A Polynomial Time Algorithm for Recognizing Near-Bipartite Pfaffian Graphs

Alberto Alexandre Assis Miranda
Cláudio Leonardo Lucchesi

Technical Report - IC-07-015 - Relatório Técnico

May - 2007 - Maio

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.
A Polynomial Time Algorithm for Recognizing Near-Bipartite Pfaffian Graphs

Alberto Alexandre Assis Miranda∗ Cláudio Leonardo Lucchesi†

May 2007

Abstract

A matching covered graph is a nontrivial connected graph in which every edge is in some perfect matching. A matching covered graph G is near-bipartite if it is non-bipartite and there is a removable double ear R such that $G - R$ is matching covered and bipartite. In 2000, C. Little and I. Fischer characterized Pfaffian near-bipartite graphs in terms of forbidden subgraphs [3]. However, their characterization does not imply a polynomial time algorithm to determine whether a near-bipartite graph is Pfaffian. In this report, we give such an algorithm. Our algorithm is based in an Inclusion-Exclusion principle and uses as a subroutine an algorithm by McCuaig [5] and by Robertson, Seymour and Thomas [6] that determines whether a bipartite graph is Pfaffian.

1 Introduction

Let $A := (A_{ij})$ be an $n \times n$ skew-symmetric matrix. When n is even, there is a polynomial $P := P(A)$ in the a_{ij} called Pfaffian of A. This polynomial is defined as follows:

$$P := \sum \text{sgn}(M) a_{i_1 j_1} a_{i_2 j_2} \ldots a_{i_k j_k},$$

where the sum is taken over the set of all partitions $M := (i_1 j_1, i_2 j_2, \ldots, i_k j_k)$ of $\{1, 2, \ldots, n\}$ into k unordered pairs, and sgn(M) is the sign of the permutation:

$$\pi(M) := \begin{pmatrix} 1 & 2 & 3 & 4 & \ldots & 2k-1 & 2k \\ i_1 & j_1 & i_2 & j_2 & \ldots & i_k & j_k \end{pmatrix}.$$

It can be seen that the definition of Pfaffian of A given above is independent of the order in which the constituent pairs in a partition M are listed, as also of the order in which the elements in a pair are listed. Since A is skew-symmetric, for each pair (i, j) of indices, either a_{ij} or a_{ji} is nonnegative.

∗Institute of Computing, University of Campinas, 13084-971 Campinas, SP. Research supported by Fapesp – Fundação de Amparo à Pesquisa do Estado de São Paulo, proc. #05/04426-6

†Institute of Computing, University of Campinas, 13084-971 Campinas, SP. Research supported in part by CNPq — Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant #306088/2005-3
Now suppose that G is a graph whose set of vertices is $\{1, 2, \ldots, n\}$. Let D be an orientation of G such that A is the adjacency matrix of D. Then each nonzero term in the expansion of the Pfaffian of A corresponds to a perfect matching M of G. Thus, if D is such that all $\text{sgn}(M)$, for M perfect matching of G, are the same, then $|P|$ is the number of perfect matchings of G.

An orientation D of G is a Pfaffian orientation of G if all perfect matchings of G have the same sign. An undirected graph G is Pfaffian if it admits a Pfaffian orientation.

An edge e of a graph G is admissible if G has a perfect matching containing e. An edge $e = uv$ of G is admissible if and only if $G - u - v$ has a perfect matching. Thus, one can determine the set of admissible edges of G in polynomial time. The definition of Pfaffian orientation implies the following result:

Proposition 1.1
Let G be a graph and H the graph obtained from G by removing every non-admissible edge of G. An orientation D of G is Pfaffian if and only if the restriction of D to H is Pfaffian.

1.1 Removable Ears

A single ear of a connected graph G is a path $P := (v_0, e_1, v_1, e_2, v_2, \ldots, v_{2k-2}, e_{2k-1}, v_{2k-1})$ of odd length in G whose internal vertices $v_1, v_2, \ldots, v_{2k-2}$, if any, have degree two in G. The order of an edge e_i of P is even or odd, according to the parity of its index i. (Note that the order of an edge is preserved if one replaces P by its reverse, because the length of P is odd.) If P is a single ear of G then we denote by $G - P$ the graph obtained from G by deleting the edges and internal vertices of P. A double ear of G is a pair (R_1, R_2), where R_1 and R_2 are two vertex-disjoint single ears of G. An ear of G is either a single ear or a double ear of G. If R is an ear of G then we denote by $G - R$ the graph obtained from G by deleting the edges and internal vertices of the constituent paths of R.

A single ear R of a matching covered graph G is removable if the graph $G - R$ is matching covered. A removable single ear of length one is a removable edge. A double ear $R = (R_1, R_2)$ of G is removable if $G - R$ is matching covered and neither $G - R_1$ nor $G - R_2$ are matching covered. A removable ear of G is either a single or a double ear which is removable. A partial ear decomposition of a matching covered graph G that results in a graph H is a sequence $H = G_1 \subset G_2 \subset \ldots \subset G_r = G$ of subgraphs of G such that, for $2 \leq i \leq r$, $G_{i-1} = G_i - R_i$, where R_i is a removable ear of G_i. An ear decomposition of a matching covered graph G is a partial ear decomposition where $G_1 = K_2$.

Proposition 1.2 ([1] Proposition 4.1)
Let R be a removable ear and M a perfect matching of a matching covered graph G. Then, either M contains all the edges of even order of R or M contains all the edges of odd order of R.

Let G be a graph and H a subgraph of G. The graph H is conformal in G if $G - V(H)$ has a perfect matching.
Proposition 1.3
Let G be a graph, H a conformal subgraph of G, and J a conformal subgraph of H. Then, J is a conformal subgraph of G.

1.2 Parities of Circuits

The parity of a circuit C of even length in a directed graph D is the parity of the number of its edges that are directed in agreement with a specified sense of orientation of C. As C has an even number of edges, the parity is the same in both senses and thus is well defined. If the parity of C is odd we say C is oddly oriented in D. For any two sets X and Y, we denote by $X \oplus Y$ the symmetric difference of X and Y.

Theorem 1.4 ([4] Lemma 8.3.1)
Let D be an arbitrary orientation of an undirected graph G. Let M_1 and M_2 be any two perfect matchings of G and let k denote the number of even parity circuits of $G[M_1 \oplus M_2]$. Then, M_1 and M_2 have the same sign if and only if k is even.

Theorem 1.5 ([4] Theorem 8.3.2)
Let G be a graph, M a perfect matching of G and D an orientation of G. Then the following are equivalent:

- D is a Pfaffian orientation of G;
- Every M-alternating circuit of G is oddly oriented in D;
- Every conformal circuit of G is oddly oriented in D.

Corollary 1.6
Let G be a graph, D a Pfaffian orientation of G, and H a conformal subgraph of G. Then, the restriction $D(H)$ of D to H is a Pfaffian orientation.

2 Inclusion-Exclusion Theorem

Proposition 2.1
Let M and N be perfect matchings of a graph G. Let S be a subset of edges of G, such that $S \subseteq (M \cap N)$. Let Q be an M,N-alternating circuit. Then, Q is a conformal circuit of $H := G - V(S)$, where $G - V(S)$ is the graph obtained from G by removing every vertex incident with an edge of S.

Proof: Let $M' := M - S$ and $N' := N - S$. The matchings M' and N' are perfect matchings of H. Moreover, Q has no vertex in $V(S)$. Therefore, Q is an M',N'-alternating circuit. Thus, Q is a conformal circuit of H. □

Next, we present an important theorem for the rest of the paper. Let R be an ear of a graph G. Let $G - V(R)$ be the graph obtained from G by removing every vertex of R.
Theorem 2.2 (Inclusion-Exclusion Theorem)
Let D be an orientation of a matching covered graph G, R a removable ear of G, and Q a conformal circuit of G that contains some edge of R. Then, D is Pfaffian if and only if each of the following three properties holds:

1. $D - R$ is Pfaffian;
2. $D - V(R)$ is Pfaffian;
3. Q is oddly oriented in D.

Proof: (only if part) The graphs $D - R$, $D - V(R)$ and Q are conformal subgraphs of D. Therefore, if D is Pfaffian then each of the three directed graphs are also Pfaffian.

(if part) To prove the converse, assume that the three properties hold. Let M be the set of perfect matchings of G. According to Proposition 1.2, a perfect matching of G either contains all the edges of even order of R or all the edge of odd order of R. Therefore, M can be partitioned in two sets M_{even} and M_{odd}, the set of perfect matchings of G that contain all the even order edges of R and the set of those that contain all the odd order edges of R, respectively. By Proposition 2.1, Property 1 implies that every perfect matching of M_{even} has the same sign s in D. Similarly, Property 2 implies that every perfect matching of M_{odd} has the same sign t in D. Circuit Q is conformal in G. So, let M be the union of a perfect matching of $G - V(Q)$ and a perfect matching of Q. Note that M is a perfect matching of G. Let $M' := M \oplus Q$. As Q contains some edge of R, one of M and M' is in M_{even} and the other is in M_{odd}. On the other hand, Property 3 implies that $\text{sgn}(M) = \text{sgn}(M')$ in D. Therefore, $s = t$. Thus, every perfect matching of G has the same sign in D. We deduce that D is a Pfaffian orientation of G. \qed

3 Near-Bipartite Pfaffian Algorithm

Theorem 3.1 ([2] Theorem 3.9)
There exists a polynomial time algorithm that, given a matching covered graph G, determines an orientation D of G such that G is Pfaffian if and only if D is a Pfaffian orientation of G.

The following result was first proved by Vazirani and Yanakakis [7].

Theorem 3.2 ([2] Corollary 3.11)
The problem of determining whether or not a given orientation D of a matching covered graph G is Pfaffian is polynomially reducible to the problem of deciding whether or not G is Pfaffian.

The following algorithm is due to McCuaig and due to Robertson, Seymour and Thomas. We shall call it MRST algorithm.

Theorem 3.3 ([5, 6])
There exists a polynomial time algorithm that, given a matching covered bipartite graph G, determine whether G is Pfaffian.
From the above theorem and from Theorem 3.2, we have:

Corollary 3.4

There exists a polynomial time algorithm that, given an orientation \(D \) of a matching covered bipartite graph \(G \), decides whether \(D \) is a Pfaffian orientation.

Proposition 1.1 tells us that a non-admissible edge of an orientation \(D \) does not influence whether \(D \) is Pfaffian or not. Moreover, such edges can be detected in polynomial time. Therefore, we can derive the following corollary.

Corollary 3.5

There exists a polynomial time algorithm that, given an orientation \(D \) of a bipartite (possibly non matching covered) graph \(G \), determines whether \(D \) is a Pfaffian orientation.

Finally, we are ready to prove that there exists a polynomial time algorithm to determine whether a near-bipartite graph \(G \) is Pfaffian. For that purpose, one first uses Theorem 3.1 to obtain an orientation \(D \) such that \(D \) is Pfaffian if and only if \(G \) is Pfaffian, then uses the following theorem.

Theorem 3.6 (Main Theorem)

There exists a polynomial time algorithm that, given an orientation \(D \) of a near-bipartite graph \(G \) and a removable double ear \(R \) of \(G \) such that \(G - R \) is bipartite, decides whether \(D \) is Pfaffian.

Proof: First decide in polynomial time whether both \(D - R \) and \(D - V(R) \) are Pfaffian or not, using Corollary 3.5. If one of them is not Pfaffian, then \(D \) is not Pfaffian, because these graphs are conformal subgraphs of \(D \). Let \(M \) be a perfect matching of \(G \) containing the odd order edges of \(R \), and \(N \) a perfect matching of \(G \) containing the even order edges of \(R \). Then, there is an \(M, N \)-alternating circuit \(Q \) containing some edge of \(R \). If \(Q \) is not oddly oriented in \(D \), then \(D \) is not Pfaffian. So, if none of the above conditions tells us that \(D \) is not Pfaffian, then by Theorem 2.2, \(D \) is a Pfaffian orientation. \(\square \)

The previous algorithm uses an inclusion-exclusion technique based on the algorithm described in Corollary 3.5. There is another more intuitive method to decide whether a bipartite orientation is Pfaffian. Let \(G \) be a graph and \(D_1 \) and \(D_2 \) orientations of \(G \). We say \(D_1 \) and \(D_2 \) are similar if these orientations differ precisely in a cut of \(G \).

Theorem 3.7 ([2] Corollary 3.5)

Every Pfaffian bipartite matching covered graph \(G \) has precisely one dissimilar Pfaffian orientations.

In view of the previous theorem, we have that any two Pfaffian orientations of a bipartite matching covered graph are similar. Let \(D \) be an orientation of a Pfaffian bipartite matching covered graph \(G \). Then, \(D \) is Pfaffian if and only if \(D \) is similar to an orientation to \(G \) obtained by Theorem 3.1.
References

