy to

verify that
Y = argminZZtLZ = argminZ ∑

i, j

w(i, j)‖Zi −Z j‖
2. (6)

In [MS01], Meila and Shi presented a similiar MHB embedding but in a stochastic fashion. By
building a Markov chain over the data set and defining its LBop by a transitionmatrix, they proved
that an exactk-partition of the data set is only possible when the firstk MHB are piecewise constant.
They also noted that the correct number of partitionsk can be determined automatically analysing
gaps between the eigenvalues of the LBop.

4 Our Method

The main motivation of our approach is to associate the properties of the MHB of surfaces (Sec-
tion 2) with the advantages of embedding points by MHB as exposed by Manifold learning theory
(Section 3).

4.1 Main Techniques

We now explain the three techniques necessary to accomplish the desired association between MHB
with Manifold learning theory and describe our segmentation method.

Embedding and clustering vertices

The MHB compose an embedding space preserving the manifold locality and measuring proximity
by Euclidian distances. At the same time, MHB also represent volume-shape functions on surfaces.
Therefore, embedding mesh vertices by MHB gives us a way to group vertices into meaningful
volumes.

Meaningful volumes are parts of a 3D object delimited by short boundariesand in concavity
regions. Such features also state the minima rule. Hence, MHB embedding naturally results in a
part-type segmentation following the minima rule.
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To group vertices we use ak-means clustering [Llo82] on the embedding space. Thek-means
procedure acts as anEM optimization. On theExpectation phase, the data set is partitioned intok
groups minimizing the distance fromk seed points. On theMaximization phase, each seed point
is updated by the average of points inside its group. The quality of results depends directly on the
choice of the initial seeds. In our implementation, we use the mutually furthest apart points as initial
seeds.

The dimension of the embedding space

In Section 2, we saw that thenth MHB and, consequently, all lower MHB divide the surface up ton
subdomains. As MHB are smooth functions, we can use this property as a relaxation of the optimal
case of piecewise constant functions described by Meila and Shi [MS01]. From this fact, we set the
dimension of the embedding space equal to the desired number of clusters.

The number of segments

The growth of the spectrum of the LBop depends on surface geometry and topology such that
similiar eigenvalues correspond to related MHB. In Manifold learning, we have that thek first
piecewise constant MHB are separated from the others MHB by a maximum gap in the spectrum.
Therefore, looking for large gaps in the spectrum of the LBop, we can choose different values ofk
to segment the mesh. In practice, we note that, when we choosek not in a gap, the segmentation
usually generates non-compact parts.

As the value ofk increases, more features of the mesh are segmented given us a new kind of
hierarchy among segments. In previous works, the hierarchy of segments determines a tree where
one parent segment is split into others parts independently. In our approach, for each level of the
hierarchy, current segments can be recombined and reorganized, leading to a more natural and
coherent segmentation.

We show the structure of our method in Algorithm 1.

Algorithm 1 Intrinsic Mesh Segmentation
Require: A meshM = (V,E,F).
Ensure: k sub-meshesMi = (Vi ,Ei ,Fi).

1: Compute the LBopL of M.
2: Compute the initial bandB of the spectrum ofL.
3: Find gapski in B. We identify a gap by theki-th

eigenvalue where it starts (See 4.2).
4: Choosek as the desired number of segments amongki ’s.
5: Compute the firstk MHB [y j ]kj=1of L.

6: SetYi = [y j
i ]

k
j=1 as the embedding representation

for each vertexi ∈V.
7: Apply k-meansoverY to findk sub-meshes.
8: [OPTIONAL] Fit sub-meshes boundaries (See 4.3).
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4.2 Numerical Solution

The time complexity of our approach to segment a meshM = (V,E,F) into k parts depends es-
sentially on steps 2, 5, and 7 of Algorithm 1. The cost ofk-means (step 7) isO(ck|V|), wherec
indicates the number ofk-means iterations. In our experiments, the value ofc is negligible and,
ask ≪ |V|, the cost of this step becomes linear on mesh size. In turn, the cost of steps2 and 5
depends on eigen-problem solver. To compute the firstk MHB, the ARPACK solver used in our
implementation is superlinear onk and linear on the number|E| of non-zero elements of the LBop.

It is well known that eigen-problem solvers are very expensive to compute MHB for surfaces
with more than a few thousand vertices. The reason for that is the poor condition number to compute
lower frequencies of a matrix, requiring high number of iterations to converge to a solution. To
compensate for this problem, we invert the spectrum of the LBop. For this, first we compute the
maximum eigenvaluēλ of the LBop matrixL and then we compute the highestk eigenvectors of
λ̄I −L. See [VL07] for an alternative solution.

In step 2, we compute a bandB of the spectrum of the LBop. The length ofB used is 40, but
different lengths can be set. As the desired number of segmentsk is very small compared to the
length of the bandB, step 2 turns to the dominant computation of our algorithm. However, we can
accelerate this computation through a multiresolution approach as described inSection 2.2. So we
decimate the orignal mesh to compute the bandB and after that we return to the full mesh.

4.3 Fitting Boundary

Fitting boundary is a commom problem on part-type segmentation algorithms. Usually, it is related
with imprecisions on segmentation criteria. Hierarchical approaches as [KT03, ZL05, KLT05] ex-
plore the tree structure of the hierarchy to refine boundaries. Each node of the three represents a
sub-mesh and it is partitioned independently from others nodes. As the number of parts to divide
a node is small, the boundaries involve only pairs of segments and then can berefined by a graph
min-cut algorithm.

In our method, the boundary smoothing depends on the quality of the approximation of the MHB
used in the embedding space. As discussed in Section 2.2, higher MHB may present numerical
precision problems. So mesh segmentation into many parts (e.g., more than 15) can result in jagged
boundaries, erroneously clustering boundary vertices. Usually, when the mesh is decomposed into
many parts, the boundaries involve more than two segments and, for this reason, graph min-cut is not
enough to correct them. Nevertheless, for small number of segments, we achieve good boundaries
with no adjustment.

5 Results

We have applied our method into different meshes up to 5000 vertices. All experiments were carried
on an Intel Pentium 4 3.2 GHz machine with 2 GB RAM. Table 5 reports time statistics.We have
only used decimation to compute the inital band of the LBop spectrum for mesheswith more than
3000 vertices. It is also important to note that we do not fit boundaries. The segments colors are
chosen at random.
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Table 1: Statistics of our algorithm. For each mesh, we give respectively thenumber of vertices,
edges, and faces, the decimation resolution (if necessary), computing time for the 40th first eigen-
values, the number of segmentsk, computing time for thek first MHB, and computing time for
k-means. All times are in seconds.

Mesh Size Decimation Band k MHB k-means
lion (2002,6000,4000) - 38 12 6.5 0.8
dino-pet (1681,4970,3281) - 20 16 15.3 0.7
duffy (4590,13761,9171) (2004,6003,3999) 49.5 13 14.4 4.1
mouse (1872,5610,3740) - 50.9 11 10.3 0.8
neptune (2996,9000,6000) - 29.3 13 12.4 1.8
horse (4009,12008,8000) (2009,6008,4000) 53.4 7 27.5 2.1
julius (2107,6213,4107) - 13.1 6 4.4 0.7
camel (1900,5694,3796) - 55.5 6 24.8 0.4
rabbit (1238,3678,2442) - 7.8 9 2.7 0.3
hand (1453,4326,2874) - 7.4 7 3 0.3
bird (567,1695,1130) - 16.5 4 4.7 0.05
scarrow (1802,5350,3548) - 155 5 28.8 0.4
ET (429,1281,854) - 1.4 5 1.3 0.02
chess piece (250,744,496) - 0.93 3 0.57 0.01

Figures 1, 4, and 5 show examples of the hierarchical segmentation generated by our approach.
In the dino-pet example of Figure 4(c)–(d), the body, the neck, and thehead are recombined and
split in different ways between the third and fourth level of the hierarchy, featuring the new kind of
hierarchy of segments. It is also immediate to verify that the segments represent natural parts of the
objects with small boundaries in concavity regions, following the minima rule.

Figure 6 shows that our approach is consistent to pose variations, segmenting the different poses
of a horse into the same parts: e.g., head, legs, body, and tail. All horse models have the same
resolution. More segmentation examples are in Figure 7.

In Figure 4(a)–(b), we compare our results to those presented in [LZ04], which also usek-means
and eigenvectors of a matrix to segment meshes. Despite of similiar results, ourmethod extracts
more natural components and takes only 36 seconds to compute four levels of the hierarchy, while
Liu and Zhang algorithm spends several minutes to compute only six segments.This discrepancy
occurs because the matrix computed in [LZ04] is dense and measures the affinity between each
pair of faces of the mesh, which costsO(|F |2 log|F |) using Dijkstra’s algorithm and makes the
dimension of their matrix almost twice of ours.

6 Conclusion and Future Works

In this paper, we have presented a novel hierarchical part-type mesh segmentation algorithm. Our
method is simple and totally intrinsic with respect to the properties of surfaces, without any con-
straint or salient metric. We have also introduced a new kind of hierarchy more natural to human
perception, recombining and splitting segments in each level of the hierarchy.
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(a) [LZ04] (b) First level. (c) Third level. (d) Fourth level.

Figure 4: First row: comparision between [LZ04] and the first level of our method for the dino-pet
model. Second row: example of our hierarchy of segments. Note how the body, the neck, and the
head of the model are recombined and split in different parts.

Our approach is based on a new interpretation of the Laplace-Beltrami eigenfunctions (MHB)
using Manifold learning theory. We define the MHB as a new embedding space for mesh vertices
where Euclidian distances measure vertices proximity. We also use the Laplace-Beltrami spectrum
to identify the correct number of segments that decomposes meshes hierarchically.

The complexity of our method is dominated by the eigen-problem solver. In ourcurrent im-
plementation, we use ARPACK solver, which is superlinear on the number of segments and linear
on the number of nonzeros elements of the matrix. Even though it has a close tolinear asymptotic
behavior, its cost increases drastically for meshes with more than a few thousands of vertices. As
future work, we intend to use out-of-core computation as presented in [VL07] and to introduce
multiresolution solvers over meshes. Then we will be able to segment dense meshes into long
hierarchies.

Another direction for future work is the design of a new boundary refinement strategy to treat
complex boundaries among many segments. We also plan to exploit user-defined priors to pro-
duce different types of segmentation, and adapt our method to segment point clouds from 3D laser
scanners.
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