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Multidimensional Cube Pa
king�Y. Kohayakaway F.K. Miyazawaz P. Raghavanx Y. Wakabayashi{Abstra
tWe 
onsider the d-dimensional 
ube pa
king problem (d-CPP): given a list L of d-dimensional 
ubes and (an unlimited quantity of) d-dimensional unit-
apa
ity 
ubes,
alled bins, �nd a pa
king of L into the minimum number of bins. We present twoapproximation algorithms for d-CPP, for �xed d. The �rst algorithm has an asymp-toti
 performan
e bound that 
an be made arbitrarily 
lose to 2� (1=2)d. The se
ondalgorithm is an improvement of the �rst and has an asymptoti
 performan
e bound that
an be made arbitrarily 
lose to 2 � (2=3)d. To our knowledge, these results improvethe bounds known so far for d = 2 and d = 3, and are the �rst results with bounds thatare not exponential in the dimension.Key Words: Approximation algorithms, multidimensional bin pa
king, asymptoti
performan
e.1 Introdu
tionWe 
onsider a generalization of the one-dimensional bin pa
king problem, 
alled here d-dimensional 
ube pa
king problem (d-CPP). This is the following problem. Given a list L ofn d-dimensional 
ubes (possibly of di�erent sizes) and d-dimensional unit-
apa
ity 
ubes,
alled bins, �nd an orthogonal pa
king of L into the minimum number of bins. This problemis in fa
t a spe
ial 
ase of the d-dimensional bin pa
king problem (d-BPP), in whi
h one hasto pa
k d-dimensional parallelepipeds into d-dimensional unit-
apa
ity bins. Note that ford = 1 these problems 
oin
ide.In 1989, Coppersmith and Raghavan [4℄ presented an online algorithm for d-BPP withasymptoti
 performan
e bound (3�2d+1)=4. This algorithm, when spe
ialized to d-CPP, hasasymptoti
 performan
e bound (3=2)d � (3=4)d + 1. In [13℄, Miyazawa and Wakabayashipresented approximation algorithms for 3-CPP that 
an be generalized to d-CPP with�This resear
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2 Kohayakawa, Miyazawa, Raghavan and Wakabayashiasymptoti
 performan
e bound (4=3)d � (8=9)d + 1, whi
h gives asymptoti
 peforman
ebounds 
lose to 1:99 for 2-CPP and 2:67 for 3-CPP.The most studied 
ase is when d = 1. For this 
ase there are asymptoti
 approximations
hemes due to Karmarkar and Karp [8℄ and Fernandez de la Vega and Lueker [6℄. For are
ent survey on this 
ase, see Co�man, Garey and Johnson [3℄. For 2-BPP the algorithmwith the best asymptoti
 performan
e bound is due to Chung, Garey and Johnson [1℄,with bound 2:125. For 3-BPP Li and Cheng [11℄ and Csirik and van Vliet [5℄ designedalgorithms with asymptoti
 performan
e bound 4:84. Their algorithms generalize to d-BPP giving algorithms with asymptoti
 performan
e bound 
lose to 1:691d. For a survey onapproximation algorithms for pa
king problems we refer to Co�man, Garey and Johnson [2℄.We present two approximation algorithms for d-CPP. The �rst algorithm has an asymp-toti
 performan
e bound that 
an be made as 
lose to 2 � (1=2)d as desired. The se
ondalgorithm is an improvement of the �rst one and has an asymptoti
 performan
e bound that
an be made as 
lose to 2� (2=3)d as desired. For d = 2 and d = 3 the bounds are 
lose to14=9 and 46=27, respe
tively. To our knowledge, these results improve the bounds knownso far for d = 2 and d = 3, and are the �rst results with bounds that are not exponential inthe dimension. Re
ently, Seiden and Stee [15℄ presented an algorithm for d = 2 with bound14=9 + � that uses an idea similar to the one we present in this paper. It is most likely thatthe extended abstra
t [9℄, where we announ
ed a 
omparable result, with expli
it formulasfor general d and full des
ription of our algorithms, was unknown to those authors.The remainder of this paper is organized as follows. In the next se
tion we present thenotation and some de�nitions. In Se
tion 3 we des
ribe restri
ted versions of d-CPP. InSe
tion 4 we present our approximation algorithms for d-CPP. We 
lose with some openproblems.2 Notation and de�nitionsGiven a 
ube 
, the size of 
, denoted by s(
), is de�ned as the length of an edge of 
. If Lis a list of 
ubes, then we denote by V (L) the total volume of the 
ubes in L. Throughoutthis paper whenever we 
onsider a list L to be pa
ked into unit bins we suppose that all its
ubes have size at most 1.Given a list L of 
ubes, and an algorithm A, we denote by A(L) the number of binsused by algorithm A when applied to L, and by OPT(L) the number of bins used by anoptimal pa
king of L. If P is a pa
king of L, we denote the number of bins used in P byjPj. Some of our algorithms partition the input list L into sublists L1; : : : ; Lk and thenapply spe
ialized algorithms for ea
h sublist Li generating a partial pa
king Pi. We denotethe pa
king obtained by the union of these pa
kings by P1 [ : : : [ Pk. We say that analgorithm A has asymptoti
 performan
e bound � if there exists a 
onstant � su
h thatA(L) � � � OPT(L) + � for all input lists L. If � = 0, we also say that � is an absoluteperforman
e bound for algorithm A. We note that 2-CPP 
annot be approximated within2� � in the absolute sense, unless P = NP (see [7℄, where this result is dedu
ed from [10℄).This and other negative results in terms of the absolute performan
e bounds make theasymptoti
 performan
e analyses of approximation algorithms for bin pa
king problems



Multidimensional Cube Pa
king 3attra
tive.3 Restri
ted d-CPPBefore 
onsidering the general problem, we present algorithms for restri
ted instan
es ofd-CPP, to be used as subroutines.3.1 Restri
ted sizes and typesFirst, we 
onsider instan
es that admit a 
onstant upper bound k on the number of di�erent
ube sizes and ea
h 
ube size is at least �. We denote the set of su
h instan
es by I�;k;d.In what follows we show that in this 
ase an optimal solution 
an be obtained in poly-nomial time by an enumeration pro
ess.Given a list L 2 I�;k;d, denote by D(L) = (s1; s2; : : : ; sk) the list of di�erent sizes in thelist L and by M(L) = (m1;m2; : : : ;mk) the list of the multipli
ities mi of the 
ubes withsize si.There are in�nitely many ways of pa
king a list of 
ubes into a bin, but the numberof di�erent 
on�gurations is bounded if we 
onsider only \
anoni
al" pa
kings. We say apa
king P is 
anoni
al if no 
ube in P 
an be shifted to a \lower" position in any dimension,without overlapping 
ubes. Ea
h 
on�guration in a bin of a 
anoni
al pa
king is 
alled a
anoni
al pattern. With this in mind, we 
an 
ompute all possible positions Pd(L) in a binwhere a 
ube of L 
an be pa
ked. We set p(L) := fp := b1s1 + b2s2 + � � � + bksk : 0 � p �1; 0 � bi � mig, and de�ne Pd(L) as the set p(L)d = p(L)� : : :� p(L).Claim 3.1 For a given list L in I�;k;d, the 
ardinality of Pd(L) is bounded by a value thatdepends only on k, � and d.Proof. Sin
e ea
h 
ube of L has size at least �, we have bi � b1=�
 for all i. Thus we
an 
on
lude that (b1=�
 + 1)k is an upper bound on p(L). Therefore, we have jPd(L)j �(b1=�
 + 1)kd.For L 2 I�;k;d, let ��;k;d(L) denote the number of all possible 
anoni
al patterns of L.The following result is immediate.Claim 3.2 The value ��;k;d(L) is bounded by a value that depends only on k, � and d.Proof. Note that the number of 
anoni
al patterns for L 
onsisting of exa
tly i 
ubes isbounded by ki�jPd(L)ji �:Therefore, ��;k;d(L) � k�jPd(L)j1 �+ k2�jPd(L)j2 �+ � � � + k��d�jPd(L)j��d �;and the result follows.



4 Kohayakawa, Miyazawa, Raghavan and WakabayashiLet R�;k;d denote the algorithm that generates all possible 
anoni
al pa
kings and
hooses a pa
king using the smallest number of bins.Lemma 3.3 Let �, k and d be �xed positive numbers and L an instan
e of d-CPP withL 2 I�;k;d. Then L 
an be pa
ked optimally in polynomial time by the algorithm R�;k;d.Proof. Suppose L has n 
ubes. Sin
e we 
an have at most n bins of ea
h pattern, thenumber of di�erent pa
kings is bounded by the polynomial (n+1)�, where � := ��;k;d(L).3.2 Restri
ted sizeIn this se
tion, we 
onsider instan
es where we only have restri
tion on the minimum sizeof a 
ube. We denote by I�;d the set of all instan
es 
onsisting of 
ubes with size greaterthan �.We shall make use of the linear rounding te
hnique presented by Fernandez de la Vegaand Lueker [6℄ to obtain an asymptoti
 approximation s
heme R�;d for instan
es in I�;d.Given two instan
esX and Y for d-CPP, we writeX � Y if there is an inje
tion fX ! Ysu
h that s(
) � s(f(
)) for all 
 2 X. Denote by X the instan
e with pre
isely jXj 
ubeswith size equal to the size of the largest 
ube in X. Clearly, X � X . The following 
laimis immediate.Claim 3.4 If X and Y are two instan
es for d-CPP with X � Y , then OPT(X) �OPT(Y ).We are now ready to des
ribe the algorithm R�;d.Algorithm R�;d(L)Input: L 2 I�;d1. If L 
ontains < 2=�d+1 
ubes, �nd an optimal pa
king exhaustively and returnthis pa
king. Otherwise, let L = (
1; : : : ; 
n) be the input list sorted in non-in
reasing order of size.2. Set q := bn�d+1
 and partition L into groups G0; G1; : : : ; Gk su
h thatG0 � G1 � � � � � Gk;where jGij = q for all i = 0; : : : ; k � 1,and jGkj � q:3. Let P0 be the pa
king obtained by pla
ing ea
h 
ube of G0 into a di�erent bin4. Let J := Ski=1Gi and bJ := Ski=1Gi.5. Let bP be the pa
king of bJ generated by the algorithm R�;k;d; and let P1 bethe pa
king of J 
orresponding to bJ .6. Return P0 [ P1.



Multidimensional Cube Pa
king 5Lemma 3.5 For all input list L 2 I�;d, we haveR�;d(L) � (1 + �)OPT(L):Furthermore, R�;d is a polynomial time algorithm.Proof. It suÆ
es to 
onsider the 
ase in whi
h n � 2=�d+1. In step 2 we partition the sortedlist L into k + 1 groups Gi ea
h of whi
h 
onsists of q = bn�d+1
 
ubes, ex
ept perhaps forthe last group, whi
h may have fewer 
ubes. Note that k+1 = dn=b�d+1n
e � d2=�d+1e and,therefore, the number of di�erent 
ube types in list bJ is bounded by a value that dependsonly on � and d. Sin
e Gi � Gi�1 (i = 1; : : : ; k) we have bJ � L. From Lemma 3.3 andClaim 3.4, we have jP1j = j bPj = OPT( bJ) � OPT(L): (1)The pa
king of G0 uses at most q bins, thereforejP0j � q = bn�d+1
 � n�d+1 � � V (L) � �OPT(L): (2)From inequalities (1) and (2), we haveR�;d(L) = jP0j+ jP1j � OPT(L) + �OPT(L) � (1 + �)OPT(L);as required.We now turn to an algorithm that will be used only in the improved version of ouralgorithm (see Se
tion 4.2). This algorithm, whi
h we 
all R01=3;d, is designed for thespe
ial 
ase in whi
h all 
ubes have size greater than 1=3 and is optimal. We observethat R01=3;d is a generalization for d-CPP of an algorithm presented by Ferreira, Miyazawaand Wakabayashi [7℄ for 2-CPP.Algorithm R01=3;d(L)Input: L 2 I1=3;d1. Partition the list L into the two sublistsL0 := f
 2 L : s(
) > 1=2g and L00 := L n L0:2. Sort the 
ubes in L0 in non-de
reasing order of their sizes. Let L0 = (
01; : : : ; 
0n0).3. Sort the 
ubes in L00 in non-in
reasing order of their sizes. Let L00 = (
001 ; : : : ; 
00n00).We have 13 < � � � � s(
001) � 12 < s(
01) � � � �4. Call the subroutine SR1=3;d with parameters (L0; L00).Subroutine SR1=3;d(L0; L00)(a) If L0 = ; and L00 = ; then return ;;



6 Kohayakawa, Miyazawa, Raghavan and Wakabayashi(b) else if L0 = ; then generate a pa
king P pla
ing the �rst m :=minf2d; n00g 
ubes of L00 into one bin;(
) else if L00 = ; then generate a pa
king P pla
ing the 
ube 
01 intoone bin;(d) else if s(
01)+ s(
001) > 1 then generate a pa
king P pla
ing m :=minf2d; n00g 
ubes of L00 into one bin;(e) else generate a pa
king P pla
ing the 
ube 
01 andm := minf2d�1; n00g 
ubes of L00 into one bin.(f) Remove from L0 and L00 the 
ubes that have been pa
ked.(g) Return P [ SR1=3;d(L0; L00).First we prove that the pa
king generated by the algorithm R01=3;d has a very simplestru
ture. Indeed, we show that the bins generated by this algorithm, ex
ept for possiblyone, may have only three di�erent 
on�gurations.Lemma 3.6 Let L 2 I1=3;d be an instan
e for d-CPP, L0 := f
 2 L : s(
) > 12 g andL00 := L n L0. Then the algorithm R01=3;d applied to L generates a pa
king where ea
h bin,ex
ept for possibly one, has one of the following 
on�gurations.C1 : 
on�guration 
onsisting of 1 
ube of L0 and 2d � 1 
ubes of L00.C2 : 
on�guration 
onsisting of exa
tly 1 
ube of L0.C3 : 
on�guration 
onsisting of 2d 
ubes of L00.Proof. Note that ea
h 
all of the subroutine SR1=3;d generates a one-bin pa
king and thenpa
ks the remaining 
ubes re
ursively. Let us then analyse steps (b){(e) of this subroutine,where a pa
king into one bin is generated.Clearly, the bin generated in step (
) has 
on�guration C2. In steps (b), (d) and (e),the bin that is generated does not have one of the three 
on�gurations only when the valueof m is n00 and n00 < 2d (in steps (b) and (d)) or n00 < 2d� 1 (in step (e)). But this happensonly on
e, and after step (f) we have L00 = ; and therefore the next bins to be generated,if any, will have 
on�guration C2.Theorem 3.7 The algorithm R01=3;d �nds an optimal solution for d-CPP restri
ted to in-stan
es L 2 I1=3;d in polynomial time.Proof. The algorithm R01=3;d partitions the list L into two sublists L0 and L00, sorts themand 
alls the subroutine SR1=3;d. In ea
h 
all, this subroutine generates a one-bin pa
kingand then pa
ks the remaining 
ubes re
ursively.Consider a 
all of the subroutine SR1=3;d with parameters (L0; L00), and let B be thebin generated in this 
all. We 
laim that there is an optimal pa
king P� of L0 [ L00 thathas a bin B� with the same 
ubes as B. This is 
learly true if the pa
king of the bin Bis generated in steps (a), (b), or (
). (For step (b), it is 
ru
ial that the 
ubes have sizegreater than 1=3.)Now suppose that B is generated in step (d). In this 
ase, the largest 
ube 
001 of L00
annot be pa
ked with the smallest 
ube of L0. Therefore, any optimal pa
king P� does nothave 
001 with any other 
ube in L0. Let B� be the bin of P� 
ontaining the 
ube 
001. Sin
e B
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king 7
ontains the largest 
ubes of L00, we 
an ex
hange the 
ubes of B�, so that it ends up withthe 
ubes pa
ked in B. In fa
t, if 
 2 B nB� and C� is the bin of P� 
ontaining 
, then we
an 
learly ex
hange any 
ube in B� nB with 
ube 
. Repeating this pro
ess, we obtain anoptimal pa
king that has a bin 
ontaining the same 
ubes as B.The proof for the 
ase in whi
h B is generated in step (e) is analogous. The resultfollows by indu
tion.4 Approximation algorithms for d-CPPIn this se
tion we present two approximation algorithms for d-CPP. The �rst has asymptoti
performan
e bound that 
an be made as 
lose to 2� (1=2)d as desired and the se
ond hasasymptoti
 performan
e bound that 
an be made as 
lose to 2� (2=3)d as desired.Both algorithms use the NFDH (Next Fit De
reasing Height) algorithm as a subroutine,to be des
ribed in what follows.The algorithm NFDH generates t-dimensional strips (using dimensions 1; : : : ; t) using(t�1)-dimensional strips (dimensions 1; : : : ; t�1) whi
h are pa
ked in non-in
reasing orderof their size (the size of a strip is the size of the largest 
ube in it). The (t� 1)-dimensionalstrips are pa
ked side by side in dimension t until a (t � 1)-dimensional strip 
annot bepa
ked (the sum of the (t � 1)-dimensional strip sizes 
annot be greater than 1). In this
ase, the (t�1)-dimensional strip starts a new t-dimensional strip. The 0-dimensional stripsare the 
ubes themselves and the d-dimensional strips are the pa
kings generated into bins.For more details of NFDH, see [12℄.The following result was proved by Meir and Moser [12℄ for the algorithm NFDH. We 
anderive from it two 
orollaries whi
h will be useful to prove the bounds for our algorithms.Theorem 4.1 Let L be a list of d-dimensional 
ubes with maximum size s. Then L 
an bepa
ked by the algorithm NFDH into a d-dimensional a1 � a2 � � � � � ad parallelepiped ifV (L) � sd + (a1 � s)(a2 � s) � � � (ad � s):Corollary 4.2 Let P be the pa
king into unit bins obtained by applying the algorithmNFDH to a list L 
onsisting of d-dimensional 
ubes with maximum size �. Then ea
hsublist of 
ubes pa
ked in a bin used by P, ex
ept for possibly one, has volume greater than(1� �)d.Proof. Suppose P uses m bins, and let Li = (
i1; : : : ; 
ini) be the sublist pa
ked in the i-thbin. Sin
e the set Li [ f
i+11 g, for 1 � i � m � 1, 
ould not be pa
ked by the algorithmNFDH in the i-th bin, we have V (Li [ f
i+11 g) > �d + (1� �)d. Therefore,V (Li) > �d + (1� �)d � V (
i+11 ) � (1� �)dfor i = 1; : : : ;m� 1.



8 Kohayakawa, Miyazawa, Raghavan and WakabayashiCorollary 4.3 Let P be the pa
king into unit bins obtained by applying the algorithmNFDH to a list L of d-dimensional 
ubes. Then ea
h sublist of 
ubes pa
ked in a binused by P, ex
ept for possibly one, has volume at least (1=2)d.Proof. Clearly, it suÆ
es to analyse the sublists (pa
ked in a bin) 
ontaining 
ubes withsize at most 1=2. Consider then a list 
onsisting of these sublists. Applying Corollary 4.2to this list the result is immediate.We now state a te
hni
al lemma [14℄ that will be useful in the proofs of Theorems 4.5and 4.7.Lemma 4.4 Suppose a; b; 
; Æ are real numbers su
h that a > 0 and 0 < 
 < Æ < 1. Thena+ bmaxfa; 
a+ Æbg � 1 + 1� 
Æ :
4.1 First AlgorithmNow we are ready to des
ribe the �rst algorithm of this se
tion, 
alled A0�;d, whi
h dependson a parameter �. This parameter is used to subdivide the list L into two sublists: one
onsisting of \large" 
ubes (size greater than �) and the other 
onsisting of \small" 
ubes.For the large 
ubes we use the asymptoti
 approximation s
heme presented in Se
tion 3.2,and for the small 
ubes we use the algorithm NFDH. In order to obtain bounds for thevolume of the large 
ubes we also use the algorithm NFDH.Algorithm A0�;d(L)1. Partition the list L into the two sublistsL0 := f
 2 L : s(
) > �g and L00 := L n L0:2. Generate a pa
king P 01 of L0 using the algorithm R�;d.3. Generate a pa
king P 02 of L0 using the algorithm NFDH.4. Let P 0 be a pa
king in fP 01;P 02g that uses the least number of bins.5. Generate a pa
king P 00 of L00 using algorithm NFDH.6. Return P 0 [ P 00.Theorem 4.5 For �xed values of d and � the algorithm A0�;d runs in polynomial time.Furthermore, we have A0�;d(L) � ��;dOPT(L) + 2;where ��;d ! 2� (1=2)d as �! 0.



Multidimensional Cube Pa
king 9Proof. Sin
e the algorithms R�;d and NFDH are polynomial time algorithms, A0�;d is also apolynomial time algorithm. Let us analyse the performan
e of A0�;d.Let n0 := jP 0j � 1 and n00 := jP 00j � 1. From steps 3 and 4 and Corollary 4.3, we haveV (L0) � 12d (jP 02j � 1) � 12d (jP 0j � 1) � 12dn0: (3)From step 5 and Corollary 4.2, we haveV (L00) � (1� �)d(jP 00j � 1) � (1� �)dn00: (4)From inequalities (3) and (4) and the fa
t that the volume of the 
ubes in L is a lowerbound for the optimum pa
king, we 
on
lude thatOPT(L) � V (L) = V (L0) + V (L00) � 12dn0 + (1� �)dn00: (5)The pa
king P 01 of sublist L0 is generated by an asymptoti
 approximation s
heme (seeLemma 3.5). Sin
e from step 4 the pa
king P 0 of L0 is su
h that jP 0j � jP 01j, we haveOPT(L) � OPT(L0) � 11 + � jP 0j � n01 + � : (6)From inequalities (5) and (6), we haveOPT(L) � max� n01 + � ; 12dn0 + (1� �)dn00� : (7)Sin
e A0�;d(L) = jP 0j+ jP 00j, we obtainA0�;d(L) = (n0 + 1) + (n00 + 1)= n0 + n00OPT(L)OPT(L) + 2� ��;dOPT(L) + 2;where ��;d = (n0 + n00)=(maxfn0=(1 + �); (1=2d)n0 + (1� �)dn00g) (see (7)). From Lemma 4.4,we 
on
lude that lim�!0 ��;d � 2� (1=2)d:Proposition 4.6 The asymptoti
 performan
e bound 2 � (1=2)d of the algorithm A0�;d istight.Proof. Let L0 be a list of n0 
ubes of size 1=2+ �, where n0 is a large integer and � is a smallreal su
h that � < � and 1=� is an integer. Let L00 be a list of n00 := d(1� 1=2d)n0e=�d 
ubesof size �.Consider a pa
king P of a list L := L0 [ L00 generated by the algorithm A0�;d. Thealgorithm A0�;d pa
ks L0 and L00 separately. For L0 the algorithm uses at least n0 bins.For L00, the algorithm generates a pa
king using d(1 � (1=2)d)n0e bins. That is, A0�;d(L) =n0 + d(1� (1=2)d)n0e.On the other hand, an optimal pa
king of L 
an be found using n0 + 1 bins. Therefore,the ratio A0�;d(L)=OPT(L) 
an be made as 
lose to 2� (1=2)d as desired.



10 Kohayakawa, Miyazawa, Raghavan and Wakabayashi4.2 Improved AlgorithmIn this se
tion we present an algorithm that is an improvement of A0�;d. This algorithm hasan asymptoti
 performan
e bound that 
an be made as 
lose to 2� (2=3)d as desired. We
all this algorithm A�;d.In the previous se
tion we presented an algorithm that partitions the input list L intotwo sublists L0 and L00 and generates a pa
king 
onsisting of two parts. Part (i), for thelist L0 (of the 
ubes with size greater than �), 
onsists of an almost optimal pa
king butpossibly with a poor bound for the volume o

upation in ea
h bin. Part (ii), for the list L00(of the 
ubes with size at most �), 
onsists of a pa
king with a good bound for the volumeo

upation.The algorithm A�;d uses the small 
ubes of part (ii) to �ll the bins of part (i) withpoor volume o

upation. Sin
e these bins may have very 
omplex item allo
ation we �rstreorganize the bins with very poor volume o

upation in su
h a way as to have a pa
kingwith a more tra
table 
on�guration. After this reorganization and the pa
king of smallitems, we have one of the following two situations. Either we have pa
ked all the small
ubes into bins of part (i), or else we were not able to pa
k all the small 
ubes in thenon-o

upied spa
e of the bins in part (i).As we shall see, in the �rst 
ase, we generate an almost optimal pa
king. In the se
ond
ase, we obtain a better volume bound for the (newly generated) bins of part (i) and thisleads us to an improvement of the �nal bound.Let us des
ribe the main steps of the algorithm. In step 1 we subdivide the input listinto two sublists, L0 and L00, as in the previous algorithm. In step 2 we use an asymptoti
approximation s
heme to obtain a pa
king P 0 for the sublist L0. In step 3 we separate thebins of P 0 with poor volume o

upation and in step 4 we reorganize these bins so as to getall bins, ex
ept for perhaps one, with good volume o

upation, or bins with only one large
ube and poor volume o

upation. In step 5 we pa
k the small 
ubes of sublist L00 into theremaining spa
e of the bins with only one large 
ube.Algorithm A�;d(L)1. Partition the list L into the two sublistsL0 := f
 2 L : s(
) > �g and L00 := L n L0:2. Generate a pa
king P 0 of the sublist L0 using algorithm R�;d.3. Let P 01 
onsist of all bins of pa
king P 0 with volume o

upation less than (2=3)d,and let P 02 
onsist of the remaining bins of P 0. Let L01 be the 
ubes in P 01.4. Generate a new pa
king bP 01 of L01 as follows4.1 Let Si := f
 2 L01 : s(
) 2 � 1i+1 ; 1i ig, for i = 1; : : : ; 8 andlet S9 := f
 2 L01 : s(
) � 19g.4.2 Generate a pa
king P12 of S1 [ S2 using the algorithm R01=3;d, and let Ube the set of bins in P12 with 
on�guration C2.4.3 For i = 3; : : : ; 8, repeat the following steps



Multidimensional Cube Pa
king 114.3.1 If U is empty, pa
k (up to) id 
ubes of Si in a new bin B.4.3.2 If U is not empty thenLet B be a bin in U ;If i 2 f3; 4; 5g then letm := id�(i�1)d else letm := id�(i�2)d;Pa
k (up to) m 
ubes of Si (around the unique 
ube in B);Update Si;Remove B from U .4.4 Pa
k the 
ubes in S9, as follows4.4.1 Subdivide the empty spa
e of ea
h bin B 2 U (around the unique
ube in B) into 3d � 2d smaller bins with size 1=3. Let U 0 be the setof these smaller bins.4.4.2 Pa
k the 
ubes of S9 into bins of U 0 using the algorithm NFDH.Remove the used bins of U 0. Use new unit bins if ne
essary.5. Pa
k the 
ubes of L00 into bins U 0 using the algorithm NFDH. Use new unit binsif ne
essary.6. Return the generated pa
king P.Theorem 4.7 For �xed values of d and � the algorithm A�;d runs in polynomial time.Furthermore, we have A�;d(L) � ��;dOPT(L) + 9;where ��;d ! 2� (2=3)d as �! 0.Proof. From steps 2 and 3 and Lemma 3.5, we havejP 01j+ jP 02j = jP 0j � (1 + �)OPT(L); (8)where P 01 
onsists of the bins of P 0 with volume o

upation less than (2=3)d.In step 4, the pa
king P 01 of L01 is reorganized in su
h a way that all bins with volumeo

upation less than (2=3)d will end up with volume o

upation at least (2=3)d.In step 4.2 the algorithm R01=3;d generates an optimal pa
king P12 of S1 [ S2 whi
h
ontains bins with 
on�gurations C1, C2 or C3, des
ribed in Lemma 3.6.The bins of P12 with 
on�guration C1 (
ontaining 1 
ube with volume at least 1=2d and2d�1 
ubes with volume at least 1=3d) have volume o

upation at least 1=2d+(2d�1)1=3d,whi
h is greater than (2=3)d. The bins of P12 with 
on�guration C3 (
ontaining 2d 
ubeswith volume at least 1=3d) have volume o

upation at least (2=3)d.Therefore, the only bins of P12 with volume o

upation less than (2=3)d are the binswith 
on�guration C2. These are exa
tly the bins U taken in step 4.2. Note that any binwith 
on�guration C2 has exa
tly one 
ube with size less than 2=3 and therefore we havespa
e for pa
king smaller 
ubes around it. The pa
king of the remaining 
ubes of L01 intothese spa
es is a

omplished in steps 4.3 and 4.4. Moreover, we show that, after these steps,the only bins with volume o

upation less than (2=3)d that 
ould remain have 
on�gurationC2, ex
ept perhaps for a 
onstant number of bins.We prove the previous statement 
onsidering the pa
king of ea
h sublist Si, i = 3; : : : ; 8.First, let us 
onsider the pa
king of the 
ubes in S3. Suppose that U 
ontains at least one



12 Kohayakawa, Miyazawa, Raghavan and Wakabayashibin B. In this 
ase, we 
an pa
k at least 3d � (3� 1)d 
ubes around the unique 
ube in B.This is possible be
ause ea
h 
ube of S3 has size at most 1=3 and the 
ube in B has size atmost 2=3. Sin
e ea
h 
ube of S3 has volume at least 1=4d and the 
ube in B has volume atleast 1=2d, the bins B 2 U after re
eiving the 
ubes of S3 will have volume o

upationVo
(B) � 12d + (3d � 2d) 14d � �23�d :This holds for all su
h bins B, ex
ept perhaps for the last one. If during the pa
king of
ubes in S3 the set U be
omes empty, then the algorithm pa
ks the remaining 
ubes of S3by pla
ing 3d 
ubes in ea
h new unit bin. In this 
ase, ea
h bin B of this type has volumeo

upation Vo
(B) � 3d 14d � �23�d ;ex
ept perhaps for the last one.The analysis for the pa
king of the sublists S4; : : : ; S8 is analogous. We 
an prove avolume o

upation of (2=3)d for ea
h rearranged bin of U , ex
ept perhaps for one bin inea
h of these sublists. For the new bins we 
an also guarantee the same volume o

upation.Let us 
onsider the pa
king of the 
ubes in S9 into the remaining bins of U . Supposethere is a bin B in U . Sin
e the unique 
ube pla
ed (so far) in B has size at most 2=3, we
an partition the empty spa
e inside B into 3d � 2d smaller bins of size 1=3. The set ofthese small bins is denoted by U 0, and in step 4.4.2 the algorithm NFDH is used to pa
k the
ubes of S9 into these bins (inside B). From Corollary 4.2, the algorithm NFDH generatespa
kings into bins B0 2 U 0 with volume o

upation at least (1=3 � 1=9)d. Sin
e we have3d � 2d bins of U 0 inside ea
h bin B of U , the bins B after being �lled with 
ubes of S9 willhave a volume o

upationVo
(B) � 12d + (3d � 2d)�13 � 19�d � 12d + 2d3d � 4d9d > �23�d :If during the pa
king of 
ubes in S9 the set U 0 be
omes empty, then the algorithm pa
ksthe remaining 
ubes of S9 into new unit bins. From Corollary 4.2, ea
h bin B of this typehas volume o

upation Vo
(B) > �1� 19�d > �23�d :From the previous inequalities, we 
an 
on
lude that, after step 4, the only bins in Uwhi
h have volume o

upation less than (2=3)d are the remaining bins of 
on�guration C2,ex
ept perhaps for 8 bins (one for ea
h sublist Si, i = 2; : : : ; 9).At this point, we 
an 
on
lude the following: If all 
ubes of S3; : : : ; S9 were pa
ked insidebins of U , then the pa
king bP 01 does not use more bins than the optimal pa
king P12, andtherefore the pa
king bP 01 is also optimal. That isj bP 01j � jP 01j: (9)
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king 13If the set U be
omes empty in some iteration, we have obtained a pa
king of L01 with volumeo

upation of at least (2=3)d in ea
h bin, ex
ept perhaps for the last. Sin
e the bins of thepa
king P 01 have volume o

upation less than (2=3)d, we 
an 
on
lude that the pa
king bP 01has at most 8 bins more than the pa
king P 01. That is,j bP 01j � jP 01j+ 8: (10)From inequalities (9), (10) and (8), we havej bP 01j+ jP 02j � (1 + �)OPT(L) + 8: (11)At last, we have to 
onsider the pa
king of the 
ubes in L00 generated in step 5. The
ubes of this sublist is �rst pa
ked by the algorithm NFDH into the remaining bins of U 0,whi
h are inside the bins of bP 01 with 
on�guration C2. If ne
essary, new unit bins are used.The analysis of this step is divided into two 
ases:Case 1. All 
ubes of L00 have been pla
ed inside the bins of U 0. In this 
ase, we have notused any new unit bin and, therefore,jPj = j bP 01j+ jP 02j � (1 + �)OPT(L) + 8: (12)Case 2. New unit bins have been used in the pa
king of L00. In this 
ase, ea
h bin B ofU has been \�lled" with 
ubes in L00. From Corollary 4.2, the bin B has volumeo

upation Vo
(B) > (1� �)d > �23�d :Let 

P 01 be the pa
king bP 01 with the bins of 
on�guration C2 �lled with 
ubes of L00,and bP 00 be the pa
king of the remaining 
ubes in L00 into new unit bins. Denote theset of 
ubes pa
ked in bP 00 as 
L00. Sin
e the pa
king 

P 01 and the pa
king bP 01 have thesame number of bins and the pa
king P 01 is an asymptoti
ally optimal pa
king, thepa
king 

P 01 is also an asymptoti
ally optimal pa
king.Now, the �nal pa
king P 
onsists of two parts: an almost asymptoti
ally optimalpa
king 

P 01 [ P 02, j

P 01 [ P 02j � (1 + �)OPT(L) + 8;with volume o

upation of (2=3)d in ea
h bin, ex
ept perhaps in 9 bins; and thepa
king bP 00 
ontaining the remaining 
ubes of L00 into unit bins. From Corollary 4.2,we have j bP 00j � 1(1� �)dV (
L00) + 1:Pro
eeding as in the proof of Theorem 4.5, we may 
on
lude thatA�;d(L) � ��;dOPT(L) + 9;where ��;d = (n0+n00)=maxf1=(1 + �)n0; (2=3)dn0 + (1� �)dn00g. From Lemma 4.4, wehave lim�!0 ��;d � 2� (2=3)d:



14 Kohayakawa, Miyazawa, Raghavan and WakabayashiFinally, note that all steps of the algorithm A�;d 
an be implemented to run in polynomialtime.Proposition 4.8 The asymptoti
 performan
e bound 2� (2=3)d of algorithm A�;d is tight.Proof. The proof of this result is similar to the proof of Proposition 4.6. Consider a listL := L0 [L00, su
h that L0 has n0 
ubes of size 2=3+ � and L00 has n00 := d(1� (2=3)d)n0e=�d
ubes of size �, where n0 is a large integer and � is a small real; we omit the details.5 Open problemsWe believe the following problems should be ta
kled.Problem 5.1 Is there an asymptoti
 approximation s
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