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Hybrid method to optimize petroleumextration in deep sea watersJuliana Martins do Nasimento� Arnaldo Vieira MourayCid Carvalho de SouzazAbstratBaia de Campos is a large area in the sea where Petrobras explores petroleumin deep waters. There are a lot of spei� loations in this site that have beendetermined as promising oil wells. Before the extration begins, these loationsmust be fully developed. The objetive is to onstrut a shedule maximize theoil prodution in a given amount of time, subjet to a number of restritionssuh as a given preedene relation among the ativities, the proper mathbetween resoures and ativities, and resoure routing, among others . We pro-pose a hybrid approah that ombines onstraint programming (CP) tehniquesand tabu searh in order to solve the problem. At eah neighbor, a shedulingproblem and a �rst feasibility test are performed initially, without using CP.Next, CP is used to assign the start time of the ativities. Up to 500 ativitiesand 130 oil wells are onsidered in the instanes tested. We used integer linearmodels to prove that the solutions obtained are less than 9% from an globalupper bound. Finally, to estabilish the robuteness of our approah, a sensibil-ity analysis was performed indiating that the tehnique performs well whensolving similar instanes.1 IntrodutionPetrobras is one of the world most eÆient ompanies onerning the extration ofpetroleum in deep sea waters. Baia de Campos is a large sea area where Petrobrasexplores petroleum. There are a lot of spei� loations in this site that have beendetermined as promising oil wells. Before the extration begins, these loations mustbe fully developed.�Institute of Computing, University of Campinas, 13081-970 Campinas, SP. Researh supportedby FAPESP | Funda�~ao de Amparo a Pesquisa do Estado de S~ao Paulo, grant 00/14120-8yInstitute of Computing, University of Campinas, 13081-970 Campinas, SP.zInstitute of Computing, University of Campinas, 13081-970 Campinas, SP.1



2 Nasimento, Moura, and SouzaRoughly, the development proess begins when the well is drilled. After that,a huge metal struture, named ANM, must be plaed on its top. This strutureavoids the spill of oil and has speial onnetions where equipments and pumps anbe attahed to reeive the extrated oil. Next, an oil pipe onnets the ANM to amanifold or diretly to a platform on the surfae. A manifold is a struture thatinteronnets several oil pipes at the sea bottom. This struture onnets to thesurfae by a single pipe. After these ativities are exeuted, the real oil extrationan begin.Petrobras is interested in routing the resoures and sheduling the ativities in-volved in the development proess of wells at Baia de Campos. The objetive is tomaximize the oil prodution in a given amount of time. In a typial problem instane,up to 500 ativities and 130 promising oil wells are onsidered. Clearly this is a verylarge and real important ombinatorial optimization problem.In this paper, we propose a hybrid method that ombines onstraint program-ming (CP) tehniques and a tabu searh heuristi that explores a very large saleneighborhood to solve the problem. The aim in developing hybrid tehniques to solveombinatorial optimization problems is to strength the good features of the methodsthat are being ombined to ompensate for their weakness, sine these problems aregenerally NP-hard [14℄.Reently, a great deal of researh has been foused on the integration of CP andmetaheuristis [15℄. This an bring promising results when solving ombinatorialoptimization problems [28, 29, 23℄. Muh e�ort has also been onentrated on thestudy of loal searh algorithms that explore eÆiently very large sale neighborhoods,yielding very good results in several problems [13, 1, 2℄. These algorithms an visitlarge neighborhoods in polynomial time. When the exploration of a neighborhoodis NP-hard or when a polynomial algorithm is not known, a heuristi is used. Theintegration ited earlier makes possible the exploration of large neighborhoods inompetitive time. As a result, the possibilities to obtain real improvement in thesolutions are very high, beause with better quality and bigger sizes in a neighborhood,the more eÆient metaheuritis tend to perform.We use CP to help the exploration of a very large sale neighborhood in a tabusearh framework. In our approah, CP is not used just to generate the initial solutionto the tabu searh [27℄, nor just to verify the feasibility and ost of the neighbors likein [25, 11, 8℄. It is also not used to ontrol the entire proess needed to visit theneighbors [23℄. At eah neighbor, the routing problem and a �rst feasibility test areperformed initially, without using CP. Next, CP is used to assign the start time ofthe ativities. A similar approah was used in [7℄ to solve the job shop problem.The main objetive of this work is to obtain the best solution to the problemunder onsideration, but omparisons between a hybrid tehnique and a pure tabusearh approah is also appropriate. We want to investigate how well the tabu ap-proahes adapt to this problem. So we also use a pure abu searh with a polynomial



Hybrid optimization method 3neighborhood to solve the problem.As there are no previous results for the instanes used in this paper, an e�ortto alulate strong bounds is undertaken. Finally, we also want to establish therobustness of the methods, so a sensibility analysis is performed.The remainder of this paper is organized as follows. Setion 2 desribes the prob-lem and setion 3 desribes the instane provided by Petrobras and an instane gener-ator. Setion 4 presents the methods applied to solve the problem. Setion 5 disussesthe alulation of upper bounds while setion 6 shows the omputational results ob-tained. Setion 7 desribes the sensibility analysis. Finally, a onlusion is presentedin setion 8.2 The problemBaia de Campos is a large sea area (oil �eld) where Petrobras explores petroleum.There are a lot of spei� loations there that have been determined as promisingoil wells. Before extration begins, these loations must be fully developed. Thisproess involves a number of di�erent engineering ativities, suh as drilling ativities,onnetion ativities and extration ativities. Some of the wells may be in di�erentstages of the development proess.Given a set of wells and the orrespondent ativities to be performed in eahwell and a set of resoures, like boats and derriks, the objetive is to determinea sheduling and a routing of the ativities into the resoures, satisfying ertainonstraints and maximizing the oil prodution in a given period of time. This periodof time is alled the horizon. It is important to note that ativities an be sheduledafter the horizon. Preemption in not allowed.The most relevant onstraints to this problem are:1. Tehnologial Preedene: this onstraint de�nes a partial order betweenativities. If ativity A must be performed before ativity B, there is a teh-nologial preedene from A to B. This kind of preedene applies betweenativities that belong to the same oil well.2. Date Constraint: an ativity may have a �xed date to begin and to end.Another date onstraint is that an ativity must end before or begin later thana spei�ed date with or without lag time.3. Ativity Features: the exeution of an ativity may require an spei� typeof resoure. The resoure must be able to operate at the appropriate depth andit should also have the type of equipments required to exeute the ativity.



4 Nasimento, Moura, and Souza4. Resoure Availability: resoures an only perform one ativity at a time. Re-soures an also beome unavailable during a ertain period due to maintenaneor due to ontrat onstraints.5. Oil Well Availability: eah well an have only one of its assoiated ativityexeuted at a time. Even if there is no preedene onstraint between two ofits ativities.6. Area Constraint: On some wells that are lose to eah other, for safety reasonsand depending on the type of the resoures needed, overlapping exeution ofativities should be avoided.7. EÆieny fator: the proessing time of an ativity may hange due to aneÆieny fator assoiated to the resoure that will exeute it.In this paper, only onstraints 1; 3; 4; 5 are taken into aount. These are the mainonstraints. The real data provided by Petrobras only over these onstraints. Butother onstraints, an be inorporated in the hybrid model without muh e�ort, sineone of the features of CP is to allow the addition of new onstraints easily. In thetabu searh approah, there is a stronger onnetion between the onstraints and theneighborhood, whih makes it harder to introdue modi�ations in the model.The prodution of petroleum is alulated as follows: eah oil well has an assoi-ated outow per day and a last ativity that is responsible to turn it into a produtorwell. When this ativity is �nished, the well is ready to produe oil. The total oilprodution is given adding the values obtained by multiplying the daily outow ofeah well by the number of days between the beginning of its prodution and thehorizon. Wells that begin their prodution after the horizon are not onsidered in thealulation.3 The real instane and the instane generatorPetrobras has provided one real instane of the problem, whih we all the real in-stane. In order to aess the robustness of our tehniques, an instane generatorwas implemented. The instane generator introdues small random hanges in thepetroleum instanes.In this setion, the features of the real instane and how the instane maker wasreated will be presented.The partial order of the ativities assoiated with eah well of the real instanefollows a pattern. The pattern is determined by the type of the ativities and by thepreedene relationship between them. These patterns are depited in �gure 1. Inthis �gure, the nodes are the ativities and the ars are the preedene relationshipbetween them. There are di�erent patterns with the same graph. This happens due



Hybrid optimization method 5to the fat that these patterns have the same preedene relationship between theirativities, but the type of their ativities di�ers. For example, patterns 17, 19 and 20present a total order between their ativities, but the ativities type of these patternsare di�erent. Figure 1 also shows that the order of the ativities on the wells is notalways total. This fat will be important to establish that our neighborhoods are verylarge.
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Figure 1: Preedene relationship between the ativities of eah patternTable 1 presents some numerial data assoiated with eah pattern. Note thatthe frequeny of ourrene of eah pattern is not uniform. For example, just a wellpresents pattern 3, while 42 wells present pattern 19.There are two type of resoures: boats and derriks. In the real instane, thereare 3 boats and 5 derriks available. Whenever an ativity requires a resoure, anyof its kind an be alloated to it. That is, there is no distintion or restrition to



6 Nasimento, Moura, and SouzaPattern #Oil Wells %Oil Wells #Ativities Pattern #Oil Wells %Oil Wells #Ativities1 1 0,8772 1 13 8 7,0175 42 1 0,8772 1 14 2 1,7544 43 1 0,8772 1 15 1 0,8772 44 5 4,3860 2 16 1 0,8772 55 1 0,8772 2 17 12 10,5263 56 1 0,8772 2 18 4 3,5088 57 1 0,8772 2 19 42 36,8421 58 1 0,8772 3 20 1 0,8772 59 21 18,4211 3 21 2 1,7544 510 1 0,8772 3 22 1 0,8772 611 1 0,8772 3 23 1 0,8772 712 3 2,6316 4 24 1 0,8772 12Table 1: Pattern data - Real Instaneuse any of the 3 boats, when an ativity requires a boat. The same is true for thederriks. The type of eah ativity determines the kind of resoure needed to exeuteit. Table 2 shows the number of oil wells, ativities, boats, derriks and patterns inthe real instane. Table 3 shows some numerial data about the ativities proessingtime in the real instane.#Oil Wells #Ativities #Boats #Derriks #Patterns130 482 3 5 24Table 2: Quantitative data - Real instaneMean Median Mode Interval Min Max Sum17 12 1 129 1 130 8195Table 3: Numerial data about the ativities proessing time - Real instaneFigure 2 shows the histograms for the outow and the depth of the wells. Theunity of measure for the depth is meters and for the outow it is an internal measureunit used by Petrobras. We will always use this internal unity of measure in all �g-ures and tables. This �gure also shows that values of the outows vary a lot. Thisfeature makes our problem harder, beause there are two fators to be onsidered andto be balaned: the outow of eah well and the minimum time required to exeuteall of its ativities until the well an produe oil. Another relevant information that�gure 2 brings is the fat that the maximum depth is 1600 meters. As all resouresof the real instane are able to operate on this depth, we onlude that the depthof the wells do not restrit the hoie of the resoures needed to perform the ativities.
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(b) Depth histogramFigure 2: Histograms - Real instaneThe Instane GeneratorThe pattern of the wells of the generated instanes was determined by the fre-queny of ourrene of eah pattern on the real instane. The proessing time (dura-tion) of eah generated ativity was randomly hosen among the ativities proessingtime that have the same type as the generated ativity on the real instane. Theoutow and the depth assoiated with eah generated well were established followinga uniform distribution between the minimum and maximum values of the outow anddepth, respetively, of the real instane wells.As mentioned before, the resoures of the real instane have all the neessaryfeatures and are able to operate on depths greater than the depths assoiated to thewells. So the generated resoures also have all the possible features and are able tooperate in depths greater than the generated ones.The number of oil wells, boats and derriks are the input parameters for the pro-gram that generates the instanes. The number of ativities of eah well is �xed oneits pattern is determined.The notation used for the instane names are standardized as follows: the nameontains an identi�er, the number of oil wells, derriks and boats. For example, thename 2W112S5B3 means that instane 2 has 112 oil wells, 5 derriks and 3 boats.When the instane generator was applied to produe an instane with 112 wells,5 derriks and 3 boats, the result obtained appears in tables 4, 5 and 6 and in�gure 3. This instane was named 2W112S5B3. Comparing with tables 2, 3 and 1,



8 Nasimento, Moura, and Souzarespetively, it an be seen that the results are very similar, exept for some randomvariations introdued by the instane generator. In tables 1 and 6 pattern 19 is themost ommon one representing about 36% of the wells. Also, tables 3 and 5, showthat the mean proessing time is about 17 days.#Oil Wells #Ativities #Boats #Derriks #Patterns112 464 3 5 24Table 4: Quantitative data - Instane 2W112S5B3Mean Median Mode Interval Min Max Sum16.65 12 1 129 1 130 7726Table 5: Numerial data about the ativities proessing time - Instane 2W112S5B3Pattern #Oil Wells %Oil Wells #Ativities Pattern #Oil Wells %Oil Wells #Ativities1 1 0,892857143 1 13 3 2,678571429 42 0 0 1 14 5 4,464285714 43 0 0 1 15 0 0 44 5 4,464285714 2 16 0 0 55 0 0 2 17 7 6,25 56 4 3,571428571 2 18 3 2,678571429 57 0 0 2 19 40 35,71428571 58 0 0 3 20 4 3,571428571 59 28 25 3 21 1 0,892857143 510 3 2,678571429 3 22 2 1,785714286 611 2 1,785714286 3 23 1 0,892857143 712 2 1,785714286 4 24 1 0,892857143 12Table 6: Pattern data - Instane 2W112S5B3In this paper, four instanes will be onsidered. The real instane 1W130S5B3and instanes 2W112S4B3, 3W95S5B3 and 4W130S5B3 generated by the instanegenerator. The �rst generated instane shows a small number of wells and resoures.The seond one maintains the number of resoures and onsiders a smaller numberof wells. The last one was generated using the same number of wells and resouresas the original instane.4 TehniquesWe propose a hybrid method that ombines onstraint programming tehniques anda tabu searh heuristi that explores a very large sale neighborhood. We use CP to
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(b) Depth histogramFigure 3: Histograms - Instane 2W112S5B3help the exploration of a very large sale neighborhood in a tabu searh framework. Ateah neighbor, the routing problem and a �rst feasibility test are performed initially.Next, CP is used to assign the start time of the ativities.This setion desribes, in details, how eah of these tehniques are applied andombined to solve the oil problem. Subsetion 4.1 shows how the initial solutionswere generated. Subsetion 4.2 desribes the neighborhoods used in this paper. Italso presents a proof that �nding the start time of the ativities in eah neighbor, whilemaximizing the total prodution is an NP-hard problem . Subsetion 4.3 details howCP is used to assign start times. Finally, subsetion 4.4 desribes some partiularitiesof tabu searh when eah neighborhood of setion 4.2 is used. It also desribes a puretabu searh approah.4.1 Initial SolutionThe tabu searh method requires a feasible initial solution. This subsetion willdesribe four tehniques that were used to generate initial solutions to the problem.The �rst two tehniques are based on onstraint programming and were imple-mented using the ILOG Sheduler and the ILOG Solver1. We will all them CP1and CP2, respetively.The variables and onstraints used on CP1 and CP2 are the same. A set ofvariables is assoiated to the resoures and another set is assoiated to the start1Softwares from the ILOG suite. http://www.ilog.om



10 Nasimento, Moura, and Souzatimes. As desribed in setion 2, only onstraints 1; 3; 4; 5 were enfored. We did notspend muh e�ort on re�ning the onstraint programming models, sine the initialsolution were not our main objetive.The last two tehniques are greedy heuristis. We will all them H1 and H2.These two heuristis proved muh faster than the previous tehniques and the oilprodution obtained using H1 proved to be the highest among all tehniques for allonsidered instanes, as will be disussed later.� CP1The relevant point about this tehnique is the strategy used to instantiate thevariables. The variables that represent the resoures are instantiated �rst andthen the values of the start time variables are determined.The order used for seleting the next variable for labelling is the same for the twosets of variables. It is based on the following rule: the variable that representsthe ativity with the greatest number of diret suessors, greatest total numberof suessors and longest duration is hosen �rst.The values assigned are hosen by internal algorithms of the ILOG Sheduler.Due to limitations of the software, in this model, all ativities must be exeutedbefore the horizon.� CP2As in the previous tehnique, the relevant information is the instantiation strat-egy. And again the resoures are instantiated before the start time and the orderis the same for both sets of variables.The seletion order is based on the following priority rule: the estimated yieldof the orrespondent well of eah ativity is added to the number of its diretsuessors. The variable that represents the ativity with the greatest sum isseleted �rst. The yield of eah well is estimated onsidering that all of itsativities are exeuted sequentially without interruptions, and its produtionstarts when the last ativity of the sequene is �nished. As the yield values areeither equal or di�er by a great amount, the number of diret suessors is usedto break ties.The value hosen depends on the type of the variable. The value designatedto variables that represent resoures orresponds to that resoure that mathesthe ativity type and whih has the least number of ativities assigned to it.The value assigned to the start time variables is the least value of their presentdomain.



Hybrid optimization method 11� H1This heuristi tries to �nish �rst the wells that have the greatest outow or thewells that have the least remaining time.To reah this objetive, an available resoure is immediately alloated to anativity that is feasible to be exeuted by this resoure at this moment. If thereis more than one suh feasible ativity, the ativity hosen is:1. The ativity that has the best value for(horizon� (atualT ime + remainingT ime))� outflowwhere horizon is the time limit spei�ed, atualT ime is the start time forthe ativity, remainingT ime is the total proessing time for all remainingativities in the orrespondent well, and outflow is the outow of theassoiated well;2. The ativity with the greatest number of total suessors;3. The ativity with the longest duration.The seond and third rules are used to break ties.Initially, the algorithm follows these rules and assigns ativities to resouresuntil all of them are busy. Every time an ativity is terminated, its resoureis released. At this moment all its suessor ativities beome available forsheduling. Another ativity is seleted, following the priority rules desribedearlier, and the yle repeats. The algorithm terminates when all start timesare assigned.� H2This heuristi, as in the �rst two tehniques, �rst alloates the resoures andthen assigns the start times.For eah ativity, the heuristi veri�es if there are ativities on the same wellthat are already alloated to resoures. If this is true and if among the resouresalloated to the ativities of the same well, there are resoures able to exeutethe onsidered ativity, the heuristi hooses randomly one of these resoures. Ifone of the last two onditions is false the heuristi hooses randomly a resoureamong all possible resoures.To determine the start times, a data struture is used to store all availableativities, i.e., the ativities whose predeessors have already been sheduled.Initially, this data struture ontains all ativities without predeessors. At



12 Nasimento, Moura, and Souzaeah iteration, an ativity is hosen from this data struture, following thepriority rule ofH1. The atualT ime of eah ativity is the earliest possible timepermitted by the atual sheduled resoure and the other exeuting ativitiesthat belong to the same well. The algorithm �nishes when all ativities aresheduled. i.e., the data struture is empty.Table 7 shows the prodution obtained for the initial solution of the real andgenerated instanes that are onsidered. The horizon was 1500 days for all instanes.The omputational time of tehniques CP1 and CP2 was less than 200 seonds andless than 60 seonds, respetively, for all four instanes. The omputational time ofboth H1 and H2 was less than a seond. Cells without value means that no solutionwas found in 200 seonds2.Instane CP1 CP2 H1 H21W130S5B3(real) 163.6 207.4 246.2 206.52W112S4B3 - 184.3 220.3 173.33W95S5B3 155.6 187.3 225.4 185.74W130S5B3 - 218.9 276.5 218.3Table 7: Initial solutionsAs H1 obtained the best results for all instanes, it will be used to generate theinitial solution of our instanes. In order to test the behavior of our tehniques whena poorer initial solution is onsidered, we will also use H2 as an algorithm to obtaininitial solutions, sine it is muh faster then CP1 and CP2. Whenever H2 is usedfor initial solutions, this fat will be learly stated.4.2 NeighborhoodsIt is easy to note that our problem and the Flexible Job Shop problem (FJS) [20℄ andthe Job Shop Shedule with Multi Purpose Mahines problem (MPM) [6℄ are verysimilar. In eah ase, an oil well orresponds to a job and the set of ativities to beperformed in eah well orresponds to the set of operations assoiated with eah job.The preedene onstraints between the ativities orresponds to the order betweenthe operations of eah job. If the FJS is onsidered, there is a total order among theoperations of the same job. In our problem, this is not neessarily true. In some wells,the preedene restritions only give a partial order. The boats and derriks are themahines that exeute the operations. Given these similarities, our neighborhoodsare inspired by ideas already used to solve these problems [10, 9, 17, 20℄.2All omputational times refer to a PC plata�orm with 1 GHz proessor and 1 Gb of memory



Hybrid optimization method 13Disjuntive GraphsWe use the disjuntive graph model (DG) to represent our neighbors. Disjuntivegraphs were reated by Roy and Sussmann [26℄ to model and solve job shop problems(JSP). Balas [5℄ was another author to extensively explore the proprieties of thisgraph.Figure 4 shows a disjuntive graph for a JSP with 4 jobs and 3 mahines. Inthis �gure, omplete lines are alled onjuntive ars. They represent the preedeneonstraint among the ativities. The dashed lines are the disjuntive ars. Theyrepresent the order of the ativities in the resoures. Every time two ativities areassigned to the same mahine, a new bi-direted disjuntive ar is added betweenthese two ativities. Whenever the order between two ativities is established, theorrespondent bi-direted disjuntive ar is oriented, representing this order. It isimportant to note that when there is no preedene onstraint between two operationsof the same job, or in our ase, two ativities of the same well, bi-direted disjuntivears are added between these ativities, sine the order of exeution is not known.
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Figure 4: Disjuntive GraphThe solutions and neighbors of this paper are represented using this graph. If afterthe addition and orientation of the disjuntive ars an ayli graph is obtained, the



14 Nasimento, Moura, and Souzasolution/neighbor is onsidered feasible and the ativities start times an be assigned.If the ars establish a total order among the ativities, the start times an be obtainedin polynomial time by running a topologial sort algorithm [12℄. This situation willbe addressed on the following paragraphs. If a total order is not established, theproblem of assigning the start times to the ativities maximizing the prodution isNP-Hard. Subsetion 4.2.2 presents a redution that proves this fat.Regular Measure of Performane - Dominant Sets - Types of ShedulesBaker [4℄ de�nes regular measure of performane and dominant sets for it. Healso de�nes the types of shedule: semiative, ative and nondelay. These de�nitionsare important beause they explain why only the earliest possible start time of eahativity should be onsidered when the ativities are totally ordered.A shedule is alled semiative if given the order of the operations on the mahinesand the total order of the operations on the jobs, no operation an be started earlierwithout violating the established order. A shedule is ative if no operation an bestarted earlier without delaying other operations. Finally, a shedule is nondelay ifno mahine is kept idle when there is an operation available for proessing.A performane measure Z is regular if the sheduling objetive is to minimize(maximize) Z, and Z an inrease (derease) only if at least one of the ompletiontimes in the shedule inreases.Aording to [4℄, a set D is a dominant set of shedules for regular measures ofperformanes, if only solutions that are in this set are needed to be onsidered whensearhing for the optimal solution.In the ase of job shop problems, ative and semiative shedules dominate the setof all shedules if the objetive is a regular measure of performane. In our problem,the oil prodution is a regular measure of performane, so we an onentrate ourattention to ative and semiative shedules.The following subsetions desribe the neighborhoods used in this paper.4.2.1 Neighborhood 1 - InsertionGiven a solution represented by a disjuntive graph, this neighborhood is obtainedby hoosing eah ativity and inserting it in all possible positions of all resouresthat are able to exeute it. The feasibility of eah neighbor is tested by verifying ifthe new disjuntive graph obtained is ayli. Figure 5 shows the disjuntive graphfor a solution and the disjuntive graphs for the neighbors obtained when ativity 1is inserted in the seond position of resoure 3 and when this ativity is inserted inthe third position of resoure 3. The latter is infeasible, sine its graph ontains ayle, while the former is feasible. Note that the onjuntive ars are the same forall neighbors, due to the fat they represent the preedene onstraint between the



Hybrid optimization method 15ativities that belong to the same well. The disjuntive ars are the ones that hangefor eah neighbor, sine they represent the position of the ativities on the resoures.In this �gure, redundant disjuntive ars are not shown. Clearly, this neighborhoodhas O(n2) neighbors.It is important to observe that on eah neighbor, all existing disjuntive arsdetermine a total order of the ativities on eah resoure. Clearly, in fae of theonjuntive ars that may be, this is not suÆient to determine an optimal shedule forall ativities. Even when onsidering, in addition, the onjuntive ars, the orderingof the ativities in a given well may not be known. This fat makes the optimalassignment of the ativities start time an NP-Hard problem. We use a redution toprove it. Therefore, this neighborhood is a very large sale neighborhood, beausedespite the polynomial number of neighbors, the exploration of eah neighbor is stillan NP-hard problem. On the other hand, if the onjuntive ars de�ne a total orderin eah well, an optimal shedule an be found in O(n), as the semiative shedulesare a dominant set.4.2.2 RedutionWe onsider two problems.1. Assignment of optimal start times (Neighborhood 1) - Deision Prob-lem� Instane: Total oil prodution V 2 Z+, horizon H 2 Z+, set P of oil wells,set R of resoures. For eah r 2 R there is an assoiated ordered olletionof ativities ak[r℄; 1 � k � nr, i.e., the resoure r exeutes ativity ak[r℄.For eah suh ativity a (notation a is an abbreviation for ak[r℄) there isa proessing time l(a) 2 Z+0 , an oil well p(a) 2 f1; 2; � � � ; Pg, a type t(a)and an outow v(a) assoiated to it. The ativity type de�nes a partialorder between the ativities of the same well.� Question: Is there a time instantiation �(a) for eah ativity a, suh thatthe order of the ativities on eah well and the order of the ativities oneah resoure is respeted, and the total oil prodution obtained withinthe horizon H is equal or greater than V ? Ativities from the same wellmay not overlap. The oil prodution is given by:Xa max(0; H � �(a)� l(a))� v(a):2. Job shop sheduling - Deision Problem
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Hybrid optimization method 17� Instane: A deadline H 2 Z+, number m 2 Z+ of proessors, set J of jobs,eah j 2 J onsisting of an ordered olletion of operations tk[j℄; 1 � k �nj. For eah suh operation t (the notation t is an abbreviation for tk[j℄)there is an assoiated length l(t) 2 Z+0 and proessor p 2 f1; 2; � � � ; mg,where p(tk[j℄) 6= p(tk+1[j℄) for all j 2 J and 1 � k < nj.� Question: Is there a time instantiation �(t) for eah operation t, suhthat the order of the operations on eah job is respeted, two operationsdesignated to the same proessor do not overlap, and �(t) + l(t) � H?Theorem 1: Problem Assignment of optimal start times is NP-hard.Proof: It is easy to see that problem 1 belongs to NP. As problem 2 is NP-hard[14℄, a redution that transforms problem 2 to problem 1, in polynomial time, provesthat the latter is NP-hard. We will onsider that the answer obtained to problem 1will be the answer given to problem 2.Let an arbitrary instane of problem 2 be given by the deadline H, m proessors,the set J of jobs and the ordered sequene of operations assoiated with eah job. Inorder to map this problem into problem 1, eah job j 2 J turns into a resoure r 2 R.The set of operations assoiated with eah job in problem 2 is the ordered olletion ofativities of eah resoure. The length of the operations l(t) is the proessing time ofthe ativities l(a) and the proessor of eah operation p(t) is now the well assoiatedto eah ativity p(a). The ativities type in problem 1 is hosen in suh a way that itdoes not have preedene relationship with any other type. The horizon of problem1 is set to H + 1 and the total prodution V is set to 1.In addition, a dummy oil well is reated and jJ j+1 dummy ativities are reated.The proessing time of these ativities will be zero and their assoiated well will bethe dummy well. The resoure designated to the �rst dummy ativity is resoure 1,the resoure assoiated to the seond dummy ativity is resoure 2, and so on. Eahdummy ativity will be plaed at the last position of the orresponding resoure. It isfeasible to assoiate to eah dummy ativity a unique resoure and a position on thisresoure, beause an instane for problem 1 provides an ordered olletion of ativitiesto eah resoure. The dummy ativity jJ j + 1 does not need a resoure. The typeof the �rst jJ j ativities is t1, a new type. The type of the last dummy ativity isprodution, also a new type. The preedene relationship between these two typesis: t1 ! prodution .Therefore, the instane of problem 1, that is reated, will have jJ j resoures, m+1oil wells and (Pj2J nj) + jJ j+ 1 ativities.The outow assoiated with eah ativity a is set to zero, exept when a is thelast dummy ativity, in whih ase its outow is set to 1.Figure 6 shows an instane of problem 2 with 2 jobs and 3 proessors, and theinstane of problem 1 obtained using the transformation desribed above.
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Hybrid optimization method 19Sine the dummy ativity assoiated with eah resoure is the last to be exeuted inthat resoure, and given the preedene relationship between these dummy ativitiesand dummy ativity jJ j + 1, we an onlude that dummy ativity jJ j + 1 will bethe last one to be onluded among all ativities. So, by onstrution, the expressionthat gives the total oil prodution redues tomax(0; H + 1� �(d));where d is the dummy ativity jJ j+1. Therefore, the total oil prodution is equalor greater than V , if and only if, �(d) � H. Sine �(a)+ l(a) � �(d) for all ativitiesa, it implies that �(a) + l(a) � H for all ativities a. As the ativities of problem 1orresponds to the operations of problem 2, we also have that �(t) + l(t) � H for alloperations t. So if the answer to the question of problem 1 is yes, the answer to thequestion of problem 2 must also be yes.On the other hand, the total oil prodution is less than V , if and only if, �(d) > H.This means that it was not possible to terminate all the ativities before the horizon, i.e., �(a)+ l(a) > H for an ativity a. Due to the mapping between the two problems,it is known that the operation t that orresponds to the ativity a is not �nishedbefore the deadline H either. So if the answer to the question of problem 1 is no, theanswer to the question of problem 2 must also be no.Clearly, the mapping that transforms problem 2 to problem 1 an be done inpolynomial time. This establishes that problem 1 is NP-hard.4.2.3 Neighborhood 2 - WindowThis neighborhood is a generalization of the former one. The motivation is to gen-erate neighbors more able to perform big modi�ations on the urrent solution thanthe neighbors of the previous neighborhood. The intention is to obtain a greater im-provement of the total oil prodution. To reah this objetive, this neighborhood willonsider two sets of ativities alled windows and a main ativity. The windows arehoosing aording to this ativity. The ativities in the windows will be freed fromtheir urrent position, but their resoures will remain the same. Their new positionswill be determined later, when the start times are assigned.Now the neighborhood will be explained in details. The main idea is not only toinsert a single operation on every position of eah resoure that is able to exeute it,but also to free the urrent positions on the resoures of the ativities that are insidea window. The onsidered ativity, that from now on will be alled main ativity ison the enter of the window and a parameter sets its length. The parameter indiateshow many onseutive ativities will be freed on eah side of the main ativity. Ifthe parameter is zero, only the main ativity will be onsidered. Ativities that aresheduled earlier on the same resoure than the main ativity are on its left andativities sheduled later are on its right. If there are less ativities on a side than



20 Nasimento, Moura, and Souzathe parameter, only these ativities will be onsidered on that side. The order of theativities outside the window is preserved. In other words, the disjuntive ars of theativities in the window are not oriented in the neighbors. The disjuntive ars thatwere related with the main ativity are deleted, and new disjuntive bi-direted arsare inserted between the main ativity and the ativities that are alloated on thenew resoure of the main ativity.A window is also onsidered in the destiny resoure of the main ativity. Justlike the other window, a parameter will determine its length. The enter of thiswindow be the ativity that oupies the same position as the main ativity on itsoriginal resoure. If the position of the main ativity on its original resoure is greaterthan the highest position of the destiny resoure, then the highest position will beonsidered as the enter of the window. In that ase, the right side will be null.The ativities within this window will be freed of their positions, like the ativities ofthe �rst window. This means that their disjuntives ars will turn from oriented tobi-direted. If the parameter is zero, this window will not be onsidered.Figure 7 illustrates the disjuntive graph of a urrent solution and the disjuntivegraph obtained when ativity 1 is the main ativity and the new resoure alloatedto it is resoure 2. The parameters of both windows are 1.Note that as in neighborhood 1, eah ativity will be assigned to all resouresthat are able to exeute it. But unlike neighborhood 1, a �xed position will notbe assigned to the ativity. This will be established impliitly when the start timesare determined. The other di�erene is that the positions of the ativities within thewindows are not known either. Clearly, if both parameters are zero the only di�erenebetween neighborhood 1 and this neighborhood is that on the former, the position ofthe main ativity is �xed on the new resoure, and this does not our on the latter.It is easy easy to see that the neighbors are de�ned by the main ativities andtheir destiny resoure. It ours beause the windows are determined dependingjust on the hoie of the main ativity and its destiny resoure, sine the lengthof the windows is a onstant parameter. So, there are O(nm) neighbors in thisneighborhood, where n is the number of ativities and m the number of resoures.On the previous neighborhood, the position of the ativities on eah resoure wasknown before the start times were assigned. Although, even onsidering this fat, theproblem of assigning the optimal start times proved NP-hard. In this neighborhood,the position of the ativities is not known for ertain resoures. So, the problem ofassigning the optimal start times for the neighbors of this neighborhood is at least ashard as the orresponding problem of the previous neighborhood.4.2.4 Neighborhood 3 - WellThe idea behind this neighborhood is the intuition that ativities of the same wellshould stay lose to eah other in order to maximize the prodution of the oil �eld.
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22 Nasimento, Moura, and SouzaTherefore, this neighborhood is slightly di�erent from the previous one. There isalso a main ativity that is the ativity that may hange from its urrent resoure toall possible resoures. But instead of freeing the position of ativities that are withina window, this neighborhood frees the position of the ativities that belongs to sameoil well of the main ativity, preserving their resoures.The ativities of other wells may also be freed. There is a parameter that indiateshow many wells will be freed. When this parameter is set to one, only the well ofthe main ativity is onsidered. If the parameter is greater than 1 the priority ruleto hoose the wells is: on the urrent solution, for eah well, determine the maximumdistane (di�erene of start times) between two onseutive ativities of the well.Then, multiply this distane by the orresponding outow of the wells. The higherthis value, the higher the priority. Using this priority rule, we will selet wells whihativities are more spread and that have a bigger outow. So there will be the haneto put together these ativities and maybe improve the prodution.Figure 8 illustrates the disjuntive graph of a urrent solution and the disjuntivegraph obtained when ativity 1 is the main ativity and the new resoure alloatedto it is resoure 2. The parameter is set to 1. Ativities 2; 3 belongs to the same wellas ativity 1, so they are freed of their positions.As neighborhood Window, this one has O(nm) neighbors, and again the optimalstart time assignment to eah ativity, given the disjuntive graph, is an NP-hardproblem, as this problem is at least as hard as the orresponding problem of neigh-borhood Insertion, due to the fat that the ativities position on ertain resoures inthis neighborhood is not known before the start times instantiation.4.3 Assigning the start timesTwo tehniques were used to instantiate the start times of the ativities on eahneighbor. One will be alled Greedy and the other one will be alled Optimized. The�rst is a greedy strategy and the latter uses CP to perform the instantiation.� Greedy: This tehnique was implemented in C++ without using CP. A heapS is used to store the ativities that are ready to be sheduled, as all theirpredeessors have been sheduled. The order on the heap is based on the earliestpossible start time of the ativities. The earlier the start time, the higher thepriority on the heap. An algorithm that generates nondelay shedules [4℄ is usedand the top ativity of the heap is the one seleted on eah iteration.Initially, heap S ontains all ativities without predeessors. On eah iteration,the top ativity of S, alled a, is removed and its start time is set to the earliesttime allowed by its atual resoure and the other exeuting ativities that belongto the same well. After that, all suessors of ativity a are inserted in S. When
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24 Nasimento, Moura, and SouzaS gets empty, the algorithm terminates. When this happens all ativities arealready sheduled.� Optimized: This tehnique is based on CP and was implemented using theILOG Solver. The onstraints of the model are:1. tehnologial preedene onstraints;2. the order of the ativities on the resoures;3. onstraints that state that ativities on the same resoure or of the samewell an not overlap.One of the most ommon branhing strategy for sheduling problems that havethe makespan as the objetive funtion is alled Settling Essential Conits(SEC) [18, 3℄. This strategy determines a sheduling order for all ativities,i.e., it determines the orientation of the disjuntive ars until all of them aredireted. Then, given the total order that was onstruted, a simple topologialsort algorithm determines the ativities start times, generating an semiativeshedule.This strategy performs well when the objetive is the makespan due to ertainproprieties of the underlying graph [17℄ and due to an eÆient alulation ofsome lower bounds [17, 20, 19℄ that enable, on eah node of the tree, the orien-tation of several disjuntive ars at a time. Sine our objetive funtion is notrelated to the makespan, this branhing strategy an not be appliated to ourproblem. So we onsidered a di�erent strategy.In our strategy, onstraints 1 and 2 are imposed upon the model at the begin-ning, as is natural in any CP model. At this moment, these onstraints aregiven by the disjuntive ars that are already oriented and by the set of on-juntive ars. These restritions are used to prune the domain of the variables.The variables of this model represent the start time of eah ativity. At thelabelling phase, the CP solver establishes the start times.At �rst, the default labelling mehanism present in the ILOG Solver was used.As required by the CP solver, parameters indiating the objetive funtion andthe maximum exeution time were also indiated. Furthermore, a priority ruleto hoose the order of instantiation of the variables and a rule to hoose avalue of the domain were also spei�ed. The priority rule was: among theativities not yet instantiated, the one that had the earliest possible start timewas seleted. Ties were broken arbitrarily. The value hosen was the smallestof the urrent domain.Note that using this default proedure we are not taking into aount the knowl-edge that the ative shedules are a dominant set for this problem. But there is



Hybrid optimization method 25a more serious problem with this proedure. The default labelling mehanismats like this: if a variable a is instantiated before a variable b, in order tobaktrak to a new value for a, all the domain of b must be exhausted.A simple example shows how this an be bad to the performane of this strategy.The instane is: two oil wells, a set of 5 ativities and 2 resoures. Ativities1; 2 and 3 belong to well 1 and ativities 4 and 5 to well 2. All resoures are ableto exeute all ativities and the preedene onstraints are represented in �gure9. Ativities 3 and 5 turn the respetive wells into prodution. The outow ofboth wells is 10 and the horizon is also 10.
Act 1 Act 2

Act 3

Act 4

Act 5Figure 9: Tehnologial Preedene ConstraintSuppose that on a neighbor the order of the ativities on the resoures is: Re-soure 1: 1; 4; 5 and Resoure 2: 2; 3. If the instantiation order, aording tothe earliest possible start time, is 2; 1; 4; 3; 5, the start time of eah ativity willbe set to values as shown on table 8. The total prodution is 650. But if thestart times were seleted as in table 9, the prodution would be 700.Ativity Start time1 52 03 104 105 15Table 8: First variable instantiationThe labelling algorithm would have to instantiate ativity 2 with time values1; 2; 3; 4; 5 before it reahed the same result. Worse yet, sine ativity 2 is the�rst ativity on the instantiation order, the domain of all the other variableswould have to be exhausted before a new value is assigned to it.On the other hand, if, by some means, after reahing the solution shown intable 8, the labelling mehanism ould be fored to immediately return to the



26 Nasimento, Moura, and Souzaroot of the searh tree, and be given a new instantiation order as 1; 2; 4; 3; 5, theimproved solution of table 9 would be readily reahed.Ativity Start Time1 02 53 54 105 10Table 9: Final variable instantiationIn our strategy, the default labelling mehanism was replaed by a new speial-ized mehanism. Our mehanism hanges the instantiation order, onsideringonly ative shedules. To aomplish this, the variable instantiation is made intwo phases. At eah level of the searh tree, a variable is reated to representthe ativities that an be instantiated on that level. These variables are alledlevel variables. The feasible ativities of eah level (those that are on the domainof the level variable), are the ativities with indegree zero and that obey theative shedule rule. The indegree of an ativity is the number of unsheduledpredeessors of the ativity. The indegree is dynamially updated during thewhole searh proess. The start indegree is given by the orientated ars of thedisjuntive graph that represents eah neighbor. Eah step of the searh proessonsists in hoosing a value of the domain of the orresponding level variableand assigning the earliest possible time to the variable that represents the starttime of the ativity indiated be the level variable. So, when a solution is foundor when an fail ours, the baktraking is done on the level variable, not on thevariable that represents the start time, allowing hanges on the instantiationorder of the start time variables to our. Furthermore, to improve the Solverpruning mehanism, whenever a solution is found, a onstraint that states thefollowing solutions must have a prodution higher than the prodution of theurrent solution is added.Figure 10 shows the time and the total oil prodution obtained per iterationof a hybrid tabu searh algorithm applying the default and the speialized la-belling mehanism to the same problem instane and the initial solution. Theneighborhood used was neighborhood Insertion. The tabu searh algorithm willbe explained in detail on the next subsetion. The maximum exeution timeper iteration allowed was 410 seonds.Analysing this �gure, it is easy to see that the speialized mehanism is about100 times faster than the default mehanism, on most iterations. Furthermore,
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28 Nasimento, Moura, and Souzathe speialized mehanism was able to �nd an optimal solution. On most itera-tions, the default mehanism terminated when it reahed the maximum allowedexeution time, without �nding an optimal solution.For this reason, only the speialized version was onsidered when using theoptimized tehnique to assign the start times.4.4 The tabu searh metaheuristiIn subsetion 4.2 the struture of the neighborhoods was explored and subsetion4.3 explained how the start times were seleted. This subsetion gives details of thetabu searh method for eah neighborhood. These details inlude the stop rule, thetabu list, the aspiration rule and the seletion of the neighbor. This subsetion alsodisusses a pure tabu searh approah and the neighborhood used in this approah.� Stop RuleThe stop rule for all neighborhoods is the exeution time. This makes the om-parison among the neighborhoods fair, sine no matter how many iterations orneighbors eah one has, after the same amount of time all of them are termi-nated and the results are ompared. In this paper the maximum exeution timeis 3600 seonds.� Tabu ListFor neighborhoods Insertion and Window the main ativity of the seletedneighbor is onsidered tabu. This means that this ativity an not be themain ativity while it is onsidered tabu, unless it satis�es the aspiration rule.A neighbor is onsidered tabu if its main ativity is tabu. In this paper anativity is onsidered tabu for 50 iterations.For neighborhood Well, the well of the main ativity is onsidered tabu. Thismeans that the ativities of this well an not be freed while the orrespondingwell is onsidered tabu, i.e., they an not be the main ativities nor the wellan be among the ones whose ativities an be freed. In this neighborhood,we do not have tabu neighbors. It is not allowed to join a tabu well to thewells that will be freed. For this reason, the aspiration rule does not apply forthis neighborhood. So in setion 6, whenever the number of tabu neighbors ismentioned for this neighborhood, it means the number of times a tabu well wasforbidden to join the wells to be freed. In this paper a well is onsidered tabufor 10 iterations.



Hybrid optimization method 29� Aspiration RuleThe aspiration rule for the neighborhoods Insertion and Window is: wheneverthe prodution of a tabu neighbor is better than the best prodution found sofar, this neighbor is onsidered.� Seletion of the neighborThe seletion of the neighbor is quite di�erent for the neighborhood Insertionand the other two neighborhoods. So they will be explained separately.Insertion neighborhoodSeveral approahes were tested to selet the neighbor of this neighborhood. At�rst, the whole neighborhood was explored using the Optimized tehniqueto instantiate the start times, and the best neighbor was seleted. As thetime required for eah neighbor was about 0:2 seonds, this approah turned tobe impratial, sine there is approximately 250000 neighbors. In the seondapproah, the whole neighborhood was explored using the Greedy tehniqueto instantiate the start times. This took approximately 15 seonds. Next, thebest x neighbors were explored again using the Optimized tehnique and thebest neighbor was seleted. But omputational tests showed that exploring onlythe �rst y neighbors that improves the best solution was better than exploringthe whole neighborhood [22℄.In the third approah, the one used in this paper, the neighborhood is exploredusing the Greedy tehnique until y neighbors that improve the best solutionare found. Then x neighbors, x � y, are explored using the Optimized teh-nique and then the best neighbor is seleted. Two di�erent strategies are usedto hoose the x neighbors. The �rst hooses the x best neighbors deterministi-ally. This approah was alled ID. The seond hooses x neighbors randomlyamong the y neighbors. This approah was alled IA. The values hosen fory and x were y = 10 and x = 10, in the ID approah and y = 20; x = 5, inthe IA approah. These numbers were hosen based on omputational resultsobtained in [22℄. It is lear that if there are not y neighbors that improve thebest solution, the y best neighbors of the entire neighborhood are onsidered.The Window and Well neighborhoodsFor these two neighborhoods, the rule to selet the neighbor is the same. Onboth neighborhoods it was not pratial to use the Greedy tehnique to seletneighbors. It was also not pratial to explore the whole neighborhood, noreven to selet the �rst y best neighbors. The use of the Optimized tehniqueto �nd the optimal start times of the neighbors proved impratial too. This is



30 Nasimento, Moura, and Souzaprobably due to the fat that obtaining good solutions in these more omplexneighborhoods is muh harder. Note that the Greedy tehnique was operat-ing on neighborhoods with a large number of disjuntive ars that were notoriented. This may have aused it to produe inferior solutions when onsid-ering neighbors that had a muh better solution if a di�erent ordering of theativities was hosen. The Optimized tehnique takes about a seond to �nda �rst solution at eah neighbor and a great amount of time to prove that suha solution is optimal.We deided to use a strategy where the neighborhood is explored using the Op-timized tehnique until a neighbor that improves the best solution is found, oruntil the exeution time on the neighborhood reahes 20 seonds. Furthermore,the Optimized tehnique has a limited exeution time on eah neighbor. ForneighborhoodWindow this time limit was set to 1 seond and for neighborhoodWell this time limit was set to 3 seonds. This means that the optimality ofeah neighbor may not be proved. The seleted neighbor is the best one found.In setion 6, we will all WI the neighborhood Window when this approah isused. Similarly, when neighborhoodWell is used with this approah we will allit WE.After performing some omputational tests using neighborhood Window, thevalue hosen for the window length of the main ativity was 3 at the originalresoure, and was set to 4 at the destiny resoure. After testing neighborhoodWell, the number of wells freed was set to 90.As just the �rst y best neighbors are explored by all approahes, the order ofexploration of the neighbors makes a di�erene. The priority rule used to hoosethe main ativity, i.e., to hoose the neighbor, is the same priority rule used byalgorithm CP2 of subsetion 4.1.The Pure Tabu Searh TehniqueThis tabu searh approah was implemented by Viniius Fortuna in his under-graduate projet.First of all, before de�ning the neighborhood used, it will be explained how solu-tions are represented. A solution is represented by an ordered list of ativities togetherwith a data struture that indiates whih resoure is alloated to eah ativity.Consider graph G where its nodes represent the ativities and its ars the pree-dene relationship between them. Using this graph, a shedule is obtained in thefollowing way:1. Add ar (ai; aj) to G if ativity ai is plaed before ativity aj in the ordered listand they belong to the same well or are exeuted by the same resoure. Notethat graph G provides a total order between the ativities.



Hybrid optimization method 312. The start time is obtained running a polynomial time topologial sort algorithmover graph G.There are two movements that de�ne the neighborhood. The �rst onsists inhanging the resoure alloated to an ativity to all resoures able to exeute it.The seond onsists in removing an ativity from its position on the ordered list andinserting it in all positions of the list, preserving the alloation of the resoures. Boththe feasibility and the shedule of eah neighbor is obtained by running a topologialsort algorithm over the orrespondent graph G. This neighborhood has O(nm+ n2)neighbors, where n is the number of ativities and m is the number of resoures.The stop and aspiration rules are the same rules used for the hybrid approahes.Two strategies were adopted to identify tabu movements. The �rst onsiders tabujust the movement used to generate the seleted neighbor. This strategy will be alledTabuPF. The seond onsiders tabu groups of movements. If the hosen movementalters the resoure of an ativity, then all movements that alter the resoure of thisativity are onsidered tabu. If the movement hanges the position of an ativity, allmovements that hange the position of this ativity are onsidered tabu. This strategywill be alled TabuPR. A movement or a group of movements are onsidered tabufor 25 iterations.The �rst neighbor that improves the best solution is the seleted neighbor.5 Upper BoundsAs there are no previous omputational results for the problem instanes used in thispaper, the alulation of upper bounds is important to determine the quality of oursolutions.This setion explains how four upper bounds were alulated to the problem. Infat, from one approah to another, the intention was to improve the bound. So the�rst approah, alled Upper0 provides the weakest bounds, while the last approah,alled Upper3 provides the tighter bounds. Upper0 is based on a ombinatorialargument while the other bounds are obtained solving relaxations of the originalproblems using Integer Linear Programming.� Upper0This bound is given by the following equation:wXi=1(H � Xj2Ati dj))� viwhere w is the number of wells, H is the time horizon, Ati is the set of ativitiesof well i, dj is the the proessing time of ativity j and vi is the outow of welli.



32 Nasimento, Moura, and SouzaThis equation assumes that there is an unlimited number of resoures that areable to exeute any of the ativities. The number of resoures is not being takeninto aount and, sine this number is very limited, the bound obtained withthis approah is poor.� Upper1In this approah, an integer linear model is formulated to obtain the bound.The orresponding IP model takes into aount the fat that there is a lim-ited number of resoures. In this model, all available resoures an exeute allativities, i.e., we have a situation similar to a parallel mahine environment[24℄.The model onsiders that eah well has just one ativity. The proessing timeof this ativity, denoted by �, is the sum of the proessing time of all ativitiesof the orrespondent well. After this ativity is exeuted, the well is onsideredapt to produe oil. Sine this single ativity represents all ativities of a well,preemption will be allowed. In this ase preemption an our at any instantduring the exeution time of an ativity. This turns this problem into a relaxedversion of the original problem. The objetive funtion is the same as theoriginal problem, that is, to maximize the total oil prodution. This relaxedversion of the problem will be denoted by P jjProdution.In the model used in this approah, the value of � will be rounded to thehighest multiple of 5 less than or equal to �, as the time in this model will bedisretized in unities of 5, i.e., eah time unity in the model represents 5 timeunities in the original problem. It will be done to redue the size of the model,sine omputational tests showed that it is impratial to onsider models wherethe time is disretized in unities of 1.The binary variables of this model are xit, and it is set to 1 if well i is �nishedat time t, and, it is set to 0 otherwise.The objetive funtion is: max wXi=1 H=5Xt=0(H � t)vixit;where onstants w, H and vi retain their meaning.The onstraints of this model are:1. PH=5t=0 xit � 1; i = 1 � � �w;



Hybrid optimization method 332. Ptk=0Pwi=1 xik�i=5 � t�m; t = 0 � � �H=5,where m is the number of resoures;3. xit = 0; for all i and t suh that �i > t.Constraint 1 says that there is at most one termination time for eah well.Constraint 2 enfores that there must be enough time, summed over all theresoures, to exeute all the wells that are terminated by instant t. Note thatthis onstraint allows the exeution of a well in more than one resoure at thesame time. It is important to observe that if the time horizon is large enoughfor all wells to be terminated within the time horizon, then all of them willbe performed, as that the total prodution is maximized. Restrition 3 triesto redue the number of possibilities, by foring a well not to be terminated ifthere is not enough time by instant t.� Upper2This approah improves upon the previous one, by not permitting simultane-ous exeution of the same well on di�erent resoures. The relaxed version ofthe problem modelled in this approah is the same as the previous one. Thedi�erene being that, exept for onstraint 2, whih is replaed for two newonstraints and for a new integer variable.The replaed onstraint reets the fat that, aording to theorem 2 below,preemptions are redundant for problem P jjProdution, i.e., the objetive valuemay not be improved by allowing preemptions.Theorem 2: For problem P jjProdution preemptions are redundant.Proof: The proof is divided in two ases. Case 1 ours when the time horizonis large enough for all wells to be �nished within it. Case 2 ours when this isnot true.{ Case 1:In this ase, solving problem P jjProdution is equivalent to solve problemP jjPwjCj (the �j�j-notation of [16℄ is used to represent the parallelmahine problem of minimizing the weighted sum of ompletion time).A lassial result of MNaughton [21℄ shows that for P jjPwjCj preemp-tion is redundant. Therefore, preemption is also redundant for P jjProdution,sine they are equivalent.{ Case 2:Consider an optimal solution for P jjProdution, when preemption is al-lowed and let S be the set of wells whih are �nished before the horizon.Then, aording to Case 1, the wells in S an also be optimally sheduled



34 Nasimento, Moura, and Souzain an nonpreemptive way. As the wells not in S do not ontribute to theobjetive funtion, an optimal solution for P jjProdution, when preemp-tion is not allowed, is also an optimal solution when preemption is allowed.So the theorem is established.The new integer variables of this model are rt. It ounts how many resoures arebusy at time t. Sine the problem has m resoures, a straightforward onstraintis: rt � m; t = 0 � � �H=5Constraint 2 of the previous model is replaed by this onstraint. In addition,a new onstraint must be written so that rt reets the number os ative wellsat instant t. The following onstrain is used:rt = H=5Xk=t Xi:k<t+�i xik; t = 0 � � �H=5:It states that if a well i is �nished at instant k, a resoure is onsidered busyduring instants k � 1; k � 2; � � � ; k � (�i � 1), sine the well will be exeutedwithout interruptions.In fat, we do not need to onsider variables rt expliitly. In the implementation,these variables will be replaed by the sum they represent, whih in known inadvane.Some of the possibilities of the previous model are eliminated, as there mustbe enough time in eah resoure to exeute all the ativities that are alloatedto it. This was not true in the previous model, sine the time available in allresoures was heked at eah instant.� Upper3All the three previous models did not take into aount some relevant informa-tions present in the problem instanes onsidered.One suh information is that there are two main groups of resoures: derriksand boats. In the instanes onsidered, all the ativities that require derriksmay be exeuted by any of them. The same ours with the ativities thatrequire boats. But the relevant fat is that there are more derriks than boatsand many more ativities that require the former than the latter.Moreover, the pattern present in all wells uses resoures in a sequene



Hybrid optimization method 35Derrik! Boat! Derrik:Observe that the number of ativities being exeuted in eah phase may bedi�erent, inluding zero.Thus, the version of the problem onsidered in this approah assumes that eahwell onsists of three ativities. The �rst ativity represents all ativities of thewell that are exeuted by the �rst derrik. The proessing time of this ativitywill be the sum of the proessing time of the represented ativities or it willbe zero, if the well does not have this type of ativity. The same mehanismis applied for the other two ativities. The �rst ativity of well i will be alledA1i and its proessing time �1i , the seond will be alled A2i and its proessingtime �2i , and the third will be alled A3i and its proessing time �3i . AtivitiesA1i and A3i must be exeuted by derriks and ativities A2i must be exeutedby boats. Furthermore, the preedene relationship A1i ! A2i ! A3i must berespeted. The prodution of well i starts when ativity A3i �nishes. Again, theobjetive funtion is the same as the original problem, that is to maximize thetotal oil prodution.Unfortunately, preemption is nonredundant for this relaxed version of the prob-lem. A simple ounter example shows it. Suppose there are two wells, twoderriks (S1,S2) and one boat (B1). The horizon onsidered is 25. The outowof the wells and the proessing time of their ativities is given in table 10.Well �1i �2i �3i Outow1 10 7 2 12 15 1 2 2Table 10: Durations and outowFigure 11 shows the optimal solution when preemption is allowed and when it isnot allowed. In this �gure, the values inside the retangles indiate the ativitythat is being exeuted and the orresponding exeution time. The values abovethe retangles indiate whih resoure is being used. The prodution for the �rstase is 19 units, and it is 16 units in the seond ase, showing that preemptionis important in this example.The idea behind the new model used in this approah to represent this version ofthe problem is similar to the one used in approah Upper1. Note that in thismodel there are onstraints to represent the preedene relationship betweenthe ativities of a well. As in the previous models, the values of �1i , �2i and �3iwill be rounded to the highest multiple of 5 less than or equal to �1i , �2i and
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1918 20(b) Optimal nonpreemptive shedule - Prodution = 16Figure 11: Preemption is nonredundant�3i , respetively, as the time in this model will be disretized in unities of 5,i.e., eah time unity in the model represents 5 time unities in the problem.This model has three groups of binary variables: xit, yit and zit. Variables xitare set to 1 if ativity A1i is �nished at instant t and 0 otherwise. Similarly,variable yit assumes value 1 if ativity A2i is �nished at instant t and 0 otherwise,and zit assumes value 1 if ativity A3i is �nished at instant t and 0 otherwise .The objetive funtion is: max wXi=1 H=5Xt=0(H � t)vizitwhere the meaning of the onstants w, H and vi is the same as in the formerthree approahes.The onstraints for this model are:1. (a) PH=5t=0 xit � 1; i = 1 � � �w;(b) PH=5t=0 yit � 1; i = 1 � � �w;() PH=5t=0 zit � 1; i = 1 � � �w;



Hybrid optimization method 37(d) PH=5t=0 xit �PH=5t=0 yit = 0; i = 1 � � �w;(e) PH=5t=0 xit �PH=5t=0 zit = 0; i = 1 � � �w;(f) PH=5t=0 yit �PH=5t=0 zit = 0; i = 1 � � �w;2. (a) Ptk=0Pwi=1(xik�1i =5 + zik�3i =5) � t�m1; t = 0 � � �H=5, where m1 isthe number of derriks;(b) Ptk=0Pwi=1 yik�2i =5 � t�m2; t = 0 � � �H=5, where m2 is the numberof boats;3. (a) xit = 0; 8i; t suh that t < �1i =5;(b) yit = 0; 8i; t suh that t < (�1i +�2i )=5;() zit = 0; 8i; t suh that t < (�1i +�2i +�3i )=5.4. (a) PH=5t=0 t(yit � xit) � �2i =5; i = 1 � � �w;(b) PH=5t=0 t(zit � yit) � �3i =5; i = 1 � � �w;Constraint 1 says that all phases of a well are terminated exatly one withinthe time horizon or none of them are. Like in the model used in approahUpper0, onstraint 2 enfores that there must be enough time in the resouresto exeute all the ativities that are �nished before instant t. In addition, inthe urrent model it was neessary to onsider the existene of two types ofresoures. Note that this onstraint allows the exeution of an ativity in morethan one resoure at the same time. Constraint 3 tries to redue the number ofpossibilities. Constraint 4 states the preedene relationship.Table 11 shows quantitative data for the integer linear models of the last threeapproahes. The instane onsidered is the real instane. In this table, olumnConstraints is the number of onstraints, olumn Variables is the number of binaryvariables, olumn Const.NZ is the number of nonzeros oeÆients in the onstraintsand olumn Obj.NZ is the number of nonzeros oeÆients in the objetive funtion.Approah Constraints Variables Const.NZ Obj.NZLess Greater EqualUpper1 407 - 1470 31906 4819470 31694Upper2 407 - 1470 31906 491189 31694Upper3 920 212 3925 95718 12326123 31694Table 11: Model quantitative data - Upper Bound - Real InstaneIt an be observed from table 11 that the model for approah Upper3 is muhlarger than the other two models. On the other hand, the models of approahes



38 Nasimento, Moura, and SouzaUpper1 and Upper2 have the same number of onstraints and variables. Thedi�erene between them lies in the number of nonzeros oeÆients.The order of magnitude of the number of onstraints, variables and nonzeros isthe same for models that represent the real instane and for the orresponding modelsfor instanes 2W112S4B3, 3W95S5B3 and 4W130S5B3. So the data of table 11 isrepresentative for all instanes onsidered in this paper.Table 12 shows the best bound obtained for the prodution by eah approah. Thevalue between parenthesis indiates the perentage by whih approahes Upper1,Upper2 and Upper3 improved upon the values obtained for approah Upper0.The value of the bound is in millions of unities. The models were implementedand solved using the ILOG CPLEX. The maximum exeution time was set to 3600seonds. Table 13 shows the number of nodes in the branh tree traversed by eahapproah and the gap between the best upper and lower bounds.Instane Upper0 Upper1 Upper2 Upper31W130S5B3(real) 378.6 310.2 (17.3%) 300.6 (20.4%) 287.4 (23.9%)2W112S4B3 363.8 310.4 (14.6%) 302.4 (16.8%) 270.9 (25.5%)3W95S5B3 317.8 280.3 (11.8%) 274.9 (13.5%) 257.2 (19.0%)4W130S5B3 420.7 371.6 (11.6%) 369.6 (12.1%) 334.7 (20.4%)Table 12: Upper BoundsInstane Upper1 Upper2 Upper3Node Gap Node Gap Node Gap1W130S5B3 1600 1.88% 1 0 1 12W112S4B3 1200 1.87% 1 0 1 13W95S5B3 2580 0.55% 1 0 1 14W130S5B3 800 2.27% 1 0 1 1Table 13: Computational quantitative data - Upper BoundThese two tables onvey important informations. The only model limited by themaximum exeution time was Upper1. Model Upper2 is an improvement uponUpper 1. This improvement made it possible for model Upper2 to �nd the optimalsolution for all instanes and, after exploring just one node of the searh tree. Onthe other hand, Upper3 is the approah that provided the best bounds, improvingupon approah Upper0 by more than 19% in all instanes. But this approah failedto provide a feasible integer solution, sine it exeution was terminated beause thesoftware ran out of memory after exploiting the �rst node of the searh tree. The



Hybrid optimization method 39same ourred when some of the exeution parameters of the ILOG CPLEX werehanged in an attempt to avoid this behavior. This fat an be explained by theonsiderable size of this model.Sine Upper 1 was the only approah to explore more than a node of the branhtree, �gure 12 shows the evolution of the upper and the lower bounds on eah nodefor the real instane. Note that the upper bound remains the same in all nodes andthe lower bound is hanged in just few nodes. A similar behavior was observed on allthe other instanes.
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Figure 12: Lower and upper bounds on the nodes of approah Upper1 - Real instane6 Computational ResultsIn this setion we present the omputational results obtained with instanes 1W130S5B3(real instane), 2W112S4B3, 3W95S5B3 and 4W130S5B3 when the tehniques de-sribed in setion 4 are applied. For all these instanes, the onsidered horizon wasset to 1500 days and the maximum exeution time was set to 3600 seonds.Table 14 summarizes the omputational results for all tested instanes. In allases, the initial solution was obtained using the H1 tehnique.The olumns in table 14 have the following meaning:� Instane: instane identi�ation;



40 Nasimento, Moura, and Souza� Approah: approah identi�ation;� It: total number of iterations;� Neighbors: total number of feasible neighbors;� Tabu: total number of tabu neighbors;� AR: total number of tabu neighbors that satis�ed the aspiration rule;� Prodution: best value for the prodution;� Time: total exeution time.For eah instane, the best value obtained for the prodution is set to bold.In olumn Approah, the names refer to the various tabu searh strategies de-sribed in setion 4.For the partiular ase of the real instane 1W130S5B3, we have more detaileddata, desribing the behavior of eah of the olumns Neighbors, Tabu, AR, Produtionand Time along the iterations. Figure 13 desribes the behavior of the total number offeasible neighbors explored at eah iteration for eah of the tabu strategies onsidered.Figure 14 does the same for the total number of tabu neighbors; �gure 15 treats thetotal number of neighbors that satis�ed the aspiration rule; �gure 16 shows the totaloil prodution; and �gure 17 depits the total time per iteration.Figure 18 presents more details about the total oil yield when eah of the tabustrategies was exerised for the real instane. Figures 19, 20 and 21 do the same forthe generated instanes, 2W112S4B3, 3W95S5B3 and 4W130S5B3, respetively.Figure 13 shows that the number of feasible neighbors visited during eah iterationvaries a lot, sine an iteration is �nished after y neighbors that improve the bestsolution are found. The only approah that does not present this pattern is WE. Inthe ID and IA approahes, it an be observed a tendeny for the number of feasibleneighbors to inrease along with the omputation. This indiates that it is easier toimprove the best solution on the beginning of the omputation, sine we searh forthe �rst y best neighbors. Comparing �gures 13 and 17, it is lear that the timeper iteration is roughly proportional to the number of feasible neighbors. Conerningthe total number of neighbors, table 14 shows that approahes TabuPF, TabuPR,ID, IA an explore a number of neighbors three orders of magnitude larger thanapproahes WE, WI. This was already expeted, sine these approahes are largesale neighborhoods. Furthermore, tehniques ID and IA use a greedy strategy toselet the best feasible neighbors. In the WE strategy, we only allow 20 seonds forthe searh of the best feasible neighbors. Figure 13.f shows that this tehnique isatually using the allowed time to �nd 7 suh neighbors per iteration.



Hybrid optimization method 41
Instane Approah It Neighbors Tabu AR Prodution Time1W130S5B3 TabuPF 348 5404175 1762 9 260480500 3624TabuPR 368 6078448 390383 112 260955920 3619ID 216 5097314 482245 65 261797010 3621IA 234 5549670 569485 74 262968780 3616WE 169 1172 1645 0 247388220 3618WI 188 1882 174 4 250410270 36062W112S4B3 TabuPF 485 6437783 2446 15 250305872 3625TabuPR 494 6772949 562549 139 250448195 3631ID 185 1955786 345472 116 246309923 3639IA 153 1462175 262204 198 248792249 3616WE 176 708 1715 0 220362248 3609WI 200 3361 425 21 224523265 36183W95S5B3 TabuPF 307 5453469 1648 2 238685695 3644TabuPR 335 6999181 309804 68 238685695 3604ID 128 2247780 165676 109 233766103 3630IA 155 2891257 224596 65 238258503 3628WE 166 1164 1615 0 225755389 3614WI 184 1789 262 3 227267290 36054W130S5B3 TabuPF 331 5669485 1760 11 296412436 3622TabuPR 307 5232493 441899 98 294203512 3603ID 154 1568798 198769 156 297504129 3656IA 163 1919470 236697 425 298814360 3667WE 175 704 1705 0 276423927 3600WI 193 1752 316 15 280450182 3607Table 14: Quantitative Data - H1



42 Nasimento, Moura, and SouzaFigure 14 shows that the number of tabu neighbors tends to be higher on the �naliterations when ompared with the initial iterations, when strategies ID and IA wereused. This happens beause more neighbors are explored on the �nal iterations andbeause the tabu list ontains fewer elements on the beginning.Figure 15 indiates that the number of tabu neighbors that satis�es the aspirationrule does not follow a reognizable pattern. Note that strategy WE does not use theaspiration rule. Table 14 indiates that the number of neighbors onsidered tabu ishigh, given the total number of feasible neighbors that was visited, exept for approahTabuPF, beause its tabu riteria is the less restritive among all the strategies. Onthe other hand, the number of tabu neighbors that satis�es the aspiration rule is verysmall for all approahes. It is important to reall that for approah WE, olumnTabu indiates how many times a well ould not have all its ativities freed in aniteration due to the fat that the well was tabu. This explains why the number oftabu wells is greater than the total number of neighbors when tehnique WE wasused in all instanes. See table 14.The most interesting results onern the evaluation of the prodution urve asdepited in �gures 18, 19, 20 and 21. Approah IA gave the best prodution forinstanes 1W130S5B3 (the real instane) and 4W130S5B3, while approah TabuPRgave the best prodution for the 3W95S5B3 and 2W112S4B3 instanes. ApproahesWE and WI got into an inferior prodution plateau and were not able to esapefrom it in all tested instanes. An explanation for this behavior ould be that theseapproahes were not able to explore a large number of neighbors, and the exploredneighbors were unable to provide reasonable improvements over the oil prodution.These �gures show a desirable behavior of large sale neighborhoods. Strategies IDand IA showed a steep rise in the oil prodution at the very beginning in all instanes,to a lesser extent for strategy ID in instane 3W95S5B3. This was partiularly intenseon the real instane, as an be seen from �gure 18. We believe that the quality os theneighbors generated by strategies ID and IA was superior, while still maintaininga ompetitive omputational time. Even though TabuPR gave the best produtionfor two instanes, the results obtained by the IA strategy on those instanes werevery lose to the best ones.Figure 16 shows that a prodution plateau was not reahed when TabuPF,TabuPR and IA were used. In order to verify if it was possible to inrease theprodution in these ases, the strategies were allowed to run for 3 more hours. Aplateau of 363:5 millions of unities was then reahed by all of them and ould not beimproved.To observe the behavior of the approahes when a poorer initial solution was used,all tehniques were exerised with an initial solution obtained using H2. Table 15and �gures 22.b, 23.b, 24.b, 25.b are the orrespondents of table 14 and �gures 18,19, 20, 21, respetively, when H2 was used instead of H1. Figures 22.a, 23.a, 24.a,



Hybrid optimization method 4325.a explore the initial 360 seonds of these omputations.Instane Approah It Neighbors Tabu AC Prodution Time1W130S5B3 TabuPF 435 4096832 1726 13 243419100 3641TabuPR 458 5377802 344077 121 243639100 3614ID 171 5222193 452063 0 242923630 3603IA 181 5549303 452396 0 244595390 3602WE 172 1166 1675 0 241947730 3602WI 218 3618 424 6 243724840 36002W112S4B3 TabuPF 475 5272845 2137 11 223398783 3623TabuPR 486 6057373 447554 129 223389183 3657ID 212 1444141 191602 235 232061191 3651IA 207 2066677 306046 217 230394281 3622WE 174 1164 1695 0 216710680 3615WI 250 3544 661 34 225733988 36183W95S5B3 TabuPF 428 4776629 2393 22 227393876 3621TabuPR 466 6717009 198437 119 227536172 3613ID 222 2319646 320605 119 229981247 3634IA 202 2727995 370660 266 229520098 3634WE 181 1172 1765 0 223389186 3612WI 222 3941 452 8 227100961 36024W130S5B3 TabuPF 445 4133240 1694 21 272924096 3629TabuPR 457 4280146 271755 141 274236257 3608ID 203 1184770 145761 220 283119592 3663IA 209 1475233 178982 220 283119592 3647WE 180 708 1755 0 273515507 3616WI 224 3624 343 10 281009822 3609Table 15: Quantitative Data - H2Table 15 shows that the number of feasible and tabu neighbors, as well as thenumber of neighbors that satis�es the aspiration rule is the same as in the previousases. The prodution urves deserve loser attention. Approah IA gave the bestprodution for instanes 1W130S5B3, 3W95S5B3 and 4P130S5B3, while approah IDgave the best prodution for instane 2W112S4B3. Note that the pure tabu searhapproahes (TabuPF and TabuPR) did not yield the best prodution for none ofthese instanes. Furthermore, in the previous ase, the gap between the produtionobtained by the pure tabu searh approah and the hybrid approahes was less than1%. In this ase, for instanes 2W112S4B3 and 4W130S5B3 the gap was near 4%in favor of the hybrid approah. Another interesting result is, in the previous ase,the prodution obtained with strategy WI was not as good when ompared to theprodution obtained with strategies TabuPF, TabuPR, ID and IA. In this new



44 Nasimento, Moura, and Souzaase, the prodution obtained with approah WI was higher than the produtionobtained by the pure approahes TabuPF and TabuPR in all instanes, exept ininstane 3W95S5B3. But in this instane, the prodution obtained with the WIapproah was less than 1% poorer.Figures 22.a, 23.a, 24.a, 25.a details the �rst 360 seonds of omputation of eahinstane. Note how quikly eah approah overomes a poor initial solution. On theformer ase, when H1 was used, IA improved the initial solution quikly. In thisase, strategy WE does it faster than any other in all instanes. The pure tabusearh approahes are only able to reah this level of prodution after more than 360seonds. Unfortunately, the WE approah gets into an inferior plateau and is notable to esape from it.Another pattern that an be observed is that when all strategies use initial solu-tions obtained by theH2method, they get stuk in an inferior plateau when omparedwith the plateau reahed when the H1 was used. This indiates that a poor initialsolution probably leads to poorer �nal results. The relevant aspet of the resultsobtained by using H2, however, is fat that the hybrid approahes improved a poorinitial solution more quikly than the pure approahes and gave best prodution val-ues.Figures 26.a and 26.b show the initial solution, the best oil prodution and theupper bound for all four tested instanes, when H1 and H2 are applied, respe-tively. Table 16 shows by whih perentage the best solution improved the initialone and shows by whih perentage the best solution is under the upper bound.Clearly, there was a bigger improvement between the initial and the best solutionwhen H2 was applied. Note, however, that when onsidering H2, a poor initial so-lution was used. The gap between the best solution and the upper bound was alsobigger for this ase. Nevertheless, the most important information onveyed by thistable is that the best solutions are less than 9% from the upper bound for instanes1W130S5B3, 2W112S4B3, 3W95S5B3 and is at 10:7% from the upper bound forinstane 4W130S5B3. This indiates that the best solutions are already very goodones. Instane H1 H2Initial Solution Upper Bound Initial Solution Upper Bound1W130S5B3 6.8% 8.5% 18.4% 14.9%2W112S4B3 13.9% 7.55% 28.9% 17.5%3W95S5B3 5.89% 7.2% 23.84% 10.6%4W130S5B3 8.06% 10.7% 29.7% 15.4%Table 16: Distane among the initial solution, best solution and upper bound
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Figure 18: Prodution X Time - 1W130S5B3 (Real Instane) - H1
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Figure 19: Prodution X Time - 2W112S4B3 - H1
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Figure 20: Prodution X Time - 3W95S5B3 - H1
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Figure 21: Prodution X Time - 4W130S5B3 - H1
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Hybrid optimization method 577 Sensibility AnalysisIn this setion a sensibility analysis is presented in order to verify the behavior of ourtehniques when the instanes are perturbed.Two kinds of perturbation are onsidered. As disussed in setion 5, there aremore derriks than boats and many more ativities that require the former than thelatter resoure. In addition, the resoures needed by all wells follow the patternDerrik! Boat! Derrik:Also, the boats an be onsidered the bottlenek in the proess of developinga well. Moreover, the proessing time of all ativities whih require a boat is inthe interval of [5; 17℄ days. These informations were ruial to the development ofapproah Upper3. The proessing time of those ativities that require a boat willbe perturbed. The original proessing time of these ativities will be replaed byproessing times generated using an uniform distribution between the intervals [1; 30℄,[1; 60℄ and [1; 90℄. This proedure originated the variant instanes that we all At,with its three subases At30, At60, At90 that orrespond, respetively, to thenew three intervals for ativities that require a boat.In all the instanes onsidered in this paper, all derriks an exeute all ativi-ties that require this type of resoure. The same ours with the boats. Note thatonstraint 3 of the original problem, desribed in setion 2 says that there may ex-ist instanes where not all resoures of a ertain type are able to perform all theativities that require that type of resoure. The other perturbation we onsideredover the original instanes was that eah ativity was assoiated with a subset of theresoures that are able to perform it. So, in the perturbed instanes, to eah ativityis attributed x spei� resoures among all the resoures that have the type ompat-ible with the ativity. The x resoures are hosen randomly. This proedure reatedthe variant we all Res. This variant also has three subases, named Res1, Res2,Res3, that orrespond to subases when x assumes the values 1, 2 and 3, respetively.In this setion, only strategy H1 will be onsidered to generated the initial solu-tions. Furthermore, only approahes TabuPR, IA, WE, WI will be tested, sinestrategies TabuPF and ID displayed a poorer performane when ompared to strate-gies TabuPR and IA.Table 17 presents the initial solution to the perturbed instanes. The produtionis in millions of unities.The upper bound values for the perturbed instanes that follow the Res variantsare the same as the values presented in setion 5 for the original instanes. Note thatthe relevant information for these models are the ativities proessing time and thenumber of derriks and boats. All these values remained the same on the perturbedinstanes.



58 Nasimento, Moura, and SouzaInstane VariantRes1 Res2 Res3 At30 At60 At901W130S5B3 229.8 240.2 243.4 243.9 227.0 168.72W112S4B3 206.2 216.7 216.2 216.5 205.2 163.33W95S5B3 218.1 222.8 224.0 220.7 205.2 133.64W130S5B3 262.2 272.7 273.3 270.9 238.8 186.9Table 17: Initial solution - H1On the other hand, as the ativities proessing time were altered on the perturbedinstanes that follow the At variant, new bounds were omputed for these pertubedinstanes. Table 18 is similar to table 11. The instane used was 4W130S5B3 -variant At90. As in table 11, olumn Constraints is the number of onstraints,olumn Variables is the number of binary variables, olumn Const.NZ is the number ofnonzeros oeÆients in the onstraints and olumn Obj.NZ is the number of nonzerosoeÆients in the objetive funtion. The values in this table have the same orderof magnitude as the orrespondig values, even onsidering that table 11 was reatedusing the real instane.Approah Constraints Variables Const.NZ Obj.NZLess Greater EqualUpper1 420 - 2463 36000 5321013 35760Upper2 420 - 2463 36000 777093 35760Upper3 962 240 6497 10800 13656007 35760Table 18: Model quantitative data - Upper Bound - Instane 4W130B5S3 - VariantAt90Table 19 is similar to table 12, and table 20 is similar to table 13. In the latter ase,variant At90 was used. Table 19 shows the best bound obtained for the produtionby eah approah. The value between parenthesis indiates the perentage by whihapproahes Upper1, Upper2 and Upper3 improved upon the values obtained forapproah Upper0.As expeted, the bound values shown in table 19 are smaller than the orrespond-ing bounds on table 12. Note that the ativities proessing time are higher in thepertubed ase. As in the original instanes, the omputation using strategy Upper1was limited in one hour and did not �nd the optimal solution. Strategy Upper2found the optimal solution, and strategy Upper3 ran out of memory and was notable to �nd a feasible integer solution.Table 20 shows the number of nodes and the gap between the upper bound and the
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Instane Variant Upper0 Upper1 Upper2 Upper31W130S5B3 At30 366.6 307.0 (16.2%) 297.4 (18.8%) 284.0 (22.5%)At60 363.7 293.4 (19.3%) 282.5 (22.3%) 280.6 (22.8%)At90 357.6 263.9 (26.2%) 250.3 (30.0%) 253.8 (29.0%)2W112S4B3 At30 361.9 296.2 (18.1%) 287.3 (20.6%) 267.9 (25.9%)At60 358.9 284.4 (20.7%) 273.9 (23.6%) 265.7 (25.9%)At90 354.5 255.8 (27.8%) 243.6 (31.3%) 248.5 (29.9%)3W95S5B3 At30 316.2 275.9 (12.7%) 268.0 (15.4%) 255.8 (19.1%)At60 358.9 267.1 (25.5%) 258.2 (28.0%) 253.9 (29.2%)At90 308.9 248.3 (19.6%) 237.2 (23.2%) 241.4 (21.8%)4W130S5B3 At30 453.2 364.2 (19.5%) 352.3 (22.2%) 332.0 (26.7%)At60 449.3 344.0 (30.2%) 330.2 (26.5%) 326.8 (27.2%)At90 443.8 313.6 (29.3%) 297.8 (32.4%) 302.9 (31.7%)Table 19: Upper Bound - Ativities proessing time variant

Instane Upper 1 Upper 2 Upper 3Node Gap Node Gap Node Gap1W130S5B3 700 2.10% 1 0 1 12W112S4B3 600 3.37% 1 0 1 13W95S5B3 2000 2.57% 1 0 1 14W130S5B3 500 3.27% 1 0 1 1Table 20: Computational quantitative data - Upper Bound - Variant At90



60 Nasimento, Moura, and Souzabest solution when variant At90 was used in all tested instanes. The unexpetedbehavior was that the bound obtained using strategy Upper2 was tighter than thebound obtained using Upper3. There are at least two possible explanations for thisfat. This may have ourred beause Upper3 ran out of memory and was unableto improve the bound, while Upper2 found the optimal solution. Or this may haveourred beause with Upper2 preemptions and parallel ativities are not allowedwhile they are permitted with Upper3. Sine this was not a problem when the orig-inal instanes were used, the problem may have arisen due to the large variability ofthe ativities proessing time on the perturbed instanes.As for the omputational results, table 21 is similar to table 14 and shows somedata for all At variants. The olumns of this table show the instane identi�ation,the approah identi�ation, the total number of iterations, the total number of feasibleneighbors, the total number of tabu neighbors, the total number of tabu neighborsthat satis�ed the aspiration rule, the best value for the prodution and the totalexeution time.This table shows that the total number of feasible and tabu neighbors as well asthe total number of neighbors that satis�es the aspiration rule, are of the same orderof magnitude obtained for these values when using the original instanes. Exept forapproah WI, where these values were approximately multiplied by 2 in instanes1W130S5B3, 3W95S5B3 and 4W130S5B3.Figures 27, 28 and 29.b are similar to �gure 18 for the real instane. They plot thetotal oil prodution when variants At30, At60 and At90, respetively, are exer-ized. Eah �gure shows the prodution when eah of the TabuPR, IA,WI andWEstrategies were used. Figures 30, 31 and 32.b do the same for instane 2W112S4B3,the orresponding �gure for the unperturbed ase being �gure 19. Figures 33, 34and 35.b orresponde to instane 3W95S5B3 and the unperturbed ase is shown in�gure 20. Finally, �gures 36, 37 and 38.b orresponde to instane 4W130S5B3 andare similar to �gure 21.The behavior for variants At30 and At60 was very similar to their behaviorwhen the unperturbed instanes were onsidered. When variant At90 is onsidered,however, the behavior was di�erent. In order to get more details for the beginningof the omputation, �gures 29.a, 32.a, 35.a and 38.a depit the �rst 360 seonds ofomputation for, respetively, instanes 1W130S5B3, 2W112S4B3, 3W95S5B3 and4W130S5B3 when variant At90 is onsidered.It an be observed from these �gures that the IA strategy produed the bestsolution for all instanes and all variants. When variant At90 is onsidered, ap-proah WI gave better results than the pure approah TabuPR onsistently on allinstanes. In fat, the solution obtained using TabuPR was muh inferior than thebest solution found, showing that this strategy is not robust. As ourred with theoriginal instanes, when poor initial solutions were onsidered, approahWE quikly



Hybrid optimization method 61Instane Variant Approah It Neighbors Tabu AR Prodution Time1W130S5B3 At30 TabuPR 248 5848316 352747 63 251490660 3627IA 237 5484254 783616 228 254289300 3607WE 175 880 1705 0 243813630 3604WI 199 3519 180 6 248671800 3620At60 TabuPR 334 4640070 430279 59 244399700 3649IA 278 5331636 757380 492 249390940 3616WE 177 879 1725 0 233244810 3603WI 213 3383 216 9 240629260 3609At90 TabuPR 907 4641809 440276 224 213631730 3601IA 645 5503132 754402 2697 223935480 3600WE 176 878 1715 0 199547050 3605WI 262 3350 412 48 213792920 36012W112S4B3 At30 TabuPR 485 5874813 520058 122 240914193 3607IA 324 5633385 883573 487 242807762 3600WE 177 881 1725 0 217363213 3608WI 211 3472 368 14 224353344 3618At60 TabuPR 426 4640689 501234 126 227219755 3621IA 310 5664917 891038 468 228336202 3613WE 177 880 1725 0 213016072 3602WI 227 3384 382 32 223265432 3612At90 TabuPR 734 4384954 465444 217 206954958 3604IA 509 5734307 911740 1566 219941934 3597WE 180 879 1755 0 196999164 3606WI 269 3382 369 48 207684901 36163W95S5B3 At30 TabuPR 258 4906162 334880 57 229788564 3644IA 296 6571118 896624 361 236134527 3600WE 178 887 1735 0 222951271 3612WI 199 3771 177 7 224902175 3613At60 TabuPR 353 6096266 481720 68 223263212 3614IA 315 6451718 997282 440 231285153 3607WE 178 884 1735 0 217123963 3601WI 233 3750 318 12 223601108 3615At90 TabuPR 1115 5494002 441047 283 204158392 3619IA 619 6003403 974865 1776 215480227 3598WE 179 886 1745 0 194854023 3617WI 258 3422 566 34 206585222 36164W130S5B3 At30 TabuPR 329 4650514 383225 76 287747684 3642IA 247 4746251 525334 914 290475965 3609WE 178 880 1735 0 273238548 3616WI 211 3433 206 9 279779931 3619At60 TabuPR 388 4764056 550489 101 267388916 3644IA 265 4552634 600832 521 274690795 3612WE 179 880 1745 0 261125166 3612WI 250 3428 245 21 274013147 3604At90 TabuPR 857 4415545 212685 262 237760960 3695IA 574 4934794 688041 2275 265915404 3608WE 176 875 1715 0 241748970 3601WI 281 3374 330 48 254766742 3607Table 21: Quantitative Data - Variant: Ativities duration
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Figure 27: Prodution X Time - 1W130S5B3 (Real Instane) - Variant At30repaired the initial solutions, but, again, got stuk in a prodution plateau.Table 22 shows the same kind of data as table 16. TheAt variants were usedto produe the results shown in this table. Observing this table, it an be inferredthat the initial solution algorithm ould not generate good solutions for the variantAt90. But the hybrid approah was able to reah a good solution for all instanes,sine the gap between the best solution and the upper bound was around 10% for allinstanes, in this ase.Table 23 repeats table 14 using the pertubed Res variants. This table shows thatthe total number of feasible and tabu neighbors, and the total number of neighborsthat satis�ed the aspiration rule are of the same order of magnitude as those valuesobtained with the original instanes using strategies TabuPR and WE. For the WIapproah, these values are higher in the pertubed ase, for all instanes. When usingapproah IA, these values are higher in this perturbed ase for instanes 2W112S4B3and 3W95S5B3.As was done for the At variants, we used the Res pertubed instanes derivedfrom all four original test instanes in order to observe the behavior of the TabuPR,IA, WI and WE strategies on these perturbed instanes. The prodution obtainedwith the real perturbed instane is depited in �gures 39.b, 40.a and 41. For thegenerated 2W112S4B3 instane, the orresponding plots are shown in �gures 42.b,43 and 44. The set of �gures 45.b, 46 and 47, shows the data when using instane
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Figure 28: Prodution X Time - 1W130S5B3 (Real Instane) - Variant At60Instane Variant H1Initial Solution Upper Bound1W130S5B3 At30 4.2% 10.4%At60 9.8% 11.1%At90 32.7% 10.5%2W112S4B3 At30 12.1% 9.3%At60 11.2% 14.0%At90 34.6% 9.7%3W95S5B3 At30 7.0% 7.6%At60 12.7% 8.9%At90 61.2% 9.1%4W130S5B3 At30 7.2% 12.5%At60 15.0% 15.9%At90 42.2% 10.7%Table 22: Distane among the initial solution, best solution and upper bound - VariantAt
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(b) Time=0...3600Figure 29: Prodution X Time - 1W130S5B3 (Real Instane) - Variant At90
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Figure 30: Prodution X Time - 2W112S4B3 - Variant At30
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Figure 31: Prodution X Time - 2W112S4B3 - Variant At60
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(b) Time=0...3600Figure 32: Prodution X Time - 2W112S4B3 - Variant At90
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Figure 33: Prodution X Time - 3W95S5B3 - Variant At30
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Figure 34: Prodution X Time - 3W95S5B3 - Variant At60
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(b) Time=0...3600Figure 35: Prodution X Time - 3W95S5B3 - Variant At90
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Figure 36: Prodution X Time - 4W130S5B3 - Variant At30
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Figure 37: Prodution X Time - 4W130S5B3 - Variant At60
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(b) Time=0...3600Figure 38: Prodution X Time - 4W130S5B3 - Variant At90



Hybrid optimization method 71Instane Variant Approah It Neighbors Tabu AR Prodution Time1W130S5B3 Res1 TabuPR 166 5653569 763500 53 241408310 3615IA 624 4492228 663962 604 251537690 3600WE 176 881 870 0 234670140 3606WI 248 3797 170 6 243599460 3605Res2 TabuPR 311 4589353 431117 82 254654730 3640IA 376 5122923 766713 218 255802210 3609WE 177 881 875 0 241946220 3608WI 225 4062 168 12 246220480 3612Res3 TabuPR 335 6095363 368879 96 257360240 3611IA 299 5263970 774131 387 259247850 3610WE 178 883 880 0 244006440 3618WI 208 3935 159 7 248637620 36002W112S4B3 Res1 TabuPR 335 7010706 1423290 113 235086600 3605IA 634 4640316 695738 994 239540901 3597WE 177 882 875 0 209531118 3607WI 247 4476 231 21 225024965 3604Res2 TabuPR 430 6955965 606570 143 243662371 3612IA 355 4831703 814819 553 244840697 3603WE 175 880 865 0 216533315 3600WI 206 4640 165 3 220505606 3600Res3 TabuPR 504 7110939 840412 155 246225063 3608IA 301 5037286 839687 543 247090041 3599WE 176 881 870 0 216348434 3609WI 246 3988 244 26 228074446 36163W95S5B3 Res1 TabuPR 217 7343330 1115067 64 231892638 3613IA 901 5204502 1004203 423 233020474 3602WE 177 886 875 0 218454885 3607WI 225 5190 207 15 225305466 3615Res2 TabuPR 311 7141765 454913 70 237532302 3614IA 511 5683934 952828 648 238780333 3600WE 177 887 875 0 222826848 3613WI 219 4998 177 14 228407393 3617Res3 TabuPR 223 5895968 393610 42 235592424 3610IA 361 5762413 982374 568 237120503 3602WE 176 885 870 0 223421262 3606WI 211 4711 148 6 228464110 36064W130S5B3 Res1 TabuPR 197 4823039 915161 58 274715220 3615IA 411 2763139 378327 622 291119199 3605WE 176 877 870 0 264782298 3600WI 253 3887 204 17 277047062 3651Res2 TabuPR 224 4806321 511323 56 288863831 3605IA 266 3405275 478866 354 293240295 3624WE 176 881 870 0 274430520 3617WI 238 4130 145 13 279930174 3602Res3 TabuPR 249 4731748 397284 70 292684155 3613IA 244 4444513 598703 391 295370753 3617WE 175 880 865 0 274279895 3619WI 211 4387 145 8 279542790 3600Table 23: Quantitative Data - Variant: number of resoures



72 Nasimento, Moura, and Souza3W95S5B3. Finally, �gures 48.b, 49 and 50 treat instane 4W130S5B3.Variants Res2 and Res3 showed a behavior very similar to their orrespond-ing behaviors when the original instanes were onsidered. When variant Res1 isonsidered, however, the behavior was di�erent. As the tests using variant Res1produed results that di�ered the most from the results obtained with the originalinstanes, �gures 39.a, 42.a, 45.a and 48.a show details of the �rst 360 seonds ofomputation of eah test instane. It an be observed from these �gures that the IAstrategy provided the best solution over all instanes and all variants in this ase.Note that approah WI gave better results than the pure TabuPR approah overinstanes 1W130S5B3 and 4W130S5B3. In fat, the solution provided by TabuPRwas inferior than the best solution found, indiating that this strategy is not robust.Approah WE did not perform well, even on the beginning of the omputation, justlike it ourred when variant At90 was used.Table 24 shows the same kind of data for the perturbed Res variants as does table16 for all four unperturbed instanes. Observing this table, it an be inferred thatthe initial solution algorithm ould generate good solutions for all instanes, whenthese variants were onsidered. Notie that the maximum improvement obtained was14:2%. Moreover, the best solutions obtained were good ones, as the gaps betweenthe best solutions and the upper bounds were around 10%.Instane Variant H1Initial Solution Upper Bound1W130S5B3 Res30 9.4% 12.5%Res60 6.4% 10.9%Res90 6.5% 9.7%2W112S4B3 Res30 16.1% 11.4%Res60 12.9% 9.6%Res90 14.3% 8.7%3W95S5B3 Res30 6.8% 9.4%Res60 7.2% 7.1%Res90 5.8% 7.8%4W130S5B3 Res30 11.0% 13.0%Res60 7.5% 12.3%Res90 8.1% 11.7%Table 24: Distane among the initial solution, best solution and upper bound - VariantRes
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(b) Time=0...3600Figure 39: Prodution X Time - 1W130S5B3 (Real Instane) - Variant Res1
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Figure 40: Prodution X Time - 1W130S5B3 (Real Instane) - Variant Res2
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Figure 41: Prodution X Time - 1W130S5B3 (Real Instane) - Variant Res3
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(b) Time=0...3600Figure 42: Prodution X Time - 2W112S4B3 - Variant Res1
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Figure 43: Prodution X Time - 2W112S4B3 - Variant Res2
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Figure 44: Prodution X Time - 2W112S4B3 - Variant Res3
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(b) Time=0...3600Figure 45: Prodution X Time - 3W95S5B3 - Variant Res1
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Figure 46: Prodution X Time - 3W95S5B3 - Variant Res2
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Figure 47: Prodution X Time - 3W95S5B3 - Variant Res3
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(b) Time=0...3600Figure 48: Prodution X Time - 4W130S5B3 - Variant Res1
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Figure 49: Prodution X Time - 4W130S5B3 - Variant Res2
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Figure 50: Prodution X Time - 4W130S5B3 - Variant Res3



Hybrid optimization method 818 ConlusionsSeveral onlusions may be inferred from this work. First of all, approah IA anthe onsidered the best and more robust approah, sine it provided the best solutionfor the vast majority of the tested instanes and variants onsidered in this paper.Furthermore, the quality of its solutions are very high, as the gap between its so-lutions and the orrespondent upper bounds were around 10% for all instanes andall variants. On the other hand, the solutions obtained with the pure tabu searhapproah were good when the quality of the initial solutions was also good. Other-wise its performane was not that good, speially if it is onsidered how quikly thisapproah an improve a poor solution. Moreover, this approah proved to be weakto solve the variants At90 and Res1.The hybrid methods proved very eÆient in improving poor solutions, speiallyapproahWE. But, unfortunately, this approah was not able to esape from produ-tion plateaus after a good solution was found. Also, approah WI did not performwell when the initial solutions were already good ones. To improve performane ofboth WE and WI, two orthogonal features of these approahes must be onsidered.First, the neighborhood exploration for these approahes may be improved, makingan e�ort to eliminate intrinsi symmetries. In this way, more promising neighborsould be visited. The other feature that needs to be onsidered is the tabu list. Itshould be better studied in order to prevent these approahes from getting stuk inprodution plateaus.Regarding the sensibility analysis, variants At 30, At60, Res2 and Res3did not impat the behavior of the methods. On the other hand, the behavior ofapproahes TabuPR, WE and WI were modi�ed when variants At90 and Res1were onsidered.In summary, the methods implemented provided high quality solutions to the oilprodution problem. The hybrid methods adapted well for this problem. The nextstep is to improve approahes WE and WI, in order to make them omparable toapproah IA.Referenes[1℄ R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of verylarge-sale neighborhood searh tehniques. Taken from the net web site:web.mit.edu/jorlin/www, diretory working papers, July 1999.[2℄ R. K. Ahuja, J. Orlin, and D. Sharma. Multi-exhange neiborhood strutures forthe apaitated minimum spanning tree problem. Mathematial Programming,(91):71{97, 2001.
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