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Hybrid method to optimize petroleumextration in deep sea watersJuliana Martins do Nas
imento� Arnaldo Vieira MourayCid Carvalho de SouzazAbstra
tBa
ia de Campos is a large area in the sea where Petrobras explores petroleumin deep waters. There are a lot of spe
i�
 lo
ations in this site that have beendetermined as promising oil wells. Before the extra
tion begins, these lo
ationsmust be fully developed. The obje
tive is to 
onstru
t a s
hedule maximize theoil produ
tion in a given amount of time, subje
t to a number of restri
tionssu
h as a given pre
eden
e relation among the a
tivities, the proper mat
hbetween resour
es and a
tivities, and resour
e routing, among others . We pro-pose a hybrid approa
h that 
ombines 
onstraint programming (CP) te
hniquesand tabu sear
h in order to solve the problem. At ea
h neighbor, a s
hedulingproblem and a �rst feasibility test are performed initially, without using CP.Next, CP is used to assign the start time of the a
tivities. Up to 500 a
tivitiesand 130 oil wells are 
onsidered in the instan
es tested. We used integer linearmodels to prove that the solutions obtained are less than 9% from an globalupper bound. Finally, to estabilish the robuteness of our approa
h, a sensibil-ity analysis was performed indi
ating that the te
hnique performs well whensolving similar instan
es.1 Introdu
tionPetrobras is one of the world most eÆ
ient 
ompanies 
on
erning the extra
tion ofpetroleum in deep sea waters. Ba
ia de Campos is a large sea area where Petrobrasexplores petroleum. There are a lot of spe
i�
 lo
ations in this site that have beendetermined as promising oil wells. Before the extra
tion begins, these lo
ations mustbe fully developed.�Institute of Computing, University of Campinas, 13081-970 Campinas, SP. Resear
h supportedby FAPESP | Funda�
~ao de Amparo a Pesquisa do Estado de S~ao Paulo, grant 00/14120-8yInstitute of Computing, University of Campinas, 13081-970 Campinas, SP.zInstitute of Computing, University of Campinas, 13081-970 Campinas, SP.1



2 Nas
imento, Moura, and SouzaRoughly, the development pro
ess begins when the well is drilled. After that,a huge metal stru
ture, named ANM, must be pla
ed on its top. This stru
tureavoids the spill of oil and has spe
ial 
onne
tions where equipments and pumps 
anbe atta
hed to re
eive the extra
ted oil. Next, an oil pipe 
onne
ts the ANM to amanifold or dire
tly to a platform on the surfa
e. A manifold is a stru
ture thatinter
onne
ts several oil pipes at the sea bottom. This stru
ture 
onne
ts to thesurfa
e by a single pipe. After these a
tivities are exe
uted, the real oil extra
tion
an begin.Petrobras is interested in routing the resour
es and s
heduling the a
tivities in-volved in the development pro
ess of wells at Ba
ia de Campos. The obje
tive is tomaximize the oil produ
tion in a given amount of time. In a typi
al problem instan
e,up to 500 a
tivities and 130 promising oil wells are 
onsidered. Clearly this is a verylarge and real important 
ombinatorial optimization problem.In this paper, we propose a hybrid method that 
ombines 
onstraint program-ming (CP) te
hniques and a tabu sear
h heuristi
 that explores a very large s
aleneighborhood to solve the problem. The aim in developing hybrid te
hniques to solve
ombinatorial optimization problems is to strength the good features of the methodsthat are being 
ombined to 
ompensate for their weakness, sin
e these problems aregenerally NP-hard [14℄.Re
ently, a great deal of resear
h has been fo
used on the integration of CP andmetaheuristi
s [15℄. This 
an bring promising results when solving 
ombinatorialoptimization problems [28, 29, 23℄. Mu
h e�ort has also been 
on
entrated on thestudy of lo
al sear
h algorithms that explore eÆ
iently very large s
ale neighborhoods,yielding very good results in several problems [13, 1, 2℄. These algorithms 
an visitlarge neighborhoods in polynomial time. When the exploration of a neighborhoodis NP-hard or when a polynomial algorithm is not known, a heuristi
 is used. Theintegration 
ited earlier makes possible the exploration of large neighborhoods in
ompetitive time. As a result, the possibilities to obtain real improvement in thesolutions are very high, be
ause with better quality and bigger sizes in a neighborhood,the more eÆ
ient metaheuriti
s tend to perform.We use CP to help the exploration of a very large s
ale neighborhood in a tabusear
h framework. In our approa
h, CP is not used just to generate the initial solutionto the tabu sear
h [27℄, nor just to verify the feasibility and 
ost of the neighbors likein [25, 11, 8℄. It is also not used to 
ontrol the entire pro
ess needed to visit theneighbors [23℄. At ea
h neighbor, the routing problem and a �rst feasibility test areperformed initially, without using CP. Next, CP is used to assign the start time ofthe a
tivities. A similar approa
h was used in [7℄ to solve the job shop problem.The main obje
tive of this work is to obtain the best solution to the problemunder 
onsideration, but 
omparisons between a hybrid te
hnique and a pure tabusear
h approa
h is also appropriate. We want to investigate how well the tabu ap-proa
hes adapt to this problem. So we also use a pure abu sear
h with a polynomial



Hybrid optimization method 3neighborhood to solve the problem.As there are no previous results for the instan
es used in this paper, an e�ortto 
al
ulate strong bounds is undertaken. Finally, we also want to establish therobustness of the methods, so a sensibility analysis is performed.The remainder of this paper is organized as follows. Se
tion 2 des
ribes the prob-lem and se
tion 3 des
ribes the instan
e provided by Petrobras and an instan
e gener-ator. Se
tion 4 presents the methods applied to solve the problem. Se
tion 5 dis
ussesthe 
al
ulation of upper bounds while se
tion 6 shows the 
omputational results ob-tained. Se
tion 7 des
ribes the sensibility analysis. Finally, a 
on
lusion is presentedin se
tion 8.2 The problemBa
ia de Campos is a large sea area (oil �eld) where Petrobras explores petroleum.There are a lot of spe
i�
 lo
ations there that have been determined as promisingoil wells. Before extra
tion begins, these lo
ations must be fully developed. Thispro
ess involves a number of di�erent engineering a
tivities, su
h as drilling a
tivities,
onne
tion a
tivities and extra
tion a
tivities. Some of the wells may be in di�erentstages of the development pro
ess.Given a set of wells and the 
orrespondent a
tivities to be performed in ea
hwell and a set of resour
es, like boats and derri
ks, the obje
tive is to determinea s
heduling and a routing of the a
tivities into the resour
es, satisfying 
ertain
onstraints and maximizing the oil produ
tion in a given period of time. This periodof time is 
alled the horizon. It is important to note that a
tivities 
an be s
heduledafter the horizon. Preemption in not allowed.The most relevant 
onstraints to this problem are:1. Te
hnologi
al Pre
eden
e: this 
onstraint de�nes a partial order betweena
tivities. If a
tivity A must be performed before a
tivity B, there is a te
h-nologi
al pre
eden
e from A to B. This kind of pre
eden
e applies betweena
tivities that belong to the same oil well.2. Date Constraint: an a
tivity may have a �xed date to begin and to end.Another date 
onstraint is that an a
tivity must end before or begin later thana spe
i�ed date with or without lag time.3. A
tivity Features: the exe
ution of an a
tivity may require an spe
i�
 typeof resour
e. The resour
e must be able to operate at the appropriate depth andit should also have the type of equipments required to exe
ute the a
tivity.



4 Nas
imento, Moura, and Souza4. Resour
e Availability: resour
es 
an only perform one a
tivity at a time. Re-sour
es 
an also be
ome unavailable during a 
ertain period due to maintenan
eor due to 
ontra
t 
onstraints.5. Oil Well Availability: ea
h well 
an have only one of its asso
iated a
tivityexe
uted at a time. Even if there is no pre
eden
e 
onstraint between two ofits a
tivities.6. Area Constraint: On some wells that are 
lose to ea
h other, for safety reasonsand depending on the type of the resour
es needed, overlapping exe
ution ofa
tivities should be avoided.7. EÆ
ien
y fa
tor: the pro
essing time of an a
tivity may 
hange due to aneÆ
ien
y fa
tor asso
iated to the resour
e that will exe
ute it.In this paper, only 
onstraints 1; 3; 4; 5 are taken into a

ount. These are the main
onstraints. The real data provided by Petrobras only 
over these 
onstraints. Butother 
onstraints, 
an be in
orporated in the hybrid model without mu
h e�ort, sin
eone of the features of CP is to allow the addition of new 
onstraints easily. In thetabu sear
h approa
h, there is a stronger 
onne
tion between the 
onstraints and theneighborhood, whi
h makes it harder to introdu
e modi�
ations in the model.The produ
tion of petroleum is 
al
ulated as follows: ea
h oil well has an asso
i-ated out
ow per day and a last a
tivity that is responsible to turn it into a produ
torwell. When this a
tivity is �nished, the well is ready to produ
e oil. The total oilprodu
tion is given adding the values obtained by multiplying the daily out
ow ofea
h well by the number of days between the beginning of its produ
tion and thehorizon. Wells that begin their produ
tion after the horizon are not 
onsidered in the
al
ulation.3 The real instan
e and the instan
e generatorPetrobras has provided one real instan
e of the problem, whi
h we 
all the real in-stan
e. In order to a

ess the robustness of our te
hniques, an instan
e generatorwas implemented. The instan
e generator introdu
es small random 
hanges in thepetroleum instan
es.In this se
tion, the features of the real instan
e and how the instan
e maker was
reated will be presented.The partial order of the a
tivities asso
iated with ea
h well of the real instan
efollows a pattern. The pattern is determined by the type of the a
tivities and by thepre
eden
e relationship between them. These patterns are depi
ted in �gure 1. Inthis �gure, the nodes are the a
tivities and the ar
s are the pre
eden
e relationshipbetween them. There are di�erent patterns with the same graph. This happens due



Hybrid optimization method 5to the fa
t that these patterns have the same pre
eden
e relationship between theira
tivities, but the type of their a
tivities di�ers. For example, patterns 17, 19 and 20present a total order between their a
tivities, but the a
tivities type of these patternsare di�erent. Figure 1 also shows that the order of the a
tivities on the wells is notalways total. This fa
t will be important to establish that our neighborhoods are verylarge.
P: 10 P: 12, 13, 14, 15P: 1, 2, 3 P: 4, 5, 6, 7 P: 8 P: 9, 11

P: 16 P: 21

P: 23

P: 17, 19, 20 P: 18

P: 22 P: 24

Figure 1: Pre
eden
e relationship between the a
tivities of ea
h patternTable 1 presents some numeri
al data asso
iated with ea
h pattern. Note thatthe frequen
y of o

urren
e of ea
h pattern is not uniform. For example, just a wellpresents pattern 3, while 42 wells present pattern 19.There are two type of resour
es: boats and derri
ks. In the real instan
e, thereare 3 boats and 5 derri
ks available. Whenever an a
tivity requires a resour
e, anyof its kind 
an be allo
ated to it. That is, there is no distin
tion or restri
tion to



6 Nas
imento, Moura, and SouzaPattern #Oil Wells %Oil Wells #A
tivities Pattern #Oil Wells %Oil Wells #A
tivities1 1 0,8772 1 13 8 7,0175 42 1 0,8772 1 14 2 1,7544 43 1 0,8772 1 15 1 0,8772 44 5 4,3860 2 16 1 0,8772 55 1 0,8772 2 17 12 10,5263 56 1 0,8772 2 18 4 3,5088 57 1 0,8772 2 19 42 36,8421 58 1 0,8772 3 20 1 0,8772 59 21 18,4211 3 21 2 1,7544 510 1 0,8772 3 22 1 0,8772 611 1 0,8772 3 23 1 0,8772 712 3 2,6316 4 24 1 0,8772 12Table 1: Pattern data - Real Instan
euse any of the 3 boats, when an a
tivity requires a boat. The same is true for thederri
ks. The type of ea
h a
tivity determines the kind of resour
e needed to exe
uteit. Table 2 shows the number of oil wells, a
tivities, boats, derri
ks and patterns inthe real instan
e. Table 3 shows some numeri
al data about the a
tivities pro
essingtime in the real instan
e.#Oil Wells #A
tivities #Boats #Derri
ks #Patterns130 482 3 5 24Table 2: Quantitative data - Real instan
eMean Median Mode Interval Min Max Sum17 12 1 129 1 130 8195Table 3: Numeri
al data about the a
tivities pro
essing time - Real instan
eFigure 2 shows the histograms for the out
ow and the depth of the wells. Theunity of measure for the depth is meters and for the out
ow it is an internal measureunit used by Petrobras. We will always use this internal unity of measure in all �g-ures and tables. This �gure also shows that values of the out
ows vary a lot. Thisfeature makes our problem harder, be
ause there are two fa
tors to be 
onsidered andto be balan
ed: the out
ow of ea
h well and the minimum time required to exe
uteall of its a
tivities until the well 
an produ
e oil. Another relevant information that�gure 2 brings is the fa
t that the maximum depth is 1600 meters. As all resour
esof the real instan
e are able to operate on this depth, we 
on
lude that the depthof the wells do not restri
t the 
hoi
e of the resour
es needed to perform the a
tivities.
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eThe Instan
e GeneratorThe pattern of the wells of the generated instan
es was determined by the fre-quen
y of o

urren
e of ea
h pattern on the real instan
e. The pro
essing time (dura-tion) of ea
h generated a
tivity was randomly 
hosen among the a
tivities pro
essingtime that have the same type as the generated a
tivity on the real instan
e. Theout
ow and the depth asso
iated with ea
h generated well were established followinga uniform distribution between the minimum and maximum values of the out
ow anddepth, respe
tively, of the real instan
e wells.As mentioned before, the resour
es of the real instan
e have all the ne
essaryfeatures and are able to operate on depths greater than the depths asso
iated to thewells. So the generated resour
es also have all the possible features and are able tooperate in depths greater than the generated ones.The number of oil wells, boats and derri
ks are the input parameters for the pro-gram that generates the instan
es. The number of a
tivities of ea
h well is �xed on
eits pattern is determined.The notation used for the instan
e names are standardized as follows: the name
ontains an identi�er, the number of oil wells, derri
ks and boats. For example, thename 2W112S5B3 means that instan
e 2 has 112 oil wells, 5 derri
ks and 3 boats.When the instan
e generator was applied to produ
e an instan
e with 112 wells,5 derri
ks and 3 boats, the result obtained appears in tables 4, 5 and 6 and in�gure 3. This instan
e was named 2W112S5B3. Comparing with tables 2, 3 and 1,



8 Nas
imento, Moura, and Souzarespe
tively, it 
an be seen that the results are very similar, ex
ept for some randomvariations introdu
ed by the instan
e generator. In tables 1 and 6 pattern 19 is themost 
ommon one representing about 36% of the wells. Also, tables 3 and 5, showthat the mean pro
essing time is about 17 days.#Oil Wells #A
tivities #Boats #Derri
ks #Patterns112 464 3 5 24Table 4: Quantitative data - Instan
e 2W112S5B3Mean Median Mode Interval Min Max Sum16.65 12 1 129 1 130 7726Table 5: Numeri
al data about the a
tivities pro
essing time - Instan
e 2W112S5B3Pattern #Oil Wells %Oil Wells #A
tivities Pattern #Oil Wells %Oil Wells #A
tivities1 1 0,892857143 1 13 3 2,678571429 42 0 0 1 14 5 4,464285714 43 0 0 1 15 0 0 44 5 4,464285714 2 16 0 0 55 0 0 2 17 7 6,25 56 4 3,571428571 2 18 3 2,678571429 57 0 0 2 19 40 35,71428571 58 0 0 3 20 4 3,571428571 59 28 25 3 21 1 0,892857143 510 3 2,678571429 3 22 2 1,785714286 611 2 1,785714286 3 23 1 0,892857143 712 2 1,785714286 4 24 1 0,892857143 12Table 6: Pattern data - Instan
e 2W112S5B3In this paper, four instan
es will be 
onsidered. The real instan
e 1W130S5B3and instan
es 2W112S4B3, 3W95S5B3 and 4W130S5B3 generated by the instan
egenerator. The �rst generated instan
e shows a small number of wells and resour
es.The se
ond one maintains the number of resour
es and 
onsiders a smaller numberof wells. The last one was generated using the same number of wells and resour
esas the original instan
e.4 Te
hniquesWe propose a hybrid method that 
ombines 
onstraint programming te
hniques anda tabu sear
h heuristi
 that explores a very large s
ale neighborhood. We use CP to
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e 2W112S5B3help the exploration of a very large s
ale neighborhood in a tabu sear
h framework. Atea
h neighbor, the routing problem and a �rst feasibility test are performed initially.Next, CP is used to assign the start time of the a
tivities.This se
tion des
ribes, in details, how ea
h of these te
hniques are applied and
ombined to solve the oil problem. Subse
tion 4.1 shows how the initial solutionswere generated. Subse
tion 4.2 des
ribes the neighborhoods used in this paper. Italso presents a proof that �nding the start time of the a
tivities in ea
h neighbor, whilemaximizing the total produ
tion is an NP-hard problem . Subse
tion 4.3 details howCP is used to assign start times. Finally, subse
tion 4.4 des
ribes some parti
ularitiesof tabu sear
h when ea
h neighborhood of se
tion 4.2 is used. It also des
ribes a puretabu sear
h approa
h.4.1 Initial SolutionThe tabu sear
h method requires a feasible initial solution. This subse
tion willdes
ribe four te
hniques that were used to generate initial solutions to the problem.The �rst two te
hniques are based on 
onstraint programming and were imple-mented using the ILOG S
heduler and the ILOG Solver1. We will 
all them CP1and CP2, respe
tively.The variables and 
onstraints used on CP1 and CP2 are the same. A set ofvariables is asso
iated to the resour
es and another set is asso
iated to the start1Softwares from the ILOG suite. http://www.ilog.
om



10 Nas
imento, Moura, and Souzatimes. As des
ribed in se
tion 2, only 
onstraints 1; 3; 4; 5 were enfor
ed. We did notspend mu
h e�ort on re�ning the 
onstraint programming models, sin
e the initialsolution were not our main obje
tive.The last two te
hniques are greedy heuristi
s. We will 
all them H1 and H2.These two heuristi
s proved mu
h faster than the previous te
hniques and the oilprodu
tion obtained using H1 proved to be the highest among all te
hniques for all
onsidered instan
es, as will be dis
ussed later.� CP1The relevant point about this te
hnique is the strategy used to instantiate thevariables. The variables that represent the resour
es are instantiated �rst andthen the values of the start time variables are determined.The order used for sele
ting the next variable for labelling is the same for the twosets of variables. It is based on the following rule: the variable that representsthe a
tivity with the greatest number of dire
t su

essors, greatest total numberof su

essors and longest duration is 
hosen �rst.The values assigned are 
hosen by internal algorithms of the ILOG S
heduler.Due to limitations of the software, in this model, all a
tivities must be exe
utedbefore the horizon.� CP2As in the previous te
hnique, the relevant information is the instantiation strat-egy. And again the resour
es are instantiated before the start time and the orderis the same for both sets of variables.The sele
tion order is based on the following priority rule: the estimated yieldof the 
orrespondent well of ea
h a
tivity is added to the number of its dire
tsu

essors. The variable that represents the a
tivity with the greatest sum issele
ted �rst. The yield of ea
h well is estimated 
onsidering that all of itsa
tivities are exe
uted sequentially without interruptions, and its produ
tionstarts when the last a
tivity of the sequen
e is �nished. As the yield values areeither equal or di�er by a great amount, the number of dire
t su

essors is usedto break ties.The value 
hosen depends on the type of the variable. The value designatedto variables that represent resour
es 
orresponds to that resour
e that mat
hesthe a
tivity type and whi
h has the least number of a
tivities assigned to it.The value assigned to the start time variables is the least value of their presentdomain.



Hybrid optimization method 11� H1This heuristi
 tries to �nish �rst the wells that have the greatest out
ow or thewells that have the least remaining time.To rea
h this obje
tive, an available resour
e is immediately allo
ated to ana
tivity that is feasible to be exe
uted by this resour
e at this moment. If thereis more than one su
h feasible a
tivity, the a
tivity 
hosen is:1. The a
tivity that has the best value for(horizon� (a
tualT ime + remainingT ime))� outflowwhere horizon is the time limit spe
i�ed, a
tualT ime is the start time forthe a
tivity, remainingT ime is the total pro
essing time for all remaininga
tivities in the 
orrespondent well, and outflow is the out
ow of theasso
iated well;2. The a
tivity with the greatest number of total su

essors;3. The a
tivity with the longest duration.The se
ond and third rules are used to break ties.Initially, the algorithm follows these rules and assigns a
tivities to resour
esuntil all of them are busy. Every time an a
tivity is terminated, its resour
eis released. At this moment all its su

essor a
tivities be
ome available fors
heduling. Another a
tivity is sele
ted, following the priority rules des
ribedearlier, and the 
y
le repeats. The algorithm terminates when all start timesare assigned.� H2This heuristi
, as in the �rst two te
hniques, �rst allo
ates the resour
es andthen assigns the start times.For ea
h a
tivity, the heuristi
 veri�es if there are a
tivities on the same wellthat are already allo
ated to resour
es. If this is true and if among the resour
esallo
ated to the a
tivities of the same well, there are resour
es able to exe
utethe 
onsidered a
tivity, the heuristi
 
hooses randomly one of these resour
es. Ifone of the last two 
onditions is false the heuristi
 
hooses randomly a resour
eamong all possible resour
es.To determine the start times, a data stru
ture is used to store all availablea
tivities, i.e., the a
tivities whose prede
essors have already been s
heduled.Initially, this data stru
ture 
ontains all a
tivities without prede
essors. At
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imento, Moura, and Souzaea
h iteration, an a
tivity is 
hosen from this data stru
ture, following thepriority rule ofH1. The a
tualT ime of ea
h a
tivity is the earliest possible timepermitted by the a
tual s
heduled resour
e and the other exe
uting a
tivitiesthat belong to the same well. The algorithm �nishes when all a
tivities ares
heduled. i.e., the data stru
ture is empty.Table 7 shows the produ
tion obtained for the initial solution of the real andgenerated instan
es that are 
onsidered. The horizon was 1500 days for all instan
es.The 
omputational time of te
hniques CP1 and CP2 was less than 200 se
onds andless than 60 se
onds, respe
tively, for all four instan
es. The 
omputational time ofboth H1 and H2 was less than a se
ond. Cells without value means that no solutionwas found in 200 se
onds2.Instan
e CP1 CP2 H1 H21W130S5B3(real) 163.6 207.4 246.2 206.52W112S4B3 - 184.3 220.3 173.33W95S5B3 155.6 187.3 225.4 185.74W130S5B3 - 218.9 276.5 218.3Table 7: Initial solutionsAs H1 obtained the best results for all instan
es, it will be used to generate theinitial solution of our instan
es. In order to test the behavior of our te
hniques whena poorer initial solution is 
onsidered, we will also use H2 as an algorithm to obtaininitial solutions, sin
e it is mu
h faster then CP1 and CP2. Whenever H2 is usedfor initial solutions, this fa
t will be 
learly stated.4.2 NeighborhoodsIt is easy to note that our problem and the Flexible Job Shop problem (FJS) [20℄ andthe Job Shop S
hedule with Multi Purpose Ma
hines problem (MPM) [6℄ are verysimilar. In ea
h 
ase, an oil well 
orresponds to a job and the set of a
tivities to beperformed in ea
h well 
orresponds to the set of operations asso
iated with ea
h job.The pre
eden
e 
onstraints between the a
tivities 
orresponds to the order betweenthe operations of ea
h job. If the FJS is 
onsidered, there is a total order among theoperations of the same job. In our problem, this is not ne
essarily true. In some wells,the pre
eden
e restri
tions only give a partial order. The boats and derri
ks are thema
hines that exe
ute the operations. Given these similarities, our neighborhoodsare inspired by ideas already used to solve these problems [10, 9, 17, 20℄.2All 
omputational times refer to a PC plata�orm with 1 GHz pro
essor and 1 Gb of memory



Hybrid optimization method 13Disjun
tive GraphsWe use the disjun
tive graph model (DG) to represent our neighbors. Disjun
tivegraphs were 
reated by Roy and Sussmann [26℄ to model and solve job shop problems(JSP). Balas [5℄ was another author to extensively explore the proprieties of thisgraph.Figure 4 shows a disjun
tive graph for a JSP with 4 jobs and 3 ma
hines. Inthis �gure, 
omplete lines are 
alled 
onjun
tive ar
s. They represent the pre
eden
e
onstraint among the a
tivities. The dashed lines are the disjun
tive ar
s. Theyrepresent the order of the a
tivities in the resour
es. Every time two a
tivities areassigned to the same ma
hine, a new bi-dire
ted disjun
tive ar
 is added betweenthese two a
tivities. Whenever the order between two a
tivities is established, the
orrespondent bi-dire
ted disjun
tive ar
 is oriented, representing this order. It isimportant to note that when there is no pre
eden
e 
onstraint between two operationsof the same job, or in our 
ase, two a
tivities of the same well, bi-dire
ted disjun
tivear
s are added between these a
tivities, sin
e the order of exe
ution is not known.
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Figure 4: Disjun
tive GraphThe solutions and neighbors of this paper are represented using this graph. If afterthe addition and orientation of the disjun
tive ar
s an a
y
li
 graph is obtained, the
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imento, Moura, and Souzasolution/neighbor is 
onsidered feasible and the a
tivities start times 
an be assigned.If the ar
s establish a total order among the a
tivities, the start times 
an be obtainedin polynomial time by running a topologi
al sort algorithm [12℄. This situation willbe addressed on the following paragraphs. If a total order is not established, theproblem of assigning the start times to the a
tivities maximizing the produ
tion isNP-Hard. Subse
tion 4.2.2 presents a redu
tion that proves this fa
t.Regular Measure of Performan
e - Dominant Sets - Types of S
hedulesBaker [4℄ de�nes regular measure of performan
e and dominant sets for it. Healso de�nes the types of s
hedule: semia
tive, a
tive and nondelay. These de�nitionsare important be
ause they explain why only the earliest possible start time of ea
ha
tivity should be 
onsidered when the a
tivities are totally ordered.A s
hedule is 
alled semia
tive if given the order of the operations on the ma
hinesand the total order of the operations on the jobs, no operation 
an be started earlierwithout violating the established order. A s
hedule is a
tive if no operation 
an bestarted earlier without delaying other operations. Finally, a s
hedule is nondelay ifno ma
hine is kept idle when there is an operation available for pro
essing.A performan
e measure Z is regular if the s
heduling obje
tive is to minimize(maximize) Z, and Z 
an in
rease (de
rease) only if at least one of the 
ompletiontimes in the s
hedule in
reases.A

ording to [4℄, a set D is a dominant set of s
hedules for regular measures ofperforman
es, if only solutions that are in this set are needed to be 
onsidered whensear
hing for the optimal solution.In the 
ase of job shop problems, a
tive and semia
tive s
hedules dominate the setof all s
hedules if the obje
tive is a regular measure of performan
e. In our problem,the oil produ
tion is a regular measure of performan
e, so we 
an 
on
entrate ourattention to a
tive and semia
tive s
hedules.The following subse
tions des
ribe the neighborhoods used in this paper.4.2.1 Neighborhood 1 - InsertionGiven a solution represented by a disjun
tive graph, this neighborhood is obtainedby 
hoosing ea
h a
tivity and inserting it in all possible positions of all resour
esthat are able to exe
ute it. The feasibility of ea
h neighbor is tested by verifying ifthe new disjun
tive graph obtained is a
y
li
. Figure 5 shows the disjun
tive graphfor a solution and the disjun
tive graphs for the neighbors obtained when a
tivity 1is inserted in the se
ond position of resour
e 3 and when this a
tivity is inserted inthe third position of resour
e 3. The latter is infeasible, sin
e its graph 
ontains a
y
le, while the former is feasible. Note that the 
onjun
tive ar
s are the same forall neighbors, due to the fa
t they represent the pre
eden
e 
onstraint between the
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tivities that belong to the same well. The disjun
tive ar
s are the ones that 
hangefor ea
h neighbor, sin
e they represent the position of the a
tivities on the resour
es.In this �gure, redundant disjun
tive ar
s are not shown. Clearly, this neighborhoodhas O(n2) neighbors.It is important to observe that on ea
h neighbor, all existing disjun
tive ar
sdetermine a total order of the a
tivities on ea
h resour
e. Clearly, in fa
e of the
onjun
tive ar
s that may be, this is not suÆ
ient to determine an optimal s
hedule forall a
tivities. Even when 
onsidering, in addition, the 
onjun
tive ar
s, the orderingof the a
tivities in a given well may not be known. This fa
t makes the optimalassignment of the a
tivities start time an NP-Hard problem. We use a redu
tion toprove it. Therefore, this neighborhood is a very large s
ale neighborhood, be
ausedespite the polynomial number of neighbors, the exploration of ea
h neighbor is stillan NP-hard problem. On the other hand, if the 
onjun
tive ar
s de�ne a total orderin ea
h well, an optimal s
hedule 
an be found in O(n), as the semia
tive s
hedulesare a dominant set.4.2.2 Redu
tionWe 
onsider two problems.1. Assignment of optimal start times (Neighborhood 1) - De
ision Prob-lem� Instan
e: Total oil produ
tion V 2 Z+, horizon H 2 Z+, set P of oil wells,set R of resour
es. For ea
h r 2 R there is an asso
iated ordered 
olle
tionof a
tivities ak[r℄; 1 � k � nr, i.e., the resour
e r exe
utes a
tivity ak[r℄.For ea
h su
h a
tivity a (notation a is an abbreviation for ak[r℄) there isa pro
essing time l(a) 2 Z+0 , an oil well p(a) 2 f1; 2; � � � ; Pg, a type t(a)and an out
ow v(a) asso
iated to it. The a
tivity type de�nes a partialorder between the a
tivities of the same well.� Question: Is there a time instantiation �(a) for ea
h a
tivity a, su
h thatthe order of the a
tivities on ea
h well and the order of the a
tivities onea
h resour
e is respe
ted, and the total oil produ
tion obtained withinthe horizon H is equal or greater than V ? A
tivities from the same wellmay not overlap. The oil produ
tion is given by:Xa max(0; H � �(a)� l(a))� v(a):2. Job shop s
heduling - De
ision Problem
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Hybrid optimization method 17� Instan
e: A deadline H 2 Z+, number m 2 Z+ of pro
essors, set J of jobs,ea
h j 2 J 
onsisting of an ordered 
olle
tion of operations tk[j℄; 1 � k �nj. For ea
h su
h operation t (the notation t is an abbreviation for tk[j℄)there is an asso
iated length l(t) 2 Z+0 and pro
essor p 2 f1; 2; � � � ; mg,where p(tk[j℄) 6= p(tk+1[j℄) for all j 2 J and 1 � k < nj.� Question: Is there a time instantiation �(t) for ea
h operation t, su
hthat the order of the operations on ea
h job is respe
ted, two operationsdesignated to the same pro
essor do not overlap, and �(t) + l(t) � H?Theorem 1: Problem Assignment of optimal start times is NP-hard.Proof: It is easy to see that problem 1 belongs to NP. As problem 2 is NP-hard[14℄, a redu
tion that transforms problem 2 to problem 1, in polynomial time, provesthat the latter is NP-hard. We will 
onsider that the answer obtained to problem 1will be the answer given to problem 2.Let an arbitrary instan
e of problem 2 be given by the deadline H, m pro
essors,the set J of jobs and the ordered sequen
e of operations asso
iated with ea
h job. Inorder to map this problem into problem 1, ea
h job j 2 J turns into a resour
e r 2 R.The set of operations asso
iated with ea
h job in problem 2 is the ordered 
olle
tion ofa
tivities of ea
h resour
e. The length of the operations l(t) is the pro
essing time ofthe a
tivities l(a) and the pro
essor of ea
h operation p(t) is now the well asso
iatedto ea
h a
tivity p(a). The a
tivities type in problem 1 is 
hosen in su
h a way that itdoes not have pre
eden
e relationship with any other type. The horizon of problem1 is set to H + 1 and the total produ
tion V is set to 1.In addition, a dummy oil well is 
reated and jJ j+1 dummy a
tivities are 
reated.The pro
essing time of these a
tivities will be zero and their asso
iated well will bethe dummy well. The resour
e designated to the �rst dummy a
tivity is resour
e 1,the resour
e asso
iated to the se
ond dummy a
tivity is resour
e 2, and so on. Ea
hdummy a
tivity will be pla
ed at the last position of the 
orresponding resour
e. It isfeasible to asso
iate to ea
h dummy a
tivity a unique resour
e and a position on thisresour
e, be
ause an instan
e for problem 1 provides an ordered 
olletion of a
tivitiesto ea
h resour
e. The dummy a
tivity jJ j + 1 does not need a resour
e. The typeof the �rst jJ j a
tivities is t1, a new type. The type of the last dummy a
tivity isprodu
tion, also a new type. The pre
eden
e relationship between these two typesis: t1 ! produ
tion .Therefore, the instan
e of problem 1, that is 
reated, will have jJ j resour
es, m+1oil wells and (Pj2J nj) + jJ j+ 1 a
tivities.The out
ow asso
iated with ea
h a
tivity a is set to zero, ex
ept when a is thelast dummy a
tivity, in whi
h 
ase its out
ow is set to 1.Figure 6 shows an instan
e of problem 2 with 2 jobs and 3 pro
essors, and theinstan
e of problem 1 obtained using the transformation des
ribed above.
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e the dummy a
tivity asso
iated with ea
h resour
e is the last to be exe
uted inthat resour
e, and given the pre
eden
e relationship between these dummy a
tivitiesand dummy a
tivity jJ j + 1, we 
an 
on
lude that dummy a
tivity jJ j + 1 will bethe last one to be 
on
luded among all a
tivities. So, by 
onstru
tion, the expressionthat gives the total oil produ
tion redu
es tomax(0; H + 1� �(d));where d is the dummy a
tivity jJ j+1. Therefore, the total oil produ
tion is equalor greater than V , if and only if, �(d) � H. Sin
e �(a)+ l(a) � �(d) for all a
tivitiesa, it implies that �(a) + l(a) � H for all a
tivities a. As the a
tivities of problem 1
orresponds to the operations of problem 2, we also have that �(t) + l(t) � H for alloperations t. So if the answer to the question of problem 1 is yes, the answer to thequestion of problem 2 must also be yes.On the other hand, the total oil produ
tion is less than V , if and only if, �(d) > H.This means that it was not possible to terminate all the a
tivities before the horizon, i.e., �(a)+ l(a) > H for an a
tivity a. Due to the mapping between the two problems,it is known that the operation t that 
orresponds to the a
tivity a is not �nishedbefore the deadline H either. So if the answer to the question of problem 1 is no, theanswer to the question of problem 2 must also be no.Clearly, the mapping that transforms problem 2 to problem 1 
an be done inpolynomial time. This establishes that problem 1 is NP-hard.4.2.3 Neighborhood 2 - WindowThis neighborhood is a generalization of the former one. The motivation is to gen-erate neighbors more able to perform big modi�
ations on the 
urrent solution thanthe neighbors of the previous neighborhood. The intention is to obtain a greater im-provement of the total oil produ
tion. To rea
h this obje
tive, this neighborhood will
onsider two sets of a
tivities 
alled windows and a main a
tivity. The windows are
hoosing a

ording to this a
tivity. The a
tivities in the windows will be freed fromtheir 
urrent position, but their resour
es will remain the same. Their new positionswill be determined later, when the start times are assigned.Now the neighborhood will be explained in details. The main idea is not only toinsert a single operation on every position of ea
h resour
e that is able to exe
ute it,but also to free the 
urrent positions on the resour
es of the a
tivities that are insidea window. The 
onsidered a
tivity, that from now on will be 
alled main a
tivity ison the 
enter of the window and a parameter sets its length. The parameter indi
ateshow many 
onse
utive a
tivities will be freed on ea
h side of the main a
tivity. Ifthe parameter is zero, only the main a
tivity will be 
onsidered. A
tivities that ares
heduled earlier on the same resour
e than the main a
tivity are on its left anda
tivities s
heduled later are on its right. If there are less a
tivities on a side than
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imento, Moura, and Souzathe parameter, only these a
tivities will be 
onsidered on that side. The order of thea
tivities outside the window is preserved. In other words, the disjun
tive ar
s of thea
tivities in the window are not oriented in the neighbors. The disjun
tive ar
s thatwere related with the main a
tivity are deleted, and new disjun
tive bi-dire
ted ar
sare inserted between the main a
tivity and the a
tivities that are allo
ated on thenew resour
e of the main a
tivity.A window is also 
onsidered in the destiny resour
e of the main a
tivity. Justlike the other window, a parameter will determine its length. The 
enter of thiswindow be the a
tivity that o

upies the same position as the main a
tivity on itsoriginal resour
e. If the position of the main a
tivity on its original resour
e is greaterthan the highest position of the destiny resour
e, then the highest position will be
onsidered as the 
enter of the window. In that 
ase, the right side will be null.The a
tivities within this window will be freed of their positions, like the a
tivities ofthe �rst window. This means that their disjun
tives ar
s will turn from oriented tobi-dire
ted. If the parameter is zero, this window will not be 
onsidered.Figure 7 illustrates the disjun
tive graph of a 
urrent solution and the disjun
tivegraph obtained when a
tivity 1 is the main a
tivity and the new resour
e allo
atedto it is resour
e 2. The parameters of both windows are 1.Note that as in neighborhood 1, ea
h a
tivity will be assigned to all resour
esthat are able to exe
ute it. But unlike neighborhood 1, a �xed position will notbe assigned to the a
tivity. This will be established impli
itly when the start timesare determined. The other di�eren
e is that the positions of the a
tivities within thewindows are not known either. Clearly, if both parameters are zero the only di�eren
ebetween neighborhood 1 and this neighborhood is that on the former, the position ofthe main a
tivity is �xed on the new resour
e, and this does not o

ur on the latter.It is easy easy to see that the neighbors are de�ned by the main a
tivities andtheir destiny resour
e. It o

urs be
ause the windows are determined dependingjust on the 
hoi
e of the main a
tivity and its destiny resour
e, sin
e the lengthof the windows is a 
onstant parameter. So, there are O(nm) neighbors in thisneighborhood, where n is the number of a
tivities and m the number of resour
es.On the previous neighborhood, the position of the a
tivities on ea
h resour
e wasknown before the start times were assigned. Although, even 
onsidering this fa
t, theproblem of assigning the optimal start times proved NP-hard. In this neighborhood,the position of the a
tivities is not known for 
ertain resour
es. So, the problem ofassigning the optimal start times for the neighbors of this neighborhood is at least ashard as the 
orresponding problem of the previous neighborhood.4.2.4 Neighborhood 3 - WellThe idea behind this neighborhood is the intuition that a
tivities of the same wellshould stay 
lose to ea
h other in order to maximize the produ
tion of the oil �eld.
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22 Nas
imento, Moura, and SouzaTherefore, this neighborhood is slightly di�erent from the previous one. There isalso a main a
tivity that is the a
tivity that may 
hange from its 
urrent resour
e toall possible resour
es. But instead of freeing the position of a
tivities that are withina window, this neighborhood frees the position of the a
tivities that belongs to sameoil well of the main a
tivity, preserving their resour
es.The a
tivities of other wells may also be freed. There is a parameter that indi
ateshow many wells will be freed. When this parameter is set to one, only the well ofthe main a
tivity is 
onsidered. If the parameter is greater than 1 the priority ruleto 
hoose the wells is: on the 
urrent solution, for ea
h well, determine the maximumdistan
e (di�eren
e of start times) between two 
onse
utive a
tivities of the well.Then, multiply this distan
e by the 
orresponding out
ow of the wells. The higherthis value, the higher the priority. Using this priority rule, we will sele
t wells whi
ha
tivities are more spread and that have a bigger out
ow. So there will be the 
han
eto put together these a
tivities and maybe improve the produ
tion.Figure 8 illustrates the disjun
tive graph of a 
urrent solution and the disjun
tivegraph obtained when a
tivity 1 is the main a
tivity and the new resour
e allo
atedto it is resour
e 2. The parameter is set to 1. A
tivities 2; 3 belongs to the same wellas a
tivity 1, so they are freed of their positions.As neighborhood Window, this one has O(nm) neighbors, and again the optimalstart time assignment to ea
h a
tivity, given the disjun
tive graph, is an NP-hardproblem, as this problem is at least as hard as the 
orresponding problem of neigh-borhood Insertion, due to the fa
t that the a
tivities position on 
ertain resour
es inthis neighborhood is not known before the start times instantiation.4.3 Assigning the start timesTwo te
hniques were used to instantiate the start times of the a
tivities on ea
hneighbor. One will be 
alled Greedy and the other one will be 
alled Optimized. The�rst is a greedy strategy and the latter uses CP to perform the instantiation.� Greedy: This te
hnique was implemented in C++ without using CP. A heapS is used to store the a
tivities that are ready to be s
heduled, as all theirprede
essors have been s
heduled. The order on the heap is based on the earliestpossible start time of the a
tivities. The earlier the start time, the higher thepriority on the heap. An algorithm that generates nondelay s
hedules [4℄ is usedand the top a
tivity of the heap is the one sele
ted on ea
h iteration.Initially, heap S 
ontains all a
tivities without prede
essors. On ea
h iteration,the top a
tivity of S, 
alled a, is removed and its start time is set to the earliesttime allowed by its a
tual resour
e and the other exe
uting a
tivities that belongto the same well. After that, all su

essors of a
tivity a are inserted in S. When
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imento, Moura, and SouzaS gets empty, the algorithm terminates. When this happens all a
tivities arealready s
heduled.� Optimized: This te
hnique is based on CP and was implemented using theILOG Solver. The 
onstraints of the model are:1. te
hnologi
al pre
eden
e 
onstraints;2. the order of the a
tivities on the resour
es;3. 
onstraints that state that a
tivities on the same resour
e or of the samewell 
an not overlap.One of the most 
ommon bran
hing strategy for s
heduling problems that havethe makespan as the obje
tive fun
tion is 
alled Settling Essential Con
i
ts(SEC) [18, 3℄. This strategy determines a s
heduling order for all a
tivities,i.e., it determines the orientation of the disjun
tive ar
s until all of them aredire
ted. Then, given the total order that was 
onstru
ted, a simple topologi
alsort algorithm determines the a
tivities start times, generating an semia
tives
hedule.This strategy performs well when the obje
tive is the makespan due to 
ertainproprieties of the underlying graph [17℄ and due to an eÆ
ient 
al
ulation ofsome lower bounds [17, 20, 19℄ that enable, on ea
h node of the tree, the orien-tation of several disjun
tive ar
s at a time. Sin
e our obje
tive fun
tion is notrelated to the makespan, this bran
hing strategy 
an not be appli
ated to ourproblem. So we 
onsidered a di�erent strategy.In our strategy, 
onstraints 1 and 2 are imposed upon the model at the begin-ning, as is natural in any CP model. At this moment, these 
onstraints aregiven by the disjun
tive ar
s that are already oriented and by the set of 
on-jun
tive ar
s. These restri
tions are used to prune the domain of the variables.The variables of this model represent the start time of ea
h a
tivity. At thelabelling phase, the CP solver establishes the start times.At �rst, the default labelling me
hanism present in the ILOG Solver was used.As required by the CP solver, parameters indi
ating the obje
tive fun
tion andthe maximum exe
ution time were also indi
ated. Furthermore, a priority ruleto 
hoose the order of instantiation of the variables and a rule to 
hoose avalue of the domain were also spe
i�ed. The priority rule was: among thea
tivities not yet instantiated, the one that had the earliest possible start timewas sele
ted. Ties were broken arbitrarily. The value 
hosen was the smallestof the 
urrent domain.Note that using this default pro
edure we are not taking into a

ount the knowl-edge that the a
tive s
hedules are a dominant set for this problem. But there is



Hybrid optimization method 25a more serious problem with this pro
edure. The default labelling me
hanisma
ts like this: if a variable a is instantiated before a variable b, in order toba
ktra
k to a new value for a, all the domain of b must be exhausted.A simple example shows how this 
an be bad to the performan
e of this strategy.The instan
e is: two oil wells, a set of 5 a
tivities and 2 resour
es. A
tivities1; 2 and 3 belong to well 1 and a
tivities 4 and 5 to well 2. All resour
es are ableto exe
ute all a
tivities and the pre
eden
e 
onstraints are represented in �gure9. A
tivities 3 and 5 turn the respe
tive wells into produ
tion. The out
ow ofboth wells is 10 and the horizon is also 10.
Act 1 Act 2

Act 3

Act 4

Act 5Figure 9: Te
hnologi
al Pre
eden
e ConstraintSuppose that on a neighbor the order of the a
tivities on the resour
es is: Re-sour
e 1: 1; 4; 5 and Resour
e 2: 2; 3. If the instantiation order, a

ording tothe earliest possible start time, is 2; 1; 4; 3; 5, the start time of ea
h a
tivity willbe set to values as shown on table 8. The total produ
tion is 650. But if thestart times were sele
ted as in table 9, the produ
tion would be 700.A
tivity Start time1 52 03 104 105 15Table 8: First variable instantiationThe labelling algorithm would have to instantiate a
tivity 2 with time values1; 2; 3; 4; 5 before it rea
hed the same result. Worse yet, sin
e a
tivity 2 is the�rst a
tivity on the instantiation order, the domain of all the other variableswould have to be exhausted before a new value is assigned to it.On the other hand, if, by some means, after rea
hing the solution shown intable 8, the labelling me
hanism 
ould be for
ed to immediately return to the
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imento, Moura, and Souzaroot of the sear
h tree, and be given a new instantiation order as 1; 2; 4; 3; 5, theimproved solution of table 9 would be readily rea
hed.A
tivity Start Time1 02 53 54 105 10Table 9: Final variable instantiationIn our strategy, the default labelling me
hanism was repla
ed by a new spe
ial-ized me
hanism. Our me
hanism 
hanges the instantiation order, 
onsideringonly a
tive s
hedules. To a

omplish this, the variable instantiation is made intwo phases. At ea
h level of the sear
h tree, a variable is 
reated to representthe a
tivities that 
an be instantiated on that level. These variables are 
alledlevel variables. The feasible a
tivities of ea
h level (those that are on the domainof the level variable), are the a
tivities with indegree zero and that obey thea
tive s
hedule rule. The indegree of an a
tivity is the number of uns
heduledprede
essors of the a
tivity. The indegree is dynami
ally updated during thewhole sear
h pro
ess. The start indegree is given by the orientated ar
s of thedisjun
tive graph that represents ea
h neighbor. Ea
h step of the sear
h pro
ess
onsists in 
hoosing a value of the domain of the 
orresponding level variableand assigning the earliest possible time to the variable that represents the starttime of the a
tivity indi
ated be the level variable. So, when a solution is foundor when an fail o

urs, the ba
ktra
king is done on the level variable, not on thevariable that represents the start time, allowing 
hanges on the instantiationorder of the start time variables to o

ur. Furthermore, to improve the Solverpruning me
hanism, whenever a solution is found, a 
onstraint that states thefollowing solutions must have a produ
tion higher than the produ
tion of the
urrent solution is added.Figure 10 shows the time and the total oil produ
tion obtained per iterationof a hybrid tabu sear
h algorithm applying the default and the spe
ialized la-belling me
hanism to the same problem instan
e and the initial solution. Theneighborhood used was neighborhood Insertion. The tabu sear
h algorithm willbe explained in detail on the next subse
tion. The maximum exe
ution timeper iteration allowed was 410 se
onds.Analysing this �gure, it is easy to see that the spe
ialized me
hanism is about100 times faster than the default me
hanism, on most iterations. Furthermore,
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imento, Moura, and Souzathe spe
ialized me
hanism was able to �nd an optimal solution. On most itera-tions, the default me
hanism terminated when it rea
hed the maximum allowedexe
ution time, without �nding an optimal solution.For this reason, only the spe
ialized version was 
onsidered when using theoptimized te
hnique to assign the start times.4.4 The tabu sear
h metaheuristi
In subse
tion 4.2 the stru
ture of the neighborhoods was explored and subse
tion4.3 explained how the start times were sele
ted. This subse
tion gives details of thetabu sear
h method for ea
h neighborhood. These details in
lude the stop rule, thetabu list, the aspiration rule and the sele
tion of the neighbor. This subse
tion alsodis
usses a pure tabu sear
h approa
h and the neighborhood used in this approa
h.� Stop RuleThe stop rule for all neighborhoods is the exe
ution time. This makes the 
om-parison among the neighborhoods fair, sin
e no matter how many iterations orneighbors ea
h one has, after the same amount of time all of them are termi-nated and the results are 
ompared. In this paper the maximum exe
ution timeis 3600 se
onds.� Tabu ListFor neighborhoods Insertion and Window the main a
tivity of the sele
tedneighbor is 
onsidered tabu. This means that this a
tivity 
an not be themain a
tivity while it is 
onsidered tabu, unless it satis�es the aspiration rule.A neighbor is 
onsidered tabu if its main a
tivity is tabu. In this paper ana
tivity is 
onsidered tabu for 50 iterations.For neighborhood Well, the well of the main a
tivity is 
onsidered tabu. Thismeans that the a
tivities of this well 
an not be freed while the 
orrespondingwell is 
onsidered tabu, i.e., they 
an not be the main a
tivities nor the well
an be among the ones whose a
tivities 
an be freed. In this neighborhood,we do not have tabu neighbors. It is not allowed to join a tabu well to thewells that will be freed. For this reason, the aspiration rule does not apply forthis neighborhood. So in se
tion 6, whenever the number of tabu neighbors ismentioned for this neighborhood, it means the number of times a tabu well wasforbidden to join the wells to be freed. In this paper a well is 
onsidered tabufor 10 iterations.



Hybrid optimization method 29� Aspiration RuleThe aspiration rule for the neighborhoods Insertion and Window is: wheneverthe produ
tion of a tabu neighbor is better than the best produ
tion found sofar, this neighbor is 
onsidered.� Sele
tion of the neighborThe sele
tion of the neighbor is quite di�erent for the neighborhood Insertionand the other two neighborhoods. So they will be explained separately.Insertion neighborhoodSeveral approa
hes were tested to sele
t the neighbor of this neighborhood. At�rst, the whole neighborhood was explored using the Optimized te
hniqueto instantiate the start times, and the best neighbor was sele
ted. As thetime required for ea
h neighbor was about 0:2 se
onds, this approa
h turned tobe impra
ti
al, sin
e there is approximately 250000 neighbors. In the se
ondapproa
h, the whole neighborhood was explored using the Greedy te
hniqueto instantiate the start times. This took approximately 15 se
onds. Next, thebest x neighbors were explored again using the Optimized te
hnique and thebest neighbor was sele
ted. But 
omputational tests showed that exploring onlythe �rst y neighbors that improves the best solution was better than exploringthe whole neighborhood [22℄.In the third approa
h, the one used in this paper, the neighborhood is exploredusing the Greedy te
hnique until y neighbors that improve the best solutionare found. Then x neighbors, x � y, are explored using the Optimized te
h-nique and then the best neighbor is sele
ted. Two di�erent strategies are usedto 
hoose the x neighbors. The �rst 
hooses the x best neighbors deterministi-
ally. This approa
h was 
alled ID. The se
ond 
hooses x neighbors randomlyamong the y neighbors. This approa
h was 
alled IA. The values 
hosen fory and x were y = 10 and x = 10, in the ID approa
h and y = 20; x = 5, inthe IA approa
h. These numbers were 
hosen based on 
omputational resultsobtained in [22℄. It is 
lear that if there are not y neighbors that improve thebest solution, the y best neighbors of the entire neighborhood are 
onsidered.The Window and Well neighborhoodsFor these two neighborhoods, the rule to sele
t the neighbor is the same. Onboth neighborhoods it was not pra
ti
al to use the Greedy te
hnique to sele
tneighbors. It was also not pra
ti
al to explore the whole neighborhood, noreven to sele
t the �rst y best neighbors. The use of the Optimized te
hniqueto �nd the optimal start times of the neighbors proved impra
ti
al too. This is
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imento, Moura, and Souzaprobably due to the fa
t that obtaining good solutions in these more 
omplexneighborhoods is mu
h harder. Note that the Greedy te
hnique was operat-ing on neighborhoods with a large number of disjun
tive ar
s that were notoriented. This may have 
aused it to produ
e inferior solutions when 
onsid-ering neighbors that had a mu
h better solution if a di�erent ordering of thea
tivities was 
hosen. The Optimized te
hnique takes about a se
ond to �nda �rst solution at ea
h neighbor and a great amount of time to prove that su
ha solution is optimal.We de
ided to use a strategy where the neighborhood is explored using the Op-timized te
hnique until a neighbor that improves the best solution is found, oruntil the exe
ution time on the neighborhood rea
hes 20 se
onds. Furthermore,the Optimized te
hnique has a limited exe
ution time on ea
h neighbor. ForneighborhoodWindow this time limit was set to 1 se
ond and for neighborhoodWell this time limit was set to 3 se
onds. This means that the optimality ofea
h neighbor may not be proved. The sele
ted neighbor is the best one found.In se
tion 6, we will 
all WI the neighborhood Window when this approa
h isused. Similarly, when neighborhoodWell is used with this approa
h we will 
allit WE.After performing some 
omputational tests using neighborhood Window, thevalue 
hosen for the window length of the main a
tivity was 3 at the originalresour
e, and was set to 4 at the destiny resour
e. After testing neighborhoodWell, the number of wells freed was set to 90.As just the �rst y best neighbors are explored by all approa
hes, the order ofexploration of the neighbors makes a di�eren
e. The priority rule used to 
hoosethe main a
tivity, i.e., to 
hoose the neighbor, is the same priority rule used byalgorithm CP2 of subse
tion 4.1.The Pure Tabu Sear
h Te
hniqueThis tabu sear
h approa
h was implemented by Vini
ius Fortuna in his under-graduate proje
t.First of all, before de�ning the neighborhood used, it will be explained how solu-tions are represented. A solution is represented by an ordered list of a
tivities togetherwith a data stru
ture that indi
ates whi
h resour
e is allo
ated to ea
h a
tivity.Consider graph G where its nodes represent the a
tivities and its ar
s the pre
e-den
e relationship between them. Using this graph, a s
hedule is obtained in thefollowing way:1. Add ar
 (ai; aj) to G if a
tivity ai is pla
ed before a
tivity aj in the ordered listand they belong to the same well or are exe
uted by the same resour
e. Notethat graph G provides a total order between the a
tivities.



Hybrid optimization method 312. The start time is obtained running a polynomial time topologi
al sort algorithmover graph G.There are two movements that de�ne the neighborhood. The �rst 
onsists in
hanging the resour
e allo
ated to an a
tivity to all resour
es able to exe
ute it.The se
ond 
onsists in removing an a
tivity from its position on the ordered list andinserting it in all positions of the list, preserving the allo
ation of the resour
es. Boththe feasibility and the s
hedule of ea
h neighbor is obtained by running a topologi
alsort algorithm over the 
orrespondent graph G. This neighborhood has O(nm+ n2)neighbors, where n is the number of a
tivities and m is the number of resour
es.The stop and aspiration rules are the same rules used for the hybrid approa
hes.Two strategies were adopted to identify tabu movements. The �rst 
onsiders tabujust the movement used to generate the sele
ted neighbor. This strategy will be 
alledTabuPF. The se
ond 
onsiders tabu groups of movements. If the 
hosen movementalters the resour
e of an a
tivity, then all movements that alter the resour
e of thisa
tivity are 
onsidered tabu. If the movement 
hanges the position of an a
tivity, allmovements that 
hange the position of this a
tivity are 
onsidered tabu. This strategywill be 
alled TabuPR. A movement or a group of movements are 
onsidered tabufor 25 iterations.The �rst neighbor that improves the best solution is the sele
ted neighbor.5 Upper BoundsAs there are no previous 
omputational results for the problem instan
es used in thispaper, the 
al
ulation of upper bounds is important to determine the quality of oursolutions.This se
tion explains how four upper bounds were 
al
ulated to the problem. Infa
t, from one approa
h to another, the intention was to improve the bound. So the�rst approa
h, 
alled Upper0 provides the weakest bounds, while the last approa
h,
alled Upper3 provides the tighter bounds. Upper0 is based on a 
ombinatorialargument while the other bounds are obtained solving relaxations of the originalproblems using Integer Linear Programming.� Upper0This bound is given by the following equation:wXi=1(H � Xj2A
ti dj))� viwhere w is the number of wells, H is the time horizon, A
ti is the set of a
tivitiesof well i, dj is the the pro
essing time of a
tivity j and vi is the out
ow of welli.
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imento, Moura, and SouzaThis equation assumes that there is an unlimited number of resour
es that areable to exe
ute any of the a
tivities. The number of resour
es is not being takeninto a

ount and, sin
e this number is very limited, the bound obtained withthis approa
h is poor.� Upper1In this approa
h, an integer linear model is formulated to obtain the bound.The 
orresponding IP model takes into a

ount the fa
t that there is a lim-ited number of resour
es. In this model, all available resour
es 
an exe
ute alla
tivities, i.e., we have a situation similar to a parallel ma
hine environment[24℄.The model 
onsiders that ea
h well has just one a
tivity. The pro
essing timeof this a
tivity, denoted by �, is the sum of the pro
essing time of all a
tivitiesof the 
orrespondent well. After this a
tivity is exe
uted, the well is 
onsideredapt to produ
e oil. Sin
e this single a
tivity represents all a
tivities of a well,preemption will be allowed. In this 
ase preemption 
an o

ur at any instantduring the exe
ution time of an a
tivity. This turns this problem into a relaxedversion of the original problem. The obje
tive fun
tion is the same as theoriginal problem, that is, to maximize the total oil produ
tion. This relaxedversion of the problem will be denoted by P jjProdu
tion.In the model used in this approa
h, the value of � will be rounded to thehighest multiple of 5 less than or equal to �, as the time in this model will bedis
retized in unities of 5, i.e., ea
h time unity in the model represents 5 timeunities in the original problem. It will be done to redu
e the size of the model,sin
e 
omputational tests showed that it is impra
ti
al to 
onsider models wherethe time is dis
retized in unities of 1.The binary variables of this model are xit, and it is set to 1 if well i is �nishedat time t, and, it is set to 0 otherwise.The obje
tive fun
tion is: max wXi=1 H=5Xt=0(H � t)vixit;where 
onstants w, H and vi retain their meaning.The 
onstraints of this model are:1. PH=5t=0 xit � 1; i = 1 � � �w;



Hybrid optimization method 332. Ptk=0Pwi=1 xik�i=5 � t�m; t = 0 � � �H=5,where m is the number of resour
es;3. xit = 0; for all i and t su
h that �i > t.Constraint 1 says that there is at most one termination time for ea
h well.Constraint 2 enfor
es that there must be enough time, summed over all theresour
es, to exe
ute all the wells that are terminated by instant t. Note thatthis 
onstraint allows the exe
ution of a well in more than one resour
e at thesame time. It is important to observe that if the time horizon is large enoughfor all wells to be terminated within the time horizon, then all of them willbe performed, as that the total produ
tion is maximized. Restri
tion 3 triesto redu
e the number of possibilities, by for
ing a well not to be terminated ifthere is not enough time by instant t.� Upper2This approa
h improves upon the previous one, by not permitting simultane-ous exe
ution of the same well on di�erent resour
es. The relaxed version ofthe problem modelled in this approa
h is the same as the previous one. Thedi�eren
e being that, ex
ept for 
onstraint 2, whi
h is repla
ed for two new
onstraints and for a new integer variable.The repla
ed 
onstraint re
e
ts the fa
t that, a

ording to theorem 2 below,preemptions are redundant for problem P jjProdu
tion, i.e., the obje
tive valuemay not be improved by allowing preemptions.Theorem 2: For problem P jjProdu
tion preemptions are redundant.Proof: The proof is divided in two 
ases. Case 1 o

urs when the time horizonis large enough for all wells to be �nished within it. Case 2 o

urs when this isnot true.{ Case 1:In this 
ase, solving problem P jjProdu
tion is equivalent to solve problemP jjPwjCj (the �j�j
-notation of [16℄ is used to represent the parallelma
hine problem of minimizing the weighted sum of 
ompletion time).A 
lassi
al result of M
Naughton [21℄ shows that for P jjPwjCj preemp-tion is redundant. Therefore, preemption is also redundant for P jjProdu
tion,sin
e they are equivalent.{ Case 2:Consider an optimal solution for P jjProdu
tion, when preemption is al-lowed and let S be the set of wells whi
h are �nished before the horizon.Then, a

ording to Case 1, the wells in S 
an also be optimally s
heduled
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imento, Moura, and Souzain an nonpreemptive way. As the wells not in S do not 
ontribute to theobje
tive fun
tion, an optimal solution for P jjProdu
tion, when preemp-tion is not allowed, is also an optimal solution when preemption is allowed.So the theorem is established.The new integer variables of this model are rt. It 
ounts how many resour
es arebusy at time t. Sin
e the problem has m resour
es, a straightforward 
onstraintis: rt � m; t = 0 � � �H=5Constraint 2 of the previous model is repla
ed by this 
onstraint. In addition,a new 
onstraint must be written so that rt re
e
ts the number os a
tive wellsat instant t. The following 
onstrain is used:rt = H=5Xk=t Xi:k<t+�i xik; t = 0 � � �H=5:It states that if a well i is �nished at instant k, a resour
e is 
onsidered busyduring instants k � 1; k � 2; � � � ; k � (�i � 1), sin
e the well will be exe
utedwithout interruptions.In fa
t, we do not need to 
onsider variables rt expli
itly. In the implementation,these variables will be repla
ed by the sum they represent, whi
h in known inadvan
e.Some of the possibilities of the previous model are eliminated, as there mustbe enough time in ea
h resour
e to exe
ute all the a
tivities that are allo
atedto it. This was not true in the previous model, sin
e the time available in allresour
es was 
he
ked at ea
h instant.� Upper3All the three previous models did not take into a

ount some relevant informa-tions present in the problem instan
es 
onsidered.One su
h information is that there are two main groups of resour
es: derri
ksand boats. In the instan
es 
onsidered, all the a
tivities that require derri
ksmay be exe
uted by any of them. The same o

urs with the a
tivities thatrequire boats. But the relevant fa
t is that there are more derri
ks than boatsand many more a
tivities that require the former than the latter.Moreover, the pattern present in all wells uses resour
es in a sequen
e
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k! Boat! Derri
k:Observe that the number of a
tivities being exe
uted in ea
h phase may bedi�erent, in
luding zero.Thus, the version of the problem 
onsidered in this approa
h assumes that ea
hwell 
onsists of three a
tivities. The �rst a
tivity represents all a
tivities of thewell that are exe
uted by the �rst derri
k. The pro
essing time of this a
tivitywill be the sum of the pro
essing time of the represented a
tivities or it willbe zero, if the well does not have this type of a
tivity. The same me
hanismis applied for the other two a
tivities. The �rst a
tivity of well i will be 
alledA1i and its pro
essing time �1i , the se
ond will be 
alled A2i and its pro
essingtime �2i , and the third will be 
alled A3i and its pro
essing time �3i . A
tivitiesA1i and A3i must be exe
uted by derri
ks and a
tivities A2i must be exe
utedby boats. Furthermore, the pre
eden
e relationship A1i ! A2i ! A3i must berespe
ted. The produ
tion of well i starts when a
tivity A3i �nishes. Again, theobje
tive fun
tion is the same as the original problem, that is to maximize thetotal oil produ
tion.Unfortunately, preemption is nonredundant for this relaxed version of the prob-lem. A simple 
ounter example shows it. Suppose there are two wells, twoderri
ks (S1,S2) and one boat (B1). The horizon 
onsidered is 25. The out
owof the wells and the pro
essing time of their a
tivities is given in table 10.Well �1i �2i �3i Out
ow1 10 7 2 12 15 1 2 2Table 10: Durations and out
owFigure 11 shows the optimal solution when preemption is allowed and when it isnot allowed. In this �gure, the values inside the re
tangles indi
ate the a
tivitythat is being exe
uted and the 
orresponding exe
ution time. The values abovethe re
tangles indi
ate whi
h resour
e is being used. The produ
tion for the �rst
ase is 19 units, and it is 16 units in the se
ond 
ase, showing that preemptionis important in this example.The idea behind the new model used in this approa
h to represent this version ofthe problem is similar to the one used in approa
h Upper1. Note that in thismodel there are 
onstraints to represent the pre
eden
e relationship betweenthe a
tivities of a well. As in the previous models, the values of �1i , �2i and �3iwill be rounded to the highest multiple of 5 less than or equal to �1i , �2i and
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tion = 16Figure 11: Preemption is nonredundant�3i , respe
tively, as the time in this model will be dis
retized in unities of 5,i.e., ea
h time unity in the model represents 5 time unities in the problem.This model has three groups of binary variables: xit, yit and zit. Variables xitare set to 1 if a
tivity A1i is �nished at instant t and 0 otherwise. Similarly,variable yit assumes value 1 if a
tivity A2i is �nished at instant t and 0 otherwise,and zit assumes value 1 if a
tivity A3i is �nished at instant t and 0 otherwise .The obje
tive fun
tion is: max wXi=1 H=5Xt=0(H � t)vizitwhere the meaning of the 
onstants w, H and vi is the same as in the formerthree approa
hes.The 
onstraints for this model are:1. (a) PH=5t=0 xit � 1; i = 1 � � �w;(b) PH=5t=0 yit � 1; i = 1 � � �w;(
) PH=5t=0 zit � 1; i = 1 � � �w;



Hybrid optimization method 37(d) PH=5t=0 xit �PH=5t=0 yit = 0; i = 1 � � �w;(e) PH=5t=0 xit �PH=5t=0 zit = 0; i = 1 � � �w;(f) PH=5t=0 yit �PH=5t=0 zit = 0; i = 1 � � �w;2. (a) Ptk=0Pwi=1(xik�1i =5 + zik�3i =5) � t�m1; t = 0 � � �H=5, where m1 isthe number of derri
ks;(b) Ptk=0Pwi=1 yik�2i =5 � t�m2; t = 0 � � �H=5, where m2 is the numberof boats;3. (a) xit = 0; 8i; t su
h that t < �1i =5;(b) yit = 0; 8i; t su
h that t < (�1i +�2i )=5;(
) zit = 0; 8i; t su
h that t < (�1i +�2i +�3i )=5.4. (a) PH=5t=0 t(yit � xit) � �2i =5; i = 1 � � �w;(b) PH=5t=0 t(zit � yit) � �3i =5; i = 1 � � �w;Constraint 1 says that all phases of a well are terminated exa
tly on
e withinthe time horizon or none of them are. Like in the model used in approa
hUpper0, 
onstraint 2 enfor
es that there must be enough time in the resour
esto exe
ute all the a
tivities that are �nished before instant t. In addition, inthe 
urrent model it was ne
essary to 
onsider the existen
e of two types ofresour
es. Note that this 
onstraint allows the exe
ution of an a
tivity in morethan one resour
e at the same time. Constraint 3 tries to redu
e the number ofpossibilities. Constraint 4 states the pre
eden
e relationship.Table 11 shows quantitative data for the integer linear models of the last threeapproa
hes. The instan
e 
onsidered is the real instan
e. In this table, 
olumnConstraints is the number of 
onstraints, 
olumn Variables is the number of binaryvariables, 
olumn Const.NZ is the number of nonzeros 
oeÆ
ients in the 
onstraintsand 
olumn Obj.NZ is the number of nonzeros 
oeÆ
ients in the obje
tive fun
tion.Approa
h Constraints Variables Const.NZ Obj.NZLess Greater EqualUpper1 407 - 1470 31906 4819470 31694Upper2 407 - 1470 31906 491189 31694Upper3 920 212 3925 95718 12326123 31694Table 11: Model quantitative data - Upper Bound - Real Instan
eIt 
an be observed from table 11 that the model for approa
h Upper3 is mu
hlarger than the other two models. On the other hand, the models of approa
hes
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imento, Moura, and SouzaUpper1 and Upper2 have the same number of 
onstraints and variables. Thedi�eren
e between them lies in the number of nonzeros 
oeÆ
ients.The order of magnitude of the number of 
onstraints, variables and nonzeros isthe same for models that represent the real instan
e and for the 
orresponding modelsfor instan
es 2W112S4B3, 3W95S5B3 and 4W130S5B3. So the data of table 11 isrepresentative for all instan
es 
onsidered in this paper.Table 12 shows the best bound obtained for the produ
tion by ea
h approa
h. Thevalue between parenthesis indi
ates the per
entage by whi
h approa
hes Upper1,Upper2 and Upper3 improved upon the values obtained for approa
h Upper0.The value of the bound is in millions of unities. The models were implementedand solved using the ILOG CPLEX. The maximum exe
ution time was set to 3600se
onds. Table 13 shows the number of nodes in the bran
h tree traversed by ea
happroa
h and the gap between the best upper and lower bounds.Instan
e Upper0 Upper1 Upper2 Upper31W130S5B3(real) 378.6 310.2 (17.3%) 300.6 (20.4%) 287.4 (23.9%)2W112S4B3 363.8 310.4 (14.6%) 302.4 (16.8%) 270.9 (25.5%)3W95S5B3 317.8 280.3 (11.8%) 274.9 (13.5%) 257.2 (19.0%)4W130S5B3 420.7 371.6 (11.6%) 369.6 (12.1%) 334.7 (20.4%)Table 12: Upper BoundsInstan
e Upper1 Upper2 Upper3Node Gap Node Gap Node Gap1W130S5B3 1600 1.88% 1 0 1 12W112S4B3 1200 1.87% 1 0 1 13W95S5B3 2580 0.55% 1 0 1 14W130S5B3 800 2.27% 1 0 1 1Table 13: Computational quantitative data - Upper BoundThese two tables 
onvey important informations. The only model limited by themaximum exe
ution time was Upper1. Model Upper2 is an improvement uponUpper 1. This improvement made it possible for model Upper2 to �nd the optimalsolution for all instan
es and, after exploring just one node of the sear
h tree. Onthe other hand, Upper3 is the approa
h that provided the best bounds, improvingupon approa
h Upper0 by more than 19% in all instan
es. But this approa
h failedto provide a feasible integer solution, sin
e it exe
ution was terminated be
ause thesoftware ran out of memory after exploiting the �rst node of the sear
h tree. The
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urred when some of the exe
ution parameters of the ILOG CPLEX were
hanged in an attempt to avoid this behavior. This fa
t 
an be explained by the
onsiderable size of this model.Sin
e Upper 1 was the only approa
h to explore more than a node of the bran
htree, �gure 12 shows the evolution of the upper and the lower bounds on ea
h nodefor the real instan
e. Note that the upper bound remains the same in all nodes andthe lower bound is 
hanged in just few nodes. A similar behavior was observed on allthe other instan
es.
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Figure 12: Lower and upper bounds on the nodes of approa
h Upper1 - Real instan
e6 Computational ResultsIn this se
tion we present the 
omputational results obtained with instan
es 1W130S5B3(real instan
e), 2W112S4B3, 3W95S5B3 and 4W130S5B3 when the te
hniques de-s
ribed in se
tion 4 are applied. For all these instan
es, the 
onsidered horizon wasset to 1500 days and the maximum exe
ution time was set to 3600 se
onds.Table 14 summarizes the 
omputational results for all tested instan
es. In all
ases, the initial solution was obtained using the H1 te
hnique.The 
olumns in table 14 have the following meaning:� Instan
e: instan
e identi�
ation;
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imento, Moura, and Souza� Approa
h: approa
h identi�
ation;� It: total number of iterations;� Neighbors: total number of feasible neighbors;� Tabu: total number of tabu neighbors;� AR: total number of tabu neighbors that satis�ed the aspiration rule;� Produ
tion: best value for the produ
tion;� Time: total exe
ution time.For ea
h instan
e, the best value obtained for the produ
tion is set to bold.In 
olumn Approa
h, the names refer to the various tabu sear
h strategies de-s
ribed in se
tion 4.For the parti
ular 
ase of the real instan
e 1W130S5B3, we have more detaileddata, des
ribing the behavior of ea
h of the 
olumns Neighbors, Tabu, AR, Produ
tionand Time along the iterations. Figure 13 des
ribes the behavior of the total number offeasible neighbors explored at ea
h iteration for ea
h of the tabu strategies 
onsidered.Figure 14 does the same for the total number of tabu neighbors; �gure 15 treats thetotal number of neighbors that satis�ed the aspiration rule; �gure 16 shows the totaloil produ
tion; and �gure 17 depi
ts the total time per iteration.Figure 18 presents more details about the total oil yield when ea
h of the tabustrategies was exer
ised for the real instan
e. Figures 19, 20 and 21 do the same forthe generated instan
es, 2W112S4B3, 3W95S5B3 and 4W130S5B3, respe
tively.Figure 13 shows that the number of feasible neighbors visited during ea
h iterationvaries a lot, sin
e an iteration is �nished after y neighbors that improve the bestsolution are found. The only approa
h that does not present this pattern is WE. Inthe ID and IA approa
hes, it 
an be observed a tenden
y for the number of feasibleneighbors to in
rease along with the 
omputation. This indi
ates that it is easier toimprove the best solution on the beginning of the 
omputation, sin
e we sear
h forthe �rst y best neighbors. Comparing �gures 13 and 17, it is 
lear that the timeper iteration is roughly proportional to the number of feasible neighbors. Con
erningthe total number of neighbors, table 14 shows that approa
hes TabuPF, TabuPR,ID, IA 
an explore a number of neighbors three orders of magnitude larger thanapproa
hes WE, WI. This was already expe
ted, sin
e these approa
hes are larges
ale neighborhoods. Furthermore, te
hniques ID and IA use a greedy strategy tosele
t the best feasible neighbors. In the WE strategy, we only allow 20 se
onds forthe sear
h of the best feasible neighbors. Figure 13.f shows that this te
hnique isa
tually using the allowed time to �nd 7 su
h neighbors per iteration.
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Instan
e Approa
h It Neighbors Tabu AR Produ
tion Time1W130S5B3 TabuPF 348 5404175 1762 9 260480500 3624TabuPR 368 6078448 390383 112 260955920 3619ID 216 5097314 482245 65 261797010 3621IA 234 5549670 569485 74 262968780 3616WE 169 1172 1645 0 247388220 3618WI 188 1882 174 4 250410270 36062W112S4B3 TabuPF 485 6437783 2446 15 250305872 3625TabuPR 494 6772949 562549 139 250448195 3631ID 185 1955786 345472 116 246309923 3639IA 153 1462175 262204 198 248792249 3616WE 176 708 1715 0 220362248 3609WI 200 3361 425 21 224523265 36183W95S5B3 TabuPF 307 5453469 1648 2 238685695 3644TabuPR 335 6999181 309804 68 238685695 3604ID 128 2247780 165676 109 233766103 3630IA 155 2891257 224596 65 238258503 3628WE 166 1164 1615 0 225755389 3614WI 184 1789 262 3 227267290 36054W130S5B3 TabuPF 331 5669485 1760 11 296412436 3622TabuPR 307 5232493 441899 98 294203512 3603ID 154 1568798 198769 156 297504129 3656IA 163 1919470 236697 425 298814360 3667WE 175 704 1705 0 276423927 3600WI 193 1752 316 15 280450182 3607Table 14: Quantitative Data - H1



42 Nas
imento, Moura, and SouzaFigure 14 shows that the number of tabu neighbors tends to be higher on the �naliterations when 
ompared with the initial iterations, when strategies ID and IA wereused. This happens be
ause more neighbors are explored on the �nal iterations andbe
ause the tabu list 
ontains fewer elements on the beginning.Figure 15 indi
ates that the number of tabu neighbors that satis�es the aspirationrule does not follow a re
ognizable pattern. Note that strategy WE does not use theaspiration rule. Table 14 indi
ates that the number of neighbors 
onsidered tabu ishigh, given the total number of feasible neighbors that was visited, ex
ept for approa
hTabuPF, be
ause its tabu 
riteria is the less restri
tive among all the strategies. Onthe other hand, the number of tabu neighbors that satis�es the aspiration rule is verysmall for all approa
hes. It is important to re
all that for approa
h WE, 
olumnTabu indi
ates how many times a well 
ould not have all its a
tivities freed in aniteration due to the fa
t that the well was tabu. This explains why the number oftabu wells is greater than the total number of neighbors when te
hnique WE wasused in all instan
es. See table 14.The most interesting results 
on
ern the evaluation of the produ
tion 
urve asdepi
ted in �gures 18, 19, 20 and 21. Approa
h IA gave the best produ
tion forinstan
es 1W130S5B3 (the real instan
e) and 4W130S5B3, while approa
h TabuPRgave the best produ
tion for the 3W95S5B3 and 2W112S4B3 instan
es. Approa
hesWE and WI got into an inferior produ
tion plateau and were not able to es
apefrom it in all tested instan
es. An explanation for this behavior 
ould be that theseapproa
hes were not able to explore a large number of neighbors, and the exploredneighbors were unable to provide reasonable improvements over the oil produ
tion.These �gures show a desirable behavior of large s
ale neighborhoods. Strategies IDand IA showed a steep rise in the oil produ
tion at the very beginning in all instan
es,to a lesser extent for strategy ID in instan
e 3W95S5B3. This was parti
ularly intenseon the real instan
e, as 
an be seen from �gure 18. We believe that the quality os theneighbors generated by strategies ID and IA was superior, while still maintaininga 
ompetitive 
omputational time. Even though TabuPR gave the best produ
tionfor two instan
es, the results obtained by the IA strategy on those instan
es werevery 
lose to the best ones.Figure 16 shows that a produ
tion plateau was not rea
hed when TabuPF,TabuPR and IA were used. In order to verify if it was possible to in
rease theprodu
tion in these 
ases, the strategies were allowed to run for 3 more hours. Aplateau of 363:5 millions of unities was then rea
hed by all of them and 
ould not beimproved.To observe the behavior of the approa
hes when a poorer initial solution was used,all te
hniques were exer
ised with an initial solution obtained using H2. Table 15and �gures 22.b, 23.b, 24.b, 25.b are the 
orrespondents of table 14 and �gures 18,19, 20, 21, respe
tively, when H2 was used instead of H1. Figures 22.a, 23.a, 24.a,



Hybrid optimization method 4325.a explore the initial 360 se
onds of these 
omputations.Instan
e Approa
h It Neighbors Tabu AC Produ
tion Time1W130S5B3 TabuPF 435 4096832 1726 13 243419100 3641TabuPR 458 5377802 344077 121 243639100 3614ID 171 5222193 452063 0 242923630 3603IA 181 5549303 452396 0 244595390 3602WE 172 1166 1675 0 241947730 3602WI 218 3618 424 6 243724840 36002W112S4B3 TabuPF 475 5272845 2137 11 223398783 3623TabuPR 486 6057373 447554 129 223389183 3657ID 212 1444141 191602 235 232061191 3651IA 207 2066677 306046 217 230394281 3622WE 174 1164 1695 0 216710680 3615WI 250 3544 661 34 225733988 36183W95S5B3 TabuPF 428 4776629 2393 22 227393876 3621TabuPR 466 6717009 198437 119 227536172 3613ID 222 2319646 320605 119 229981247 3634IA 202 2727995 370660 266 229520098 3634WE 181 1172 1765 0 223389186 3612WI 222 3941 452 8 227100961 36024W130S5B3 TabuPF 445 4133240 1694 21 272924096 3629TabuPR 457 4280146 271755 141 274236257 3608ID 203 1184770 145761 220 283119592 3663IA 209 1475233 178982 220 283119592 3647WE 180 708 1755 0 273515507 3616WI 224 3624 343 10 281009822 3609Table 15: Quantitative Data - H2Table 15 shows that the number of feasible and tabu neighbors, as well as thenumber of neighbors that satis�es the aspiration rule is the same as in the previous
ases. The produ
tion 
urves deserve 
loser attention. Approa
h IA gave the bestprodu
tion for instan
es 1W130S5B3, 3W95S5B3 and 4P130S5B3, while approa
h IDgave the best produ
tion for instan
e 2W112S4B3. Note that the pure tabu sear
happroa
hes (TabuPF and TabuPR) did not yield the best produ
tion for none ofthese instan
es. Furthermore, in the previous 
ase, the gap between the produ
tionobtained by the pure tabu sear
h approa
h and the hybrid approa
hes was less than1%. In this 
ase, for instan
es 2W112S4B3 and 4W130S5B3 the gap was near 4%in favor of the hybrid approa
h. Another interesting result is, in the previous 
ase,the produ
tion obtained with strategy WI was not as good when 
ompared to theprodu
tion obtained with strategies TabuPF, TabuPR, ID and IA. In this new
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ase, the produ
tion obtained with approa
h WI was higher than the produ
tionobtained by the pure approa
hes TabuPF and TabuPR in all instan
es, ex
ept ininstan
e 3W95S5B3. But in this instan
e, the produ
tion obtained with the WIapproa
h was less than 1% poorer.Figures 22.a, 23.a, 24.a, 25.a details the �rst 360 se
onds of 
omputation of ea
hinstan
e. Note how qui
kly ea
h approa
h over
omes a poor initial solution. On theformer 
ase, when H1 was used, IA improved the initial solution qui
kly. In this
ase, strategy WE does it faster than any other in all instan
es. The pure tabusear
h approa
hes are only able to rea
h this level of produ
tion after more than 360se
onds. Unfortunately, the WE approa
h gets into an inferior plateau and is notable to es
ape from it.Another pattern that 
an be observed is that when all strategies use initial solu-tions obtained by theH2method, they get stu
k in an inferior plateau when 
omparedwith the plateau rea
hed when the H1 was used. This indi
ates that a poor initialsolution probably leads to poorer �nal results. The relevant aspe
t of the resultsobtained by using H2, however, is fa
t that the hybrid approa
hes improved a poorinitial solution more qui
kly than the pure approa
hes and gave best produ
tion val-ues.Figures 26.a and 26.b show the initial solution, the best oil produ
tion and theupper bound for all four tested instan
es, when H1 and H2 are applied, respe
-tively. Table 16 shows by whi
h per
entage the best solution improved the initialone and shows by whi
h per
entage the best solution is under the upper bound.Clearly, there was a bigger improvement between the initial and the best solutionwhen H2 was applied. Note, however, that when 
onsidering H2, a poor initial so-lution was used. The gap between the best solution and the upper bound was alsobigger for this 
ase. Nevertheless, the most important information 
onveyed by thistable is that the best solutions are less than 9% from the upper bound for instan
es1W130S5B3, 2W112S4B3, 3W95S5B3 and is at 10:7% from the upper bound forinstan
e 4W130S5B3. This indi
ates that the best solutions are already very goodones. Instan
e H1 H2Initial Solution Upper Bound Initial Solution Upper Bound1W130S5B3 6.8% 8.5% 18.4% 14.9%2W112S4B3 13.9% 7.55% 28.9% 17.5%3W95S5B3 5.89% 7.2% 23.84% 10.6%4W130S5B3 8.06% 10.7% 29.7% 15.4%Table 16: Distan
e among the initial solution, best solution and upper bound
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Hybrid optimization method 577 Sensibility AnalysisIn this se
tion a sensibility analysis is presented in order to verify the behavior of ourte
hniques when the instan
es are perturbed.Two kinds of perturbation are 
onsidered. As dis
ussed in se
tion 5, there aremore derri
ks than boats and many more a
tivities that require the former than thelatter resour
e. In addition, the resour
es needed by all wells follow the patternDerri
k! Boat! Derri
k:Also, the boats 
an be 
onsidered the bottlene
k in the pro
ess of developinga well. Moreover, the pro
essing time of all a
tivities whi
h require a boat is inthe interval of [5; 17℄ days. These informations were 
ru
ial to the development ofapproa
h Upper3. The pro
essing time of those a
tivities that require a boat willbe perturbed. The original pro
essing time of these a
tivities will be repla
ed bypro
essing times generated using an uniform distribution between the intervals [1; 30℄,[1; 60℄ and [1; 90℄. This pro
edure originated the variant instan
es that we 
all A
t,with its three sub
ases A
t30, A
t60, A
t90 that 
orrespond, respe
tively, to thenew three intervals for a
tivities that require a boat.In all the instan
es 
onsidered in this paper, all derri
ks 
an exe
ute all a
tivi-ties that require this type of resour
e. The same o

urs with the boats. Note that
onstraint 3 of the original problem, des
ribed in se
tion 2 says that there may ex-ist instan
es where not all resour
es of a 
ertain type are able to perform all thea
tivities that require that type of resour
e. The other perturbation we 
onsideredover the original instan
es was that ea
h a
tivity was asso
iated with a subset of theresour
es that are able to perform it. So, in the perturbed instan
es, to ea
h a
tivityis attributed x spe
i�
 resour
es among all the resour
es that have the type 
ompat-ible with the a
tivity. The x resour
es are 
hosen randomly. This pro
edure 
reatedthe variant we 
all Res. This variant also has three sub
ases, named Res1, Res2,Res3, that 
orrespond to sub
ases when x assumes the values 1, 2 and 3, respe
tively.In this se
tion, only strategy H1 will be 
onsidered to generated the initial solu-tions. Furthermore, only approa
hes TabuPR, IA, WE, WI will be tested, sin
estrategies TabuPF and ID displayed a poorer performan
e when 
ompared to strate-gies TabuPR and IA.Table 17 presents the initial solution to the perturbed instan
es. The produ
tionis in millions of unities.The upper bound values for the perturbed instan
es that follow the Res variantsare the same as the values presented in se
tion 5 for the original instan
es. Note thatthe relevant information for these models are the a
tivities pro
essing time and thenumber of derri
ks and boats. All these values remained the same on the perturbedinstan
es.
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imento, Moura, and SouzaInstan
e VariantRes1 Res2 Res3 A
t30 A
t60 A
t901W130S5B3 229.8 240.2 243.4 243.9 227.0 168.72W112S4B3 206.2 216.7 216.2 216.5 205.2 163.33W95S5B3 218.1 222.8 224.0 220.7 205.2 133.64W130S5B3 262.2 272.7 273.3 270.9 238.8 186.9Table 17: Initial solution - H1On the other hand, as the a
tivities pro
essing time were altered on the perturbedinstan
es that follow the A
t variant, new bounds were 
omputed for these pertubedinstan
es. Table 18 is similar to table 11. The instan
e used was 4W130S5B3 -variant A
t90. As in table 11, 
olumn Constraints is the number of 
onstraints,
olumn Variables is the number of binary variables, 
olumn Const.NZ is the number ofnonzeros 
oeÆ
ients in the 
onstraints and 
olumn Obj.NZ is the number of nonzeros
oeÆ
ients in the obje
tive fun
tion. The values in this table have the same orderof magnitude as the 
orrespondig values, even 
onsidering that table 11 was 
reatedusing the real instan
e.Approa
h Constraints Variables Const.NZ Obj.NZLess Greater EqualUpper1 420 - 2463 36000 5321013 35760Upper2 420 - 2463 36000 777093 35760Upper3 962 240 6497 10800 13656007 35760Table 18: Model quantitative data - Upper Bound - Instan
e 4W130B5S3 - VariantA
t90Table 19 is similar to table 12, and table 20 is similar to table 13. In the latter 
ase,variant A
t90 was used. Table 19 shows the best bound obtained for the produ
tionby ea
h approa
h. The value between parenthesis indi
ates the per
entage by whi
happroa
hes Upper1, Upper2 and Upper3 improved upon the values obtained forapproa
h Upper0.As expe
ted, the bound values shown in table 19 are smaller than the 
orrespond-ing bounds on table 12. Note that the a
tivities pro
essing time are higher in thepertubed 
ase. As in the original instan
es, the 
omputation using strategy Upper1was limited in one hour and did not �nd the optimal solution. Strategy Upper2found the optimal solution, and strategy Upper3 ran out of memory and was notable to �nd a feasible integer solution.Table 20 shows the number of nodes and the gap between the upper bound and the
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Instan
e Variant Upper0 Upper1 Upper2 Upper31W130S5B3 A
t30 366.6 307.0 (16.2%) 297.4 (18.8%) 284.0 (22.5%)A
t60 363.7 293.4 (19.3%) 282.5 (22.3%) 280.6 (22.8%)A
t90 357.6 263.9 (26.2%) 250.3 (30.0%) 253.8 (29.0%)2W112S4B3 A
t30 361.9 296.2 (18.1%) 287.3 (20.6%) 267.9 (25.9%)A
t60 358.9 284.4 (20.7%) 273.9 (23.6%) 265.7 (25.9%)A
t90 354.5 255.8 (27.8%) 243.6 (31.3%) 248.5 (29.9%)3W95S5B3 A
t30 316.2 275.9 (12.7%) 268.0 (15.4%) 255.8 (19.1%)A
t60 358.9 267.1 (25.5%) 258.2 (28.0%) 253.9 (29.2%)A
t90 308.9 248.3 (19.6%) 237.2 (23.2%) 241.4 (21.8%)4W130S5B3 A
t30 453.2 364.2 (19.5%) 352.3 (22.2%) 332.0 (26.7%)A
t60 449.3 344.0 (30.2%) 330.2 (26.5%) 326.8 (27.2%)A
t90 443.8 313.6 (29.3%) 297.8 (32.4%) 302.9 (31.7%)Table 19: Upper Bound - A
tivities pro
essing time variant

Instan
e Upper 1 Upper 2 Upper 3Node Gap Node Gap Node Gap1W130S5B3 700 2.10% 1 0 1 12W112S4B3 600 3.37% 1 0 1 13W95S5B3 2000 2.57% 1 0 1 14W130S5B3 500 3.27% 1 0 1 1Table 20: Computational quantitative data - Upper Bound - Variant A
t90
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imento, Moura, and Souzabest solution when variant A
t90 was used in all tested instan
es. The unexpe
tedbehavior was that the bound obtained using strategy Upper2 was tighter than thebound obtained using Upper3. There are at least two possible explanations for thisfa
t. This may have o

urred be
ause Upper3 ran out of memory and was unableto improve the bound, while Upper2 found the optimal solution. Or this may haveo

urred be
ause with Upper2 preemptions and parallel a
tivities are not allowedwhile they are permitted with Upper3. Sin
e this was not a problem when the orig-inal instan
es were used, the problem may have arisen due to the large variability ofthe a
tivities pro
essing time on the perturbed instan
es.As for the 
omputational results, table 21 is similar to table 14 and shows somedata for all A
t variants. The 
olumns of this table show the instan
e identi�
ation,the approa
h identi�
ation, the total number of iterations, the total number of feasibleneighbors, the total number of tabu neighbors, the total number of tabu neighborsthat satis�ed the aspiration rule, the best value for the produ
tion and the totalexe
ution time.This table shows that the total number of feasible and tabu neighbors as well asthe total number of neighbors that satis�es the aspiration rule, are of the same orderof magnitude obtained for these values when using the original instan
es. Ex
ept forapproa
h WI, where these values were approximately multiplied by 2 in instan
es1W130S5B3, 3W95S5B3 and 4W130S5B3.Figures 27, 28 and 29.b are similar to �gure 18 for the real instan
e. They plot thetotal oil produ
tion when variants A
t30, A
t60 and A
t90, respe
tively, are exer-
ized. Ea
h �gure shows the produ
tion when ea
h of the TabuPR, IA,WI andWEstrategies were used. Figures 30, 31 and 32.b do the same for instan
e 2W112S4B3,the 
orresponding �gure for the unperturbed 
ase being �gure 19. Figures 33, 34and 35.b 
orresponde to instan
e 3W95S5B3 and the unperturbed 
ase is shown in�gure 20. Finally, �gures 36, 37 and 38.b 
orresponde to instan
e 4W130S5B3 andare similar to �gure 21.The behavior for variants A
t30 and A
t60 was very similar to their behaviorwhen the unperturbed instan
es were 
onsidered. When variant A
t90 is 
onsidered,however, the behavior was di�erent. In order to get more details for the beginningof the 
omputation, �gures 29.a, 32.a, 35.a and 38.a depi
t the �rst 360 se
onds of
omputation for, respe
tively, instan
es 1W130S5B3, 2W112S4B3, 3W95S5B3 and4W130S5B3 when variant A
t90 is 
onsidered.It 
an be observed from these �gures that the IA strategy produ
ed the bestsolution for all instan
es and all variants. When variant A
t90 is 
onsidered, ap-proa
h WI gave better results than the pure approa
h TabuPR 
onsistently on allinstan
es. In fa
t, the solution obtained using TabuPR was mu
h inferior than thebest solution found, showing that this strategy is not robust. As o

urred with theoriginal instan
es, when poor initial solutions were 
onsidered, approa
hWE qui
kly
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e Variant Approa
h It Neighbors Tabu AR Produ
tion Time1W130S5B3 A
t30 TabuPR 248 5848316 352747 63 251490660 3627IA 237 5484254 783616 228 254289300 3607WE 175 880 1705 0 243813630 3604WI 199 3519 180 6 248671800 3620A
t60 TabuPR 334 4640070 430279 59 244399700 3649IA 278 5331636 757380 492 249390940 3616WE 177 879 1725 0 233244810 3603WI 213 3383 216 9 240629260 3609A
t90 TabuPR 907 4641809 440276 224 213631730 3601IA 645 5503132 754402 2697 223935480 3600WE 176 878 1715 0 199547050 3605WI 262 3350 412 48 213792920 36012W112S4B3 A
t30 TabuPR 485 5874813 520058 122 240914193 3607IA 324 5633385 883573 487 242807762 3600WE 177 881 1725 0 217363213 3608WI 211 3472 368 14 224353344 3618A
t60 TabuPR 426 4640689 501234 126 227219755 3621IA 310 5664917 891038 468 228336202 3613WE 177 880 1725 0 213016072 3602WI 227 3384 382 32 223265432 3612A
t90 TabuPR 734 4384954 465444 217 206954958 3604IA 509 5734307 911740 1566 219941934 3597WE 180 879 1755 0 196999164 3606WI 269 3382 369 48 207684901 36163W95S5B3 A
t30 TabuPR 258 4906162 334880 57 229788564 3644IA 296 6571118 896624 361 236134527 3600WE 178 887 1735 0 222951271 3612WI 199 3771 177 7 224902175 3613A
t60 TabuPR 353 6096266 481720 68 223263212 3614IA 315 6451718 997282 440 231285153 3607WE 178 884 1735 0 217123963 3601WI 233 3750 318 12 223601108 3615A
t90 TabuPR 1115 5494002 441047 283 204158392 3619IA 619 6003403 974865 1776 215480227 3598WE 179 886 1745 0 194854023 3617WI 258 3422 566 34 206585222 36164W130S5B3 A
t30 TabuPR 329 4650514 383225 76 287747684 3642IA 247 4746251 525334 914 290475965 3609WE 178 880 1735 0 273238548 3616WI 211 3433 206 9 279779931 3619A
t60 TabuPR 388 4764056 550489 101 267388916 3644IA 265 4552634 600832 521 274690795 3612WE 179 880 1745 0 261125166 3612WI 250 3428 245 21 274013147 3604A
t90 TabuPR 857 4415545 212685 262 237760960 3695IA 574 4934794 688041 2275 265915404 3608WE 176 875 1715 0 241748970 3601WI 281 3374 330 48 254766742 3607Table 21: Quantitative Data - Variant: A
tivities duration
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Figure 27: Produ
tion X Time - 1W130S5B3 (Real Instan
e) - Variant A
t30repaired the initial solutions, but, again, got stu
k in a produ
tion plateau.Table 22 shows the same kind of data as table 16. TheA
t variants were usedto produ
e the results shown in this table. Observing this table, it 
an be inferredthat the initial solution algorithm 
ould not generate good solutions for the variantA
t90. But the hybrid approa
h was able to rea
h a good solution for all instan
es,sin
e the gap between the best solution and the upper bound was around 10% for allinstan
es, in this 
ase.Table 23 repeats table 14 using the pertubed Res variants. This table shows thatthe total number of feasible and tabu neighbors, and the total number of neighborsthat satis�ed the aspiration rule are of the same order of magnitude as those valuesobtained with the original instan
es using strategies TabuPR and WE. For the WIapproa
h, these values are higher in the pertubed 
ase, for all instan
es. When usingapproa
h IA, these values are higher in this perturbed 
ase for instan
es 2W112S4B3and 3W95S5B3.As was done for the A
t variants, we used the Res pertubed instan
es derivedfrom all four original test instan
es in order to observe the behavior of the TabuPR,IA, WI and WE strategies on these perturbed instan
es. The produ
tion obtainedwith the real perturbed instan
e is depi
ted in �gures 39.b, 40.a and 41. For thegenerated 2W112S4B3 instan
e, the 
orresponding plots are shown in �gures 42.b,43 and 44. The set of �gures 45.b, 46 and 47, shows the data when using instan
e
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Figure 28: Produ
tion X Time - 1W130S5B3 (Real Instan
e) - Variant A
t60Instan
e Variant H1Initial Solution Upper Bound1W130S5B3 A
t30 4.2% 10.4%A
t60 9.8% 11.1%A
t90 32.7% 10.5%2W112S4B3 A
t30 12.1% 9.3%A
t60 11.2% 14.0%A
t90 34.6% 9.7%3W95S5B3 A
t30 7.0% 7.6%A
t60 12.7% 8.9%A
t90 61.2% 9.1%4W130S5B3 A
t30 7.2% 12.5%A
t60 15.0% 15.9%A
t90 42.2% 10.7%Table 22: Distan
e among the initial solution, best solution and upper bound - VariantA
t
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(b) Time=0...3600Figure 29: Produ
tion X Time - 1W130S5B3 (Real Instan
e) - Variant A
t90
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Figure 30: Produ
tion X Time - 2W112S4B3 - Variant A
t30
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Figure 31: Produ
tion X Time - 2W112S4B3 - Variant A
t60
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(b) Time=0...3600Figure 32: Produ
tion X Time - 2W112S4B3 - Variant A
t90
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Figure 33: Produ
tion X Time - 3W95S5B3 - Variant A
t30
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Figure 34: Produ
tion X Time - 3W95S5B3 - Variant A
t60
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(b) Time=0...3600Figure 35: Produ
tion X Time - 3W95S5B3 - Variant A
t90
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Figure 36: Produ
tion X Time - 4W130S5B3 - Variant A
t30
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Figure 37: Produ
tion X Time - 4W130S5B3 - Variant A
t60
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(b) Time=0...3600Figure 38: Produ
tion X Time - 4W130S5B3 - Variant A
t90



Hybrid optimization method 71Instan
e Variant Approa
h It Neighbors Tabu AR Produ
tion Time1W130S5B3 Res1 TabuPR 166 5653569 763500 53 241408310 3615IA 624 4492228 663962 604 251537690 3600WE 176 881 870 0 234670140 3606WI 248 3797 170 6 243599460 3605Res2 TabuPR 311 4589353 431117 82 254654730 3640IA 376 5122923 766713 218 255802210 3609WE 177 881 875 0 241946220 3608WI 225 4062 168 12 246220480 3612Res3 TabuPR 335 6095363 368879 96 257360240 3611IA 299 5263970 774131 387 259247850 3610WE 178 883 880 0 244006440 3618WI 208 3935 159 7 248637620 36002W112S4B3 Res1 TabuPR 335 7010706 1423290 113 235086600 3605IA 634 4640316 695738 994 239540901 3597WE 177 882 875 0 209531118 3607WI 247 4476 231 21 225024965 3604Res2 TabuPR 430 6955965 606570 143 243662371 3612IA 355 4831703 814819 553 244840697 3603WE 175 880 865 0 216533315 3600WI 206 4640 165 3 220505606 3600Res3 TabuPR 504 7110939 840412 155 246225063 3608IA 301 5037286 839687 543 247090041 3599WE 176 881 870 0 216348434 3609WI 246 3988 244 26 228074446 36163W95S5B3 Res1 TabuPR 217 7343330 1115067 64 231892638 3613IA 901 5204502 1004203 423 233020474 3602WE 177 886 875 0 218454885 3607WI 225 5190 207 15 225305466 3615Res2 TabuPR 311 7141765 454913 70 237532302 3614IA 511 5683934 952828 648 238780333 3600WE 177 887 875 0 222826848 3613WI 219 4998 177 14 228407393 3617Res3 TabuPR 223 5895968 393610 42 235592424 3610IA 361 5762413 982374 568 237120503 3602WE 176 885 870 0 223421262 3606WI 211 4711 148 6 228464110 36064W130S5B3 Res1 TabuPR 197 4823039 915161 58 274715220 3615IA 411 2763139 378327 622 291119199 3605WE 176 877 870 0 264782298 3600WI 253 3887 204 17 277047062 3651Res2 TabuPR 224 4806321 511323 56 288863831 3605IA 266 3405275 478866 354 293240295 3624WE 176 881 870 0 274430520 3617WI 238 4130 145 13 279930174 3602Res3 TabuPR 249 4731748 397284 70 292684155 3613IA 244 4444513 598703 391 295370753 3617WE 175 880 865 0 274279895 3619WI 211 4387 145 8 279542790 3600Table 23: Quantitative Data - Variant: number of resour
es
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imento, Moura, and Souza3W95S5B3. Finally, �gures 48.b, 49 and 50 treat instan
e 4W130S5B3.Variants Res2 and Res3 showed a behavior very similar to their 
orrespond-ing behaviors when the original instan
es were 
onsidered. When variant Res1 is
onsidered, however, the behavior was di�erent. As the tests using variant Res1produ
ed results that di�ered the most from the results obtained with the originalinstan
es, �gures 39.a, 42.a, 45.a and 48.a show details of the �rst 360 se
onds of
omputation of ea
h test instan
e. It 
an be observed from these �gures that the IAstrategy provided the best solution over all instan
es and all variants in this 
ase.Note that approa
h WI gave better results than the pure TabuPR approa
h overinstan
es 1W130S5B3 and 4W130S5B3. In fa
t, the solution provided by TabuPRwas inferior than the best solution found, indi
ating that this strategy is not robust.Approa
h WE did not perform well, even on the beginning of the 
omputation, justlike it o

urred when variant A
t90 was used.Table 24 shows the same kind of data for the perturbed Res variants as does table16 for all four unperturbed instan
es. Observing this table, it 
an be inferred thatthe initial solution algorithm 
ould generate good solutions for all instan
es, whenthese variants were 
onsidered. Noti
e that the maximum improvement obtained was14:2%. Moreover, the best solutions obtained were good ones, as the gaps betweenthe best solutions and the upper bounds were around 10%.Instan
e Variant H1Initial Solution Upper Bound1W130S5B3 Res30 9.4% 12.5%Res60 6.4% 10.9%Res90 6.5% 9.7%2W112S4B3 Res30 16.1% 11.4%Res60 12.9% 9.6%Res90 14.3% 8.7%3W95S5B3 Res30 6.8% 9.4%Res60 7.2% 7.1%Res90 5.8% 7.8%4W130S5B3 Res30 11.0% 13.0%Res60 7.5% 12.3%Res90 8.1% 11.7%Table 24: Distan
e among the initial solution, best solution and upper bound - VariantRes
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(b) Time=0...3600Figure 39: Produ
tion X Time - 1W130S5B3 (Real Instan
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lusionsSeveral 
on
lusions may be inferred from this work. First of all, approa
h IA 
anthe 
onsidered the best and more robust approa
h, sin
e it provided the best solutionfor the vast majority of the tested instan
es and variants 
onsidered in this paper.Furthermore, the quality of its solutions are very high, as the gap between its so-lutions and the 
orrespondent upper bounds were around 10% for all instan
es andall variants. On the other hand, the solutions obtained with the pure tabu sear
happroa
h were good when the quality of the initial solutions was also good. Other-wise its performan
e was not that good, spe
ially if it is 
onsidered how qui
kly thisapproa
h 
an improve a poor solution. Moreover, this approa
h proved to be weakto solve the variants A
t90 and Res1.The hybrid methods proved very eÆ
ient in improving poor solutions, spe
iallyapproa
hWE. But, unfortunately, this approa
h was not able to es
ape from produ
-tion plateaus after a good solution was found. Also, approa
h WI did not performwell when the initial solutions were already good ones. To improve performan
e ofboth WE and WI, two orthogonal features of these approa
hes must be 
onsidered.First, the neighborhood exploration for these approa
hes may be improved, makingan e�ort to eliminate intrinsi
 symmetries. In this way, more promising neighbors
ould be visited. The other feature that needs to be 
onsidered is the tabu list. Itshould be better studied in order to prevent these approa
hes from getting stu
k inprodu
tion plateaus.Regarding the sensibility analysis, variants A
t 30, A
t60, Res2 and Res3did not impa
t the behavior of the methods. On the other hand, the behavior ofapproa
hes TabuPR, WE and WI were modi�ed when variants A
t90 and Res1were 
onsidered.In summary, the methods implemented provided high quality solutions to the oilprodu
tion problem. The hybrid methods adapted well for this problem. The nextstep is to improve approa
hes WE and WI, in order to make them 
omparable toapproa
h IA.Referen
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