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Multidimensional Cube Paking�Y. Kohayakaway F.K. Miyazawaz P. Raghavanx Y. Wakabayashi{AbstratWe onsider the d-dimensional ube paking problem (d-CPP): given a list L of d-dimensional ubes and (an unlimited quantity of) d-dimensional unit-apaity ubes,alled bins, �nd a paking of L into the minimum number of bins. We present twoapproximation algorithms for d-CPP, for �xed d. The �rst algorithm has an asymp-toti performane bound that an be made arbitrarily lose to 2� (1=2)d. The seondalgorithm is an improvement of the �rst and has an asymptoti performane bound thatan be made arbitrarily lose to 2 � (2=3)d. To our knowledge, these results improvethe bounds known so far for d = 2 and d = 3, and are the �rst results with bounds thatare not exponential in the dimension.Key Words: Approximation algorithms, multidimensional bin paking, asymptotiperformane.1 IntrodutionWe onsider a generalization of the one-dimensional bin paking problem, alled here d-dimensional ube paking problem (d-CPP). This is the following problem. Given a list L ofn d-dimensional ubes (possibly of di�erent sizes) and d-dimensional unit-apaity ubes,alled bins, �nd an orthogonal paking of L into the minimum number of bins. This problemis in fat a speial ase of the d-dimensional bin paking problem (d-BPP), in whih one hasto pak d-dimensional parallelepipeds into d-dimensional unit-apaity bins. Note that ford = 1 these problems oinide.In 1989, Coppersmith and Raghavan [4℄ presented an online algorithm for d-BPP withasymptoti performane bound (3�2d+1)=4. This algorithm, when speialized to d-CPP, hasasymptoti performane bound (3=2)d � (3=4)d + 1. In [13℄, Miyazawa and Wakabayashipresented approximation algorithms for 3-CPP that an be generalized to d-CPP with�This researh was partially supported by MCT/CNPq under PRONEX projet 107/97 and CNPq(Pro. 470608/01{3, 468516/00{0, 464114/00{4, 300334/93{1, 300301/98{7 and 304527/89{0).yInstituto de Matem�atia e Estat��stia | Universidade de S~ao Paulo. Rua do Mat~ao, 1010 | 05508{090| S~ao Paulo{SP | Brazil, yoshi�ime.usp.br.zInstituto de Computa�~ao | Universidade Estadual de Campinas, Caixa Postal 6176 | 13084{971 |Campinas{SP | Brazil, fkm�i.uniamp.br.xVerity, In., 892 Ross Drive, Sunnyvale, CA 94089, USA, pragh�verity.om.{Instituto de Matem�atia e Estat��stia | Universidade de S~ao Paulo. Rua do Mat~ao, 1010 | 05508{090| S~ao Paulo{SP | Brazil, yw�ime.usp.br. 1



2 Kohayakawa, Miyazawa, Raghavan and Wakabayashiasymptoti performane bound (4=3)d � (8=9)d + 1, whih gives asymptoti peformanebounds lose to 1:99 for 2-CPP and 2:67 for 3-CPP.The most studied ase is when d = 1. For this ase there are asymptoti approximationshemes due to Karmarkar and Karp [8℄ and Fernandez de la Vega and Lueker [6℄. For areent survey on this ase, see Co�man, Garey and Johnson [3℄. For 2-BPP the algorithmwith the best asymptoti performane bound is due to Chung, Garey and Johnson [1℄,with bound 2:125. For 3-BPP Li and Cheng [11℄ and Csirik and van Vliet [5℄ designedalgorithms with asymptoti performane bound 4:84. Their algorithms generalize to d-BPP giving algorithms with asymptoti performane bound lose to 1:691d. For a survey onapproximation algorithms for paking problems we refer to Co�man, Garey and Johnson [2℄.We present two approximation algorithms for d-CPP. The �rst algorithm has an asymp-toti performane bound that an be made as lose to 2 � (1=2)d as desired. The seondalgorithm is an improvement of the �rst one and has an asymptoti performane bound thatan be made as lose to 2� (2=3)d as desired. For d = 2 and d = 3 the bounds are lose to14=9 and 46=27, respetively. To our knowledge, these results improve the bounds knownso far for d = 2 and d = 3, and are the �rst results with bounds that are not exponential inthe dimension. Reently, Seiden and Stee [15℄ presented an algorithm for d = 2 with bound14=9 + � that uses an idea similar to the one we present in this paper. It is most likely thatthe extended abstrat [9℄, where we announed a omparable result, with expliit formulasfor general d and full desription of our algorithms, was unknown to those authors.The remainder of this paper is organized as follows. In the next setion we present thenotation and some de�nitions. In Setion 3 we desribe restrited versions of d-CPP. InSetion 4 we present our approximation algorithms for d-CPP. We lose with some openproblems.2 Notation and de�nitionsGiven a ube , the size of , denoted by s(), is de�ned as the length of an edge of . If Lis a list of ubes, then we denote by V (L) the total volume of the ubes in L. Throughoutthis paper whenever we onsider a list L to be paked into unit bins we suppose that all itsubes have size at most 1.Given a list L of ubes, and an algorithm A, we denote by A(L) the number of binsused by algorithm A when applied to L, and by OPT(L) the number of bins used by anoptimal paking of L. If P is a paking of L, we denote the number of bins used in P byjPj. Some of our algorithms partition the input list L into sublists L1; : : : ; Lk and thenapply speialized algorithms for eah sublist Li generating a partial paking Pi. We denotethe paking obtained by the union of these pakings by P1 [ : : : [ Pk. We say that analgorithm A has asymptoti performane bound � if there exists a onstant � suh thatA(L) � � � OPT(L) + � for all input lists L. If � = 0, we also say that � is an absoluteperformane bound for algorithm A. We note that 2-CPP annot be approximated within2� � in the absolute sense, unless P = NP (see [7℄, where this result is dedued from [10℄).This and other negative results in terms of the absolute performane bounds make theasymptoti performane analyses of approximation algorithms for bin paking problems



Multidimensional Cube Paking 3attrative.3 Restrited d-CPPBefore onsidering the general problem, we present algorithms for restrited instanes ofd-CPP, to be used as subroutines.3.1 Restrited sizes and typesFirst, we onsider instanes that admit a onstant upper bound k on the number of di�erentube sizes and eah ube size is at least �. We denote the set of suh instanes by I�;k;d.In what follows we show that in this ase an optimal solution an be obtained in poly-nomial time by an enumeration proess.Given a list L 2 I�;k;d, denote by D(L) = (s1; s2; : : : ; sk) the list of di�erent sizes in thelist L and by M(L) = (m1;m2; : : : ;mk) the list of the multipliities mi of the ubes withsize si.There are in�nitely many ways of paking a list of ubes into a bin, but the numberof di�erent on�gurations is bounded if we onsider only \anonial" pakings. We say apaking P is anonial if no ube in P an be shifted to a \lower" position in any dimension,without overlapping ubes. Eah on�guration in a bin of a anonial paking is alled aanonial pattern. With this in mind, we an ompute all possible positions Pd(L) in a binwhere a ube of L an be paked. We set p(L) := fp := b1s1 + b2s2 + � � � + bksk : 0 � p �1; 0 � bi � mig, and de�ne Pd(L) as the set p(L)d = p(L)� : : :� p(L).Claim 3.1 For a given list L in I�;k;d, the ardinality of Pd(L) is bounded by a value thatdepends only on k, � and d.Proof. Sine eah ube of L has size at least �, we have bi � b1=� for all i. Thus wean onlude that (b1=� + 1)k is an upper bound on p(L). Therefore, we have jPd(L)j �(b1=� + 1)kd.For L 2 I�;k;d, let ��;k;d(L) denote the number of all possible anonial patterns of L.The following result is immediate.Claim 3.2 The value ��;k;d(L) is bounded by a value that depends only on k, � and d.Proof. Note that the number of anonial patterns for L onsisting of exatly i ubes isbounded by ki�jPd(L)ji �:Therefore, ��;k;d(L) � k�jPd(L)j1 �+ k2�jPd(L)j2 �+ � � � + k��d�jPd(L)j��d �;and the result follows.



4 Kohayakawa, Miyazawa, Raghavan and WakabayashiLet R�;k;d denote the algorithm that generates all possible anonial pakings andhooses a paking using the smallest number of bins.Lemma 3.3 Let �, k and d be �xed positive numbers and L an instane of d-CPP withL 2 I�;k;d. Then L an be paked optimally in polynomial time by the algorithm R�;k;d.Proof. Suppose L has n ubes. Sine we an have at most n bins of eah pattern, thenumber of di�erent pakings is bounded by the polynomial (n+1)�, where � := ��;k;d(L).3.2 Restrited sizeIn this setion, we onsider instanes where we only have restrition on the minimum sizeof a ube. We denote by I�;d the set of all instanes onsisting of ubes with size greaterthan �.We shall make use of the linear rounding tehnique presented by Fernandez de la Vegaand Lueker [6℄ to obtain an asymptoti approximation sheme R�;d for instanes in I�;d.Given two instanesX and Y for d-CPP, we writeX � Y if there is an injetion fX ! Ysuh that s() � s(f()) for all  2 X. Denote by X the instane with preisely jXj ubeswith size equal to the size of the largest ube in X. Clearly, X � X . The following laimis immediate.Claim 3.4 If X and Y are two instanes for d-CPP with X � Y , then OPT(X) �OPT(Y ).We are now ready to desribe the algorithm R�;d.Algorithm R�;d(L)Input: L 2 I�;d1. If L ontains < 2=�d+1 ubes, �nd an optimal paking exhaustively and returnthis paking. Otherwise, let L = (1; : : : ; n) be the input list sorted in non-inreasing order of size.2. Set q := bn�d+1 and partition L into groups G0; G1; : : : ; Gk suh thatG0 � G1 � � � � � Gk;where jGij = q for all i = 0; : : : ; k � 1,and jGkj � q:3. Let P0 be the paking obtained by plaing eah ube of G0 into a di�erent bin4. Let J := Ski=1Gi and bJ := Ski=1Gi.5. Let bP be the paking of bJ generated by the algorithm R�;k;d; and let P1 bethe paking of J orresponding to bJ .6. Return P0 [ P1.



Multidimensional Cube Paking 5Lemma 3.5 For all input list L 2 I�;d, we haveR�;d(L) � (1 + �)OPT(L):Furthermore, R�;d is a polynomial time algorithm.Proof. It suÆes to onsider the ase in whih n � 2=�d+1. In step 2 we partition the sortedlist L into k + 1 groups Gi eah of whih onsists of q = bn�d+1 ubes, exept perhaps forthe last group, whih may have fewer ubes. Note that k+1 = dn=b�d+1ne � d2=�d+1e and,therefore, the number of di�erent ube types in list bJ is bounded by a value that dependsonly on � and d. Sine Gi � Gi�1 (i = 1; : : : ; k) we have bJ � L. From Lemma 3.3 andClaim 3.4, we have jP1j = j bPj = OPT( bJ) � OPT(L): (1)The paking of G0 uses at most q bins, thereforejP0j � q = bn�d+1 � n�d+1 � � V (L) � �OPT(L): (2)From inequalities (1) and (2), we haveR�;d(L) = jP0j+ jP1j � OPT(L) + �OPT(L) � (1 + �)OPT(L);as required.We now turn to an algorithm that will be used only in the improved version of ouralgorithm (see Setion 4.2). This algorithm, whih we all R01=3;d, is designed for thespeial ase in whih all ubes have size greater than 1=3 and is optimal. We observethat R01=3;d is a generalization for d-CPP of an algorithm presented by Ferreira, Miyazawaand Wakabayashi [7℄ for 2-CPP.Algorithm R01=3;d(L)Input: L 2 I1=3;d1. Partition the list L into the two sublistsL0 := f 2 L : s() > 1=2g and L00 := L n L0:2. Sort the ubes in L0 in non-dereasing order of their sizes. Let L0 = (01; : : : ; 0n0).3. Sort the ubes in L00 in non-inreasing order of their sizes. Let L00 = (001 ; : : : ; 00n00).We have 13 < � � � � s(001) � 12 < s(01) � � � �4. Call the subroutine SR1=3;d with parameters (L0; L00).Subroutine SR1=3;d(L0; L00)(a) If L0 = ; and L00 = ; then return ;;



6 Kohayakawa, Miyazawa, Raghavan and Wakabayashi(b) else if L0 = ; then generate a paking P plaing the �rst m :=minf2d; n00g ubes of L00 into one bin;() else if L00 = ; then generate a paking P plaing the ube 01 intoone bin;(d) else if s(01)+ s(001) > 1 then generate a paking P plaing m :=minf2d; n00g ubes of L00 into one bin;(e) else generate a paking P plaing the ube 01 andm := minf2d�1; n00g ubes of L00 into one bin.(f) Remove from L0 and L00 the ubes that have been paked.(g) Return P [ SR1=3;d(L0; L00).First we prove that the paking generated by the algorithm R01=3;d has a very simplestruture. Indeed, we show that the bins generated by this algorithm, exept for possiblyone, may have only three di�erent on�gurations.Lemma 3.6 Let L 2 I1=3;d be an instane for d-CPP, L0 := f 2 L : s() > 12 g andL00 := L n L0. Then the algorithm R01=3;d applied to L generates a paking where eah bin,exept for possibly one, has one of the following on�gurations.C1 : on�guration onsisting of 1 ube of L0 and 2d � 1 ubes of L00.C2 : on�guration onsisting of exatly 1 ube of L0.C3 : on�guration onsisting of 2d ubes of L00.Proof. Note that eah all of the subroutine SR1=3;d generates a one-bin paking and thenpaks the remaining ubes reursively. Let us then analyse steps (b){(e) of this subroutine,where a paking into one bin is generated.Clearly, the bin generated in step () has on�guration C2. In steps (b), (d) and (e),the bin that is generated does not have one of the three on�gurations only when the valueof m is n00 and n00 < 2d (in steps (b) and (d)) or n00 < 2d� 1 (in step (e)). But this happensonly one, and after step (f) we have L00 = ; and therefore the next bins to be generated,if any, will have on�guration C2.Theorem 3.7 The algorithm R01=3;d �nds an optimal solution for d-CPP restrited to in-stanes L 2 I1=3;d in polynomial time.Proof. The algorithm R01=3;d partitions the list L into two sublists L0 and L00, sorts themand alls the subroutine SR1=3;d. In eah all, this subroutine generates a one-bin pakingand then paks the remaining ubes reursively.Consider a all of the subroutine SR1=3;d with parameters (L0; L00), and let B be thebin generated in this all. We laim that there is an optimal paking P� of L0 [ L00 thathas a bin B� with the same ubes as B. This is learly true if the paking of the bin Bis generated in steps (a), (b), or (). (For step (b), it is ruial that the ubes have sizegreater than 1=3.)Now suppose that B is generated in step (d). In this ase, the largest ube 001 of L00annot be paked with the smallest ube of L0. Therefore, any optimal paking P� does nothave 001 with any other ube in L0. Let B� be the bin of P� ontaining the ube 001. Sine B



Multidimensional Cube Paking 7ontains the largest ubes of L00, we an exhange the ubes of B�, so that it ends up withthe ubes paked in B. In fat, if  2 B nB� and C� is the bin of P� ontaining , then wean learly exhange any ube in B� nB with ube . Repeating this proess, we obtain anoptimal paking that has a bin ontaining the same ubes as B.The proof for the ase in whih B is generated in step (e) is analogous. The resultfollows by indution.4 Approximation algorithms for d-CPPIn this setion we present two approximation algorithms for d-CPP. The �rst has asymptotiperformane bound that an be made as lose to 2� (1=2)d as desired and the seond hasasymptoti performane bound that an be made as lose to 2� (2=3)d as desired.Both algorithms use the NFDH (Next Fit Dereasing Height) algorithm as a subroutine,to be desribed in what follows.The algorithm NFDH generates t-dimensional strips (using dimensions 1; : : : ; t) using(t�1)-dimensional strips (dimensions 1; : : : ; t�1) whih are paked in non-inreasing orderof their size (the size of a strip is the size of the largest ube in it). The (t� 1)-dimensionalstrips are paked side by side in dimension t until a (t � 1)-dimensional strip annot bepaked (the sum of the (t � 1)-dimensional strip sizes annot be greater than 1). In thisase, the (t�1)-dimensional strip starts a new t-dimensional strip. The 0-dimensional stripsare the ubes themselves and the d-dimensional strips are the pakings generated into bins.For more details of NFDH, see [12℄.The following result was proved by Meir and Moser [12℄ for the algorithm NFDH. We anderive from it two orollaries whih will be useful to prove the bounds for our algorithms.Theorem 4.1 Let L be a list of d-dimensional ubes with maximum size s. Then L an bepaked by the algorithm NFDH into a d-dimensional a1 � a2 � � � � � ad parallelepiped ifV (L) � sd + (a1 � s)(a2 � s) � � � (ad � s):Corollary 4.2 Let P be the paking into unit bins obtained by applying the algorithmNFDH to a list L onsisting of d-dimensional ubes with maximum size �. Then eahsublist of ubes paked in a bin used by P, exept for possibly one, has volume greater than(1� �)d.Proof. Suppose P uses m bins, and let Li = (i1; : : : ; ini) be the sublist paked in the i-thbin. Sine the set Li [ fi+11 g, for 1 � i � m � 1, ould not be paked by the algorithmNFDH in the i-th bin, we have V (Li [ fi+11 g) > �d + (1� �)d. Therefore,V (Li) > �d + (1� �)d � V (i+11 ) � (1� �)dfor i = 1; : : : ;m� 1.



8 Kohayakawa, Miyazawa, Raghavan and WakabayashiCorollary 4.3 Let P be the paking into unit bins obtained by applying the algorithmNFDH to a list L of d-dimensional ubes. Then eah sublist of ubes paked in a binused by P, exept for possibly one, has volume at least (1=2)d.Proof. Clearly, it suÆes to analyse the sublists (paked in a bin) ontaining ubes withsize at most 1=2. Consider then a list onsisting of these sublists. Applying Corollary 4.2to this list the result is immediate.We now state a tehnial lemma [14℄ that will be useful in the proofs of Theorems 4.5and 4.7.Lemma 4.4 Suppose a; b; ; Æ are real numbers suh that a > 0 and 0 <  < Æ < 1. Thena+ bmaxfa; a+ Æbg � 1 + 1� Æ :
4.1 First AlgorithmNow we are ready to desribe the �rst algorithm of this setion, alled A0�;d, whih dependson a parameter �. This parameter is used to subdivide the list L into two sublists: oneonsisting of \large" ubes (size greater than �) and the other onsisting of \small" ubes.For the large ubes we use the asymptoti approximation sheme presented in Setion 3.2,and for the small ubes we use the algorithm NFDH. In order to obtain bounds for thevolume of the large ubes we also use the algorithm NFDH.Algorithm A0�;d(L)1. Partition the list L into the two sublistsL0 := f 2 L : s() > �g and L00 := L n L0:2. Generate a paking P 01 of L0 using the algorithm R�;d.3. Generate a paking P 02 of L0 using the algorithm NFDH.4. Let P 0 be a paking in fP 01;P 02g that uses the least number of bins.5. Generate a paking P 00 of L00 using algorithm NFDH.6. Return P 0 [ P 00.Theorem 4.5 For �xed values of d and � the algorithm A0�;d runs in polynomial time.Furthermore, we have A0�;d(L) � ��;dOPT(L) + 2;where ��;d ! 2� (1=2)d as �! 0.



Multidimensional Cube Paking 9Proof. Sine the algorithms R�;d and NFDH are polynomial time algorithms, A0�;d is also apolynomial time algorithm. Let us analyse the performane of A0�;d.Let n0 := jP 0j � 1 and n00 := jP 00j � 1. From steps 3 and 4 and Corollary 4.3, we haveV (L0) � 12d (jP 02j � 1) � 12d (jP 0j � 1) � 12dn0: (3)From step 5 and Corollary 4.2, we haveV (L00) � (1� �)d(jP 00j � 1) � (1� �)dn00: (4)From inequalities (3) and (4) and the fat that the volume of the ubes in L is a lowerbound for the optimum paking, we onlude thatOPT(L) � V (L) = V (L0) + V (L00) � 12dn0 + (1� �)dn00: (5)The paking P 01 of sublist L0 is generated by an asymptoti approximation sheme (seeLemma 3.5). Sine from step 4 the paking P 0 of L0 is suh that jP 0j � jP 01j, we haveOPT(L) � OPT(L0) � 11 + � jP 0j � n01 + � : (6)From inequalities (5) and (6), we haveOPT(L) � max� n01 + � ; 12dn0 + (1� �)dn00� : (7)Sine A0�;d(L) = jP 0j+ jP 00j, we obtainA0�;d(L) = (n0 + 1) + (n00 + 1)= n0 + n00OPT(L)OPT(L) + 2� ��;dOPT(L) + 2;where ��;d = (n0 + n00)=(maxfn0=(1 + �); (1=2d)n0 + (1� �)dn00g) (see (7)). From Lemma 4.4,we onlude that lim�!0 ��;d � 2� (1=2)d:Proposition 4.6 The asymptoti performane bound 2 � (1=2)d of the algorithm A0�;d istight.Proof. Let L0 be a list of n0 ubes of size 1=2+ �, where n0 is a large integer and � is a smallreal suh that � < � and 1=� is an integer. Let L00 be a list of n00 := d(1� 1=2d)n0e=�d ubesof size �.Consider a paking P of a list L := L0 [ L00 generated by the algorithm A0�;d. Thealgorithm A0�;d paks L0 and L00 separately. For L0 the algorithm uses at least n0 bins.For L00, the algorithm generates a paking using d(1 � (1=2)d)n0e bins. That is, A0�;d(L) =n0 + d(1� (1=2)d)n0e.On the other hand, an optimal paking of L an be found using n0 + 1 bins. Therefore,the ratio A0�;d(L)=OPT(L) an be made as lose to 2� (1=2)d as desired.



10 Kohayakawa, Miyazawa, Raghavan and Wakabayashi4.2 Improved AlgorithmIn this setion we present an algorithm that is an improvement of A0�;d. This algorithm hasan asymptoti performane bound that an be made as lose to 2� (2=3)d as desired. Weall this algorithm A�;d.In the previous setion we presented an algorithm that partitions the input list L intotwo sublists L0 and L00 and generates a paking onsisting of two parts. Part (i), for thelist L0 (of the ubes with size greater than �), onsists of an almost optimal paking butpossibly with a poor bound for the volume oupation in eah bin. Part (ii), for the list L00(of the ubes with size at most �), onsists of a paking with a good bound for the volumeoupation.The algorithm A�;d uses the small ubes of part (ii) to �ll the bins of part (i) withpoor volume oupation. Sine these bins may have very omplex item alloation we �rstreorganize the bins with very poor volume oupation in suh a way as to have a pakingwith a more tratable on�guration. After this reorganization and the paking of smallitems, we have one of the following two situations. Either we have paked all the smallubes into bins of part (i), or else we were not able to pak all the small ubes in thenon-oupied spae of the bins in part (i).As we shall see, in the �rst ase, we generate an almost optimal paking. In the seondase, we obtain a better volume bound for the (newly generated) bins of part (i) and thisleads us to an improvement of the �nal bound.Let us desribe the main steps of the algorithm. In step 1 we subdivide the input listinto two sublists, L0 and L00, as in the previous algorithm. In step 2 we use an asymptotiapproximation sheme to obtain a paking P 0 for the sublist L0. In step 3 we separate thebins of P 0 with poor volume oupation and in step 4 we reorganize these bins so as to getall bins, exept for perhaps one, with good volume oupation, or bins with only one largeube and poor volume oupation. In step 5 we pak the small ubes of sublist L00 into theremaining spae of the bins with only one large ube.Algorithm A�;d(L)1. Partition the list L into the two sublistsL0 := f 2 L : s() > �g and L00 := L n L0:2. Generate a paking P 0 of the sublist L0 using algorithm R�;d.3. Let P 01 onsist of all bins of paking P 0 with volume oupation less than (2=3)d,and let P 02 onsist of the remaining bins of P 0. Let L01 be the ubes in P 01.4. Generate a new paking bP 01 of L01 as follows4.1 Let Si := f 2 L01 : s() 2 � 1i+1 ; 1i ig, for i = 1; : : : ; 8 andlet S9 := f 2 L01 : s() � 19g.4.2 Generate a paking P12 of S1 [ S2 using the algorithm R01=3;d, and let Ube the set of bins in P12 with on�guration C2.4.3 For i = 3; : : : ; 8, repeat the following steps



Multidimensional Cube Paking 114.3.1 If U is empty, pak (up to) id ubes of Si in a new bin B.4.3.2 If U is not empty thenLet B be a bin in U ;If i 2 f3; 4; 5g then letm := id�(i�1)d else letm := id�(i�2)d;Pak (up to) m ubes of Si (around the unique ube in B);Update Si;Remove B from U .4.4 Pak the ubes in S9, as follows4.4.1 Subdivide the empty spae of eah bin B 2 U (around the uniqueube in B) into 3d � 2d smaller bins with size 1=3. Let U 0 be the setof these smaller bins.4.4.2 Pak the ubes of S9 into bins of U 0 using the algorithm NFDH.Remove the used bins of U 0. Use new unit bins if neessary.5. Pak the ubes of L00 into bins U 0 using the algorithm NFDH. Use new unit binsif neessary.6. Return the generated paking P.Theorem 4.7 For �xed values of d and � the algorithm A�;d runs in polynomial time.Furthermore, we have A�;d(L) � ��;dOPT(L) + 9;where ��;d ! 2� (2=3)d as �! 0.Proof. From steps 2 and 3 and Lemma 3.5, we havejP 01j+ jP 02j = jP 0j � (1 + �)OPT(L); (8)where P 01 onsists of the bins of P 0 with volume oupation less than (2=3)d.In step 4, the paking P 01 of L01 is reorganized in suh a way that all bins with volumeoupation less than (2=3)d will end up with volume oupation at least (2=3)d.In step 4.2 the algorithm R01=3;d generates an optimal paking P12 of S1 [ S2 whihontains bins with on�gurations C1, C2 or C3, desribed in Lemma 3.6.The bins of P12 with on�guration C1 (ontaining 1 ube with volume at least 1=2d and2d�1 ubes with volume at least 1=3d) have volume oupation at least 1=2d+(2d�1)1=3d,whih is greater than (2=3)d. The bins of P12 with on�guration C3 (ontaining 2d ubeswith volume at least 1=3d) have volume oupation at least (2=3)d.Therefore, the only bins of P12 with volume oupation less than (2=3)d are the binswith on�guration C2. These are exatly the bins U taken in step 4.2. Note that any binwith on�guration C2 has exatly one ube with size less than 2=3 and therefore we havespae for paking smaller ubes around it. The paking of the remaining ubes of L01 intothese spaes is aomplished in steps 4.3 and 4.4. Moreover, we show that, after these steps,the only bins with volume oupation less than (2=3)d that ould remain have on�gurationC2, exept perhaps for a onstant number of bins.We prove the previous statement onsidering the paking of eah sublist Si, i = 3; : : : ; 8.First, let us onsider the paking of the ubes in S3. Suppose that U ontains at least one



12 Kohayakawa, Miyazawa, Raghavan and Wakabayashibin B. In this ase, we an pak at least 3d � (3� 1)d ubes around the unique ube in B.This is possible beause eah ube of S3 has size at most 1=3 and the ube in B has size atmost 2=3. Sine eah ube of S3 has volume at least 1=4d and the ube in B has volume atleast 1=2d, the bins B 2 U after reeiving the ubes of S3 will have volume oupationVo(B) � 12d + (3d � 2d) 14d � �23�d :This holds for all suh bins B, exept perhaps for the last one. If during the paking ofubes in S3 the set U beomes empty, then the algorithm paks the remaining ubes of S3by plaing 3d ubes in eah new unit bin. In this ase, eah bin B of this type has volumeoupation Vo(B) � 3d 14d � �23�d ;exept perhaps for the last one.The analysis for the paking of the sublists S4; : : : ; S8 is analogous. We an prove avolume oupation of (2=3)d for eah rearranged bin of U , exept perhaps for one bin ineah of these sublists. For the new bins we an also guarantee the same volume oupation.Let us onsider the paking of the ubes in S9 into the remaining bins of U . Supposethere is a bin B in U . Sine the unique ube plaed (so far) in B has size at most 2=3, wean partition the empty spae inside B into 3d � 2d smaller bins of size 1=3. The set ofthese small bins is denoted by U 0, and in step 4.4.2 the algorithm NFDH is used to pak theubes of S9 into these bins (inside B). From Corollary 4.2, the algorithm NFDH generatespakings into bins B0 2 U 0 with volume oupation at least (1=3 � 1=9)d. Sine we have3d � 2d bins of U 0 inside eah bin B of U , the bins B after being �lled with ubes of S9 willhave a volume oupationVo(B) � 12d + (3d � 2d)�13 � 19�d � 12d + 2d3d � 4d9d > �23�d :If during the paking of ubes in S9 the set U 0 beomes empty, then the algorithm paksthe remaining ubes of S9 into new unit bins. From Corollary 4.2, eah bin B of this typehas volume oupation Vo(B) > �1� 19�d > �23�d :From the previous inequalities, we an onlude that, after step 4, the only bins in Uwhih have volume oupation less than (2=3)d are the remaining bins of on�guration C2,exept perhaps for 8 bins (one for eah sublist Si, i = 2; : : : ; 9).At this point, we an onlude the following: If all ubes of S3; : : : ; S9 were paked insidebins of U , then the paking bP 01 does not use more bins than the optimal paking P12, andtherefore the paking bP 01 is also optimal. That isj bP 01j � jP 01j: (9)



Multidimensional Cube Paking 13If the set U beomes empty in some iteration, we have obtained a paking of L01 with volumeoupation of at least (2=3)d in eah bin, exept perhaps for the last. Sine the bins of thepaking P 01 have volume oupation less than (2=3)d, we an onlude that the paking bP 01has at most 8 bins more than the paking P 01. That is,j bP 01j � jP 01j+ 8: (10)From inequalities (9), (10) and (8), we havej bP 01j+ jP 02j � (1 + �)OPT(L) + 8: (11)At last, we have to onsider the paking of the ubes in L00 generated in step 5. Theubes of this sublist is �rst paked by the algorithm NFDH into the remaining bins of U 0,whih are inside the bins of bP 01 with on�guration C2. If neessary, new unit bins are used.The analysis of this step is divided into two ases:Case 1. All ubes of L00 have been plaed inside the bins of U 0. In this ase, we have notused any new unit bin and, therefore,jPj = j bP 01j+ jP 02j � (1 + �)OPT(L) + 8: (12)Case 2. New unit bins have been used in the paking of L00. In this ase, eah bin B ofU has been \�lled" with ubes in L00. From Corollary 4.2, the bin B has volumeoupation Vo(B) > (1� �)d > �23�d :Let P 01 be the paking bP 01 with the bins of on�guration C2 �lled with ubes of L00,and bP 00 be the paking of the remaining ubes in L00 into new unit bins. Denote theset of ubes paked in bP 00 as L00. Sine the paking P 01 and the paking bP 01 have thesame number of bins and the paking P 01 is an asymptotially optimal paking, thepaking P 01 is also an asymptotially optimal paking.Now, the �nal paking P onsists of two parts: an almost asymptotially optimalpaking P 01 [ P 02, jP 01 [ P 02j � (1 + �)OPT(L) + 8;with volume oupation of (2=3)d in eah bin, exept perhaps in 9 bins; and thepaking bP 00 ontaining the remaining ubes of L00 into unit bins. From Corollary 4.2,we have j bP 00j � 1(1� �)dV (L00) + 1:Proeeding as in the proof of Theorem 4.5, we may onlude thatA�;d(L) � ��;dOPT(L) + 9;where ��;d = (n0+n00)=maxf1=(1 + �)n0; (2=3)dn0 + (1� �)dn00g. From Lemma 4.4, wehave lim�!0 ��;d � 2� (2=3)d:



14 Kohayakawa, Miyazawa, Raghavan and WakabayashiFinally, note that all steps of the algorithm A�;d an be implemented to run in polynomialtime.Proposition 4.8 The asymptoti performane bound 2� (2=3)d of algorithm A�;d is tight.Proof. The proof of this result is similar to the proof of Proposition 4.6. Consider a listL := L0 [L00, suh that L0 has n0 ubes of size 2=3+ � and L00 has n00 := d(1� (2=3)d)n0e=�dubes of size �, where n0 is a large integer and � is a small real; we omit the details.5 Open problemsWe believe the following problems should be takled.Problem 5.1 Is there an asymptoti approximation sheme for d-CPP?Problem 5.2 Prove better bounds of inapproximability in the absolute sense for the d-dimensional ase.Referenes[1℄ F. R. K. Chung, M. R. Garey, and D. S. Johnson. On paking two-dimensional bins.SIAM Journal on Algebrai and Disrete Methods, 3:66{76, 1982.[2℄ E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms forbin paking - an updated survey. In G. Ausiello, M. Luertini, and P. Sera�ni, editors,Algorithms design for omputer system design, pages 49{106. Spring-Verlag, New York,1984.[3℄ E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms (ed.D. Hohbaum), hapter Approximation algorithms for bin paking - a survey. PWS,1997.[4℄ D. Coppersmith and P. Raghavan. Multidimensional on-line bin paking: algorithmsand worst-ase analysis. Operations Researh Letters, 8(1):17{20, 1989.[5℄ J. Csirik and A. van Vliet. An on-line algorithm for multidimensional bin paking.Operations Researh Letters, 13:149{158, 1993.[6℄ W. Fernandez de la Vega and G. S. Lueker. Bin paking an be solved within 1 + � inlinear time. Combinatoria, 1(4):349{355, 1981.[7℄ C. E. Ferreira, F. K. Miyazawa, and Y. Wakabayashi. Paking of squares into squares.Pesquisa Operaional, 19(2):223{237, 1999.
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