Edge-Colouring of Join Graphs

Caterina De Simone Célia Piccinin de Mello

December - 2004 - Dezembro

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.
A Comparative Study of Brazilian Beers

Caterina De Simone∗, Célia Picinin de Mello†

Abstract
We discuss the following conjecture:
If \(G \) is a graph with \(n \) vertices and maximum degree \(\Delta > n/3 \), then \(G \) is 1-factorizable.

1 Introduction

The graphs in this paper are simple, that is they have no loops or multiple edges. Let \(G = (V, E) \) be a graph; the degree of a vertex \(v \), denoted by \(d_G(v) \), is the number of edges incident to \(v \); the maximum degree of \(G \), denoted by \(\Delta(G) \), is the maximum vertex degree in \(G \); \(G \) is regular if the degree of every vertex is the same.

An edge-colouring of a graph \(G = (V, E) \) is an assignment of colours to its edges so that no two edges incident with the same vertex receive the same colour. An edge-colouring of \(G \) using \(k \) colours (\(k \) edge-colouring) is then a partition of the edge set \(E \) into \(k \) disjoint matchings.

The chromatic index of \(G \), denoted by \(\chi'(G) \), is the least \(k \) for which \(G \) has a \(k \) edge-colouring. In [10] it was shown that every graph \(G \) with \(m \) edges and \(\chi'(G) \leq k \) has an equalized \(k \) edge-colouring \(\mathcal{C} \): each colour \(f_i \) in \(\mathcal{C} \) appears on exactly either \(\lfloor \frac{m}{k} \rfloor \) edges or \(\lceil \frac{m}{k} \rceil \) edges.

A celebrated theorem of Vizing [17] states that

\[
\chi'(G) = \Delta(G) \quad \text{or} \quad \chi'(G) = \Delta(G) + 1.
\]

Graphs with \(\chi'(G) = \Delta(G) \) are said to be Class 1; graphs with \(\chi'(G) = \Delta(G) + 1 \) are said to be Class 2. The graphs that are Class 1 are also known as 1-factorizable graphs. Fournier [6] gave a polynomial time algorithm that finds a \(\Delta(G) + 1 \) edge-colouring of a graph \(G \).

Since it is NP-complete to determine if a cubic graph has chromatic index three [9], it follows that deciding whether a graph is Class 1 or Class 2 is NP-hard. The problem remains open for several classes of graphs, including the class of graphs that are \(P_4 \)-free (cographs) [1].

A graph \(G \) is overfull if

\[\frac{m}{\Delta} \geq n \geq \frac{2m}{\Delta(G) + 1} \]

∗Istituto di Analisi dei Sistemi ed Informatica (IASI), CNR, Viale Manzoni 30, 00185 Rome, Italy. E–mail: desimone@iasi.rm.cnr.it.

†Instituto de Computação, Universidade Estadual de Campinas, Caixa Postal 6176, 13084-971 Campinas, SP, Brazil. E–mail: celia@ic.unicamp.br. This research was started while the author was visiting IASI.
An easy counting argument shows that if G is overfull then $|V(G)|$ must be odd and G is Class 2 (in every edge-colouring at most $1/2(|V(G)| - 1)$ edges of G can have the same colour). If G is not overfull but it contains an overfull subgraph H with $\Delta(H) = \Delta(G)$, then G is Class 2.

Not every Class 2 graph necessarily contains an overfull subgraph with the same maximum degree. Examples of such graphs are very rare. The smallest one is P^*, the graph obtained from the Petersen graph by removing an arbitrary vertex. For all known of these graphs, the maximum degree is relatively small compared with the number of vertices ($\Delta(P^*) = |V(P^*)|/3$).

In 1985, Hilton proposed the following conjecture, known as Hilton’s Overfull Subgraph Conjecture [3]:

Conjecture 1 (Hilton) If G is a graph with $\Delta(G) > |V(G)|/3$ and G contains no overfull subgraph H with $\Delta(H) = \Delta(G)$, then G is Class 1.

Conjecture 1 was proved to be true for many special cases: when G is a multipartite graph [8]; when $\Delta(G) \geq |V(G)| - 3$ [4, 15, 16]; and when the number of the vertices of maximum degree is “relatively small” and some other conditions on the maximum degree or the minimum degree hold [3, 5, 12].

If Conjecture 1 were true, then the problem of deciding whether a graph G with $\Delta(G) > |V(G)|/3$ is Class 1 would be polynomially solvable [11, 13]. One more consequence of the validity of Conjecture 1 is that an old conjecture on regular graphs would be true:

Conjecture 2 Let G be a k-regular graph with an even number of vertices. If $k \geq |V(G)|/2$ then G is Class 1.

(Here, k-regular means that the degree of every vertex is equal to k.) Conjecture 2 appeared in [2] but may go back to G.A. Dirac in the early 1950s. To see that Conjecture 1 implies Conjecture 2, it is sufficient to observe that no k-regular graph G with an even number of vertices, such that $k \geq |V(G)|/2$, contains an overfull subgraph H with $\Delta(H) = k$ [3, 7].

Conjecture 2 was proved to be true when $k \geq 1/2(\sqrt{7} - 1)|V(G)|$ [4], and for large graphs when $|V(G)| < (2 - \epsilon)\Delta(G)$ [14].

The goal of this paper is to prove Conjecture 1 or Conjecture 2 for the class of join graphs.

2 The join graphs

Let $G = (V, E)$ be a graph with n vertices. We say that G is a join graph if G is the complete union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. In other words, $V = V_1 \cup V_2$ and $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$. If G is the join graph of G_1 and G_2, we shall write $G = G_1 + G_2$. Note that the class of join graphs strictly contains the class of connected P_4-free graphs.
Write \(n_1 = |V_1|, n_2 = |V_2|, \Delta_1 = \Delta(G_1), \) and \(\Delta_2 = \Delta(G_2) \). Clearly, \(n = n_1 + n_2 \) and \(\Delta(G) = \max\{n_1 + \Delta_2, n_2 + \Delta_1\} \). Fig. 1 shows a join graph \(G = G_1 + G_2 \) with \(n = 5 \) and \(\Delta(G) = 3 \).

Without loss of generality we shall assume that \(|V_1| \leq |V_2| \). Note that a join graph \(G \) with \(n \) vertices satisfies \(\Delta(G) \geq n/2 \). Hence, if Conjecture 1 were true, then every join graph \(G \) that contains no overfull subgraph \(H \) with \(\Delta(H) = \Delta(G) \), would be Class 1; moreover if Conjecture 2 were true, then every regular join graph would be Class 1.

We shall show that:

- if \(\Delta_1 > \Delta_2 \), then Conjecture 1 holds true;
- if \(\Delta_1 = \Delta_2 \), then Conjecture 2 holds true;
- if \(\Delta_1 = \Delta_2 \), then Conjecture 1 holds true under some hypothesis;
- if \(\Delta_1 < \Delta_2 \) and \(n_1 = n_2 \), then Conjecture 1 holds true.

To every join graph \(G = G_1 + G_2 \) we shall associate the complete bipartite graph \(B_G \) obtained from \(G \) by removing all edges of \(G_1 \) and \(G_2 \). For every maximum matching \(M \) in \(B_G \), let \(G_M \) denote the subgraph of \(G \) obtained by removing all edges of \(B_G \) but the edges in \(M \). Fig. 2 shows two \(G_M \) for the graph \(G \) in Fig. 1.

Our results are based on the following key observation:

Observation 1 Let \(G = G_1 + G_2 \) be a join graph with \(n_1 \leq n_2 \) such that \(\Delta_1 \geq \Delta_2 \) or \(\Delta_1 < \Delta_2 \) and \(n_1 = n_2 \). If there exists a maximum matching \(M \) in \(B_G \) such that the corresponding graph \(G_M \) is Class 1, then \(G \) is Class 1.
Theorem 1

In view of Observation 1, it is natural to ask when there exist a maximum matching of G. Assume that the theorem is not true. Then there exists a maximum matching of G such that the corresponding graph G_M is Class 1. The following result shows that such a matching always exists and that, in fact, every maximum matching of B_G has the desired property.

Theorem 1 Let $G = G_1 + G_2$ be a join graph with $n_1 \leq n_2$. If $\Delta_1 > \Delta_2$ then for every maximum matching M of B_G, the corresponding graph G_M is Class 1.

Proof Assume that the theorem is not true. Then there exists a maximum matching M of B_G such that the corresponding graph G_M is Class 2, and so $\chi'(G_M) > \Delta(G_M) = \Delta_1 + 1$.

We shall find a contradiction. For this purpose, colour G_1 and G_2 with $\Delta_1 + 1$ colours $a_0, a_1, \ldots, a_{\Delta_1}$ (this can be done because $\Delta_1 > \Delta_2$). Now, extend this colouring to as many edges in M as possible. By assumption, not every edge in M has been coloured; in particular, some edge uv in M with $u \in V_2$ and $v \in V_1$ is not coloured. We shall show how we can extend our $(\Delta_1 + 1)$ edge-colouring in the graph G_M so to colour also edge uv, getting then a contradiction. Until the end of the proof, we shall consider only the graph G_M.

For this purpose, first note that every neighbor of u, but vertex v, has degree less than or equal to $\Delta_2 + 1$ (every such a neighbor of u is a vertex of G_2). Since $\Delta_2 < \Delta_1$, and since we used $\Delta_1 + 1$ colours, it follows that every neighbor of u, but vertex v, misses at least one colour a_i. Moreover, since uv is not coloured, both u and v miss at least one colour. Let a_0 be a colour missing at u, and let a_1 be a colour missing at v; clearly, colour a_1 must appear at u, or we could use a_1 on uv. Suppose v_1 is the neighbor of u along the edge coloured a_1. At v_1 some colour a_2 is missing; clearly, a_2 must appear at u, or we could recolour uv_1 from a_1 to a_2 and then use a_1 on uv to extend the colouring.

For $i \geq 2$ we continue this process. Having selected a new colour a_i that appears at u, let v_i be the neighbor of u along the edge coloured a_i. Let a_{i+1} be a colour missing at v_i. If a_{i+1} is missing at u, we recolour uv_i from a_i to a_{i+1} and then we recolour every uv_j with $j < i$ from a_j to a_{j+1} and then use a_1 on uv to extend the colouring. Hence, we may assume that each colour missing at every neighbor of u in G_M is present at u. Since the neighbors of u, but v, are at most Δ_2, the iterative selection of a_{i+1} eventually repeats a colour. Let l be the index of the vertex at which the first repetition occurs. In other words,
$a_i \neq a_j$ for every $i \neq j$ with $i, j \leq l$, and $a_{l+1} = a_k$ with $k < l + 1$. Colour a_{l+1} is missing at v_l; colour a_k is missing at v_{k-1} and appears on uv_k. If a_0 is missing at v_l, then we could recolour uv_l from a_l to a_0 and then recolour uv_i from a_i to a_{i+1} for every $i < l$ and finally use a_1 to colour uv.

Hence, we may assume that a_0 appears at v_l and that $a_k(= a_{l+1})$ does not. Let P be the unique maximal alternating path of edges coloured a_0 and a_k that begins at v_l.

If P reaches v_k, then it must reach v_k along an edge coloured a_0, it continues along edge v_ku coloured a_k and finally it stops at u (because a_0 is missing at u). But in this case, we could interchange colours a_0 and a_k along P, recolour uv_j from a_j to a_{j+1} for every $j < k$, and then use colour a_1 on uv. Similarly, if P reaches v_{k-1}, then it must reach v_{k-1} along an edge coloured a_0, and it stops there (because a_k does not appear at v_{k-1}). But in this case, we could interchange colours a_0 and a_k along P, recolour uv_{k-1} from a_{k-1} to a_0, recolour uv_j from a_j to a_{j+1} for every $j < k - 1$, and then use colour a_1 on uv.

Hence, we may assume that P does not reach v_k and it does not reach v_{k-1}, and so P ends in a vertex outside $\{u, v_l, v_k, v_{k-1}\}$. But then, we could interchange colours a_0 and a_k along P, recolour uv_l from a_l to a_0, recolour uv_j from a_j to a_{j+1} for every $j < l$, and then use colour a_1 on uv.

\begin{corollary}
Let $G = G_1 + G_2$ be a join graph with $n_1 \leq n_2$. If $\Delta_1 > \Delta_2$ then G is Class 1 and Conjecture 1 holds true.
\end{corollary}

Note that the proof of Theorem 1 yields a polynomial-time algorithm to colour the edges of a join graph $G = G_1 + G_2$ with $\Delta(G)$ colours, whenever $n_1 \leq n_2$ and $\Delta_1 > \Delta_2$.

4 \hspace{1cm} \Delta_1 = \Delta_2

Let $G = G_1 + G_2$ be a join graph with $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ such that $n_1 \leq n_2$. Assume that $\Delta_1 = \Delta_2$. In view of Observation 1, it is natural to ask whether a result similar to Theorem 1 is still valid. Unfortunately, this is not the case. For instance, consider the join graph $G = G_1 + G_2$ in Fig. 3: it is easy to see that, for every maximum matching M of B_G, the corresponding graph G_M is Class 2 (G_M is overfull). On the other hand, consider the case of the join graph $G = C_5 + C_5$ (where C_5 denotes the chordless cycle with five vertices); if M is chosen so that G_M is the Petersen graph then G_M is Class 2; on the other hand it is easy to see that there exist maximum matchings M such that the corresponding G_M are Class 1.
Fig. 3

It follows that we can still make use of Observation 1 by finding sufficient conditions under which join graphs $G = G_1 + G_2$ with $\Delta_1 = \Delta_2$ have the property of the existence of a maximum matching M of B_G such that G_M is Class 1.

Theorem 2 Let $G = G_1 + G_2$ be a join graph with $\Delta_1 = \Delta_2$. If one of the following three conditions holds

(i) both G_1 and G_2 are Class 1;
(ii) G_1 is a subgraph of G_2;
(iii) both G_1 and G_2 are disjoint unions of cliques;

then there exists a maximum matching M of B_G such that the corresponding graph G_M is Class 1.

Proof Without loss of generality, we can assume that $n_1 \leq n_2$.

First, assume that (i) holds. Let M be an arbitrary maximum matching of B_G. Since G_1 and G_2 are Class 1, and since $\Delta_2 = \Delta_1$, it follows that we can colour the edges of G_1 and G_2 with Δ_1 colours. If we use an extra colour to colour all edges in M, then $\chi'(G_M) \leq \Delta_1 + 1 = \Delta(G_M)$, and so G_M is Class 1.

Secondly, assume that (ii) holds. Let $V_1 = \{u_1, \ldots, u_{n_1}\}$ and $V_2 = \{v_1, \ldots, v_{n_2}\}$. Colour the edges of G_2 with $\Delta_2 + 1$ colours $f_1, \ldots, f_{\Delta_2+1}$. Since G_1 is a subgraph of G_2, it follows that for every edge u_iu_j of G_1 v_iv_j is an edge of G_2; let f_k be the colour of v_iv_j. Colour u_iu_j with colour f_k. Hence, we can extend the $\Delta_2 + 1$ edge-colouring of G_2 to all the edges of G_1. Now, let u_i be an arbitrary vertex of G_1 and let v_i be the corresponding vertex of G_2 (such a vertex exists because G_1 is a subgraph of G_2). Let f_k be a colour missing at v_i (such a colour exists because $d_{G_2}(v_i) \leq \Delta_2$). By construction, colour f_k is missing also at u_i and so we can colour u_iv_i with colour f_k. Since we can repeat this operation for every vertex of G_1, it follows that for the matching $M = \{u_iv_i, i = 1, \ldots, n_1\}$ the graph G_M is $\Delta_2 + 1$ edge-colourable, and so G_M is Class 1.

Finally, assume that (iii) holds. Order the vertices of G_1, u_1, \ldots, u_{n_1}, so that all the vertices in a same connected component of G_1 are consecutive, and such that if u_i belongs
to a clique K_i and u_j belongs to a clique K_s with $t > s$ then $i > j$. Similarly, we can order the vertices of G_2, v_1, \ldots, v_{n_2}, so that all the vertices in a same connected component of G_2 are consecutive, and such that if v_i belongs to a clique K_t and v_j belongs to a clique K_s with $t > s$ then $i > j$.

Let $C = \{f_0, \ldots, f_{\Delta_1}\}$ be the $\Delta_1 + 1$ edge-colouring of G_1 obtained in the following way: to every edge $u_i u_j$ assign colour f_h with $h = (i + j) \mod (\Delta_1 + 1)$. To show that this colouring is admissible, we only need verify that any two arbitrary adjacent edges of G_1 have different colours. For this purpose, assume that the edges $u_i u_j$ and $u_j u_k$ (with $i \neq k$) have been assigned the same colour f_h. Then, by construction, $h = (i + j) \mod (\Delta_1 + 1)$ and $h = (j + k) \mod (\Delta_1 + 1)$. It follows that $h = i + j - t_1(\Delta_1 + 1)$ (for some nonnegative integer t_1) and $h = j + k - t_2(\Delta_1 + 1)$ (for some nonnegative integer t_2), with $t_2 \neq t_1$ (because $k \neq i$). But then we can write $(\Delta_1 + 1)(t_2 - t_1) - (k - i) = 0$, and so $|k - i| = |t_2 - t_1|(\Delta_1 + 1)$, which implies that $|k - i| \geq \Delta_1 + 1$. On the other hand, the chosen ordering of the vertices of G_1 implies that $|k - i| \leq \Delta_1$ (because u_i and u_j belong to a same clique whose size is at most $\Delta_1 + 1$), a contradiction.

Note that, by construction, for every $i = 1, \ldots, n_1$, vertex u_i misses colour $f_{(2i) \mod (\Delta_1 + 1)}$. Since $\Delta_2 = \Delta_1$, we can colour the edges of G_2 in a similar way using the same colours in C: to every edge $v_i v_j$ of G_2, assign colour f_{h} with $h = (i + j) \mod (\Delta_1 + 1)$. By construction, for every $i = 1, \ldots, n_2$, vertex v_i misses colour $f_{(2i) \mod (\Delta_1 + 1)}$.

Now we are ready to choose the desired maximum matching M of BG: $M = \{u_i v_i, i = 1, \ldots, n_1\}$. Indeed, for every $i = 1, \ldots, n_1$, we can assign to edge $u_i v_i$ the colour $f_{(2i) \mod (\Delta_1 + 1)}$. Thus, G_M is Class 1 and the theorem follows.

Corollary 2 Let $G = G_1 + G_2$ be a join graph with $\Delta_1 = \Delta_2$. If one of the following three conditions holds
(i) both G_1 and G_2 are Class 1
(ii) G_1 is a subgraph of G_2
(iii) both G_1 and G_2 are disjoint unions of cliques,
then G is Class 1.

Note that the proof of Theorem 2 gives an algorithm to colour the edges of a join graph $G = G_1 + G_2$ with $\Delta(G)$ colours, whenever $\Delta_1 = \Delta_2$, and G_1 is a subgraph of G_2 or both G_1 and G_2 are disjoint unions of cliques.

Theorem 3 Every regular join graph $G = G_1 + G_2$ with $\Delta_1 = \Delta_2$ is Class 1.

Proof Let m_i denote the number of edges of G_i, $i = 1, 2$. Since G is regular and that $\Delta_1 = \Delta_2$, it follows that $n_1 = n_2$ and $m_1 = m_2$. Let $C_1 = \{f_1, \ldots, f_{\Delta_1 + 1}\}$ be an equalized edge-colouring of G_1; and let $C_2 = \{g_1, \ldots, g_{\Delta_2 + 1}\}$ be an equalized edge-colouring of G_2.

Since C_1 is equalized, each colour f_i ($i = 1, \ldots, \Delta_1 + 1$) is missed by exactly $n_1 - 2\left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil$ or $n_1 - 2\left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil$ vertices of G_1; similarly, each colour g_i ($i = 1, \ldots, \Delta_2 + 1$) is missed by exactly $n_2 - 2\left\lceil \frac{m_2}{\Delta_2 + 1} \right\rceil$ or $n_2 - 2\left\lceil \frac{m_2}{\Delta_2 + 1} \right\rceil$ vertices of G_2. Without loss of generality, we can assume that colours f_1, \ldots, f_p are missed by exactly $n_1 - 2\left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil$ vertices of G_1, that colours $f_{p+1}, \ldots, f_{\Delta_1 + 1}$ are missed by exactly $n_1 - 2\left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil$ vertices of G_1, that colours
g_1, \ldots, g_q are missed by exactly $n_2 - 2\left\lceil \frac{m_2}{\Delta_2 + 1} \right\rceil$ vertices of G_2, that colours $g_{q+1}, \ldots, g_{\Delta_2+1}$ are missed by exactly $n_2 - 2\left\lceil \frac{m_2}{\Delta_2 + 1} \right\rceil$ vertices of G_2.

Since G is regular, it follows that G_1 is Δ_1-regular and that G_2 is Δ_2-regular, and so each vertex u_i of G_1 misses exactly one colour f_j and each vertex v_i of G_2 misses exactly one colour g_h. Thus we can write

\[n_1 = p \left(n_1 - 2 \left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil \right) + (\Delta_1 + 1 - p) \left(n_1 - 2 \left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil \right) \]

\[n_2 = q \left(n_2 - 2 \left\lceil \frac{m_2}{\Delta_2 + 1} \right\rceil \right) + (\Delta_2 + 1 - q) \left(n_2 - 2 \left\lceil \frac{m_2}{\Delta_2 + 1} \right\rceil \right). \]

Since $n_1 = n_2$ and $m_1 = m_2$, we can write

\[(p - q) \left(n_1 - 2 \left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil \right) = (p - q) \left(n_1 - 2 \left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil \right). \]

But then,

\[p = q \quad \text{or} \quad \left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil = \left\lceil \frac{m_1}{\Delta_1 + 1} \right\rceil. \]

Note that in the latter case, we must have $p = \Delta_1 + 1$ and $q = \Delta_2 + 1$. Hence, $p = q$, and so we can assume that $g_i = f_i$ for every $i = 1, \ldots, \Delta_1 + 1$.

Now, let $M = \{u_i v_i : i = 1, \ldots, n_1\}$. For every $i = 1, \ldots, \Delta_1 + 1$, since both u_i and v_i miss the same colour, say f_k, we can assign to edge $u_i v_i$ the colour f_k. But then we get a $\Delta_1 + 1$ edge-colouring of G_M, and so G_M is Class 1.

Note that the proof of Theorem 3 gives an algorithm to colour the edges of a regular join graph $G = G_1 + G_2$ with $\Delta(G)$ colours, whenever $\Delta_1 = \Delta_2$.

Corollary 3 Conjecture 2 holds true for every regular join graph $G = G_1 + G_2$ with $\Delta_1 = \Delta_2$.

5 $\Delta_1 < \Delta_2$

Let $G = G_1 + G_2$ be a join graph with $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ such that $n_1 \leq n_2$.

If $n_1 < n_2$, then Observation 1 does not help. Indeed, there are join graphs $G = G_1 + G_2$ with $\Delta_1 < \Delta_2$ and $n_1 < n_2$ such that G is Class 2 even though G_M is Class 1 for every maximum matching M. This is, for instance, the case of the graph in Fig. 4.
Moreover, when $\Delta_1 < \Delta_2$ and $n_1 < n_2$ there are graphs $G = G_1 + G_2$ that satisfy some of the three conditions in Theorem 2 and are Class 2. For instance, every complete graph G with an odd number of vertices satisfies conditions (ii) and (iii); the graph in Fig. 4 satisfies conditions (i) and (ii).

However, if we assume that $n_1 = n_2$, then we can apply Observation 1. In fact, we can get a strong result similar to Theorem 1:

Theorem 4 Let $G = G_1 + G_2$ be a join graph with $n_1 = n_2$. If $\Delta_1 < \Delta_2$ then for every maximum matching M of B_G, the corresponding graph G_M is Class 1.

Proof Interchange the roles of G_1 and G_2 and apply Theorem 1.

Corollary 4 Let $G = G_1 + G_2$ be a join graph with $n_1 = n_2$. If $\Delta_1 < \Delta_2$ then G is Class 1 and Conjecture 1 holds true.

Acknowledgments. This research was started while the second author was visiting IASI, the Istituto di Analisi dei Sistemi ed Informatica. The financial support was from FAPESP grant 98/13454-8 and CNPq grant 301160/95-3 (Brazilian Research Agencies) and from FIRB (Italian Research Agency), grant 02/DD808-ric.

References

