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Abstract

Bacia de Campos is a large area in the sea where Petrobras explores petroleum
in deep waters. There are a lot of specific locations in this site that have been
determined as promising oil wells. Before the extraction begins, these locations
must be fully developed. The objective is to construct a schedule maximize the
oil production in a given amount of time, subject to a number of restrictions
such as a given precedence relation among the activities, the proper match
between resources and activities, and resource routing, among others . We pro-
pose a hybrid approach that combines constraint programming (CP) techniques
and tabu search in order to solve the problem. At each neighbor, a scheduling
problem and a first feasibility test are performed initially, without using CP.
Next, CP is used to assign the start time of the activities. Up to 500 activities
and 130 oil wells are considered in the instances tested. We used integer linear
models to prove that the solutions obtained are less than 9% from an global
upper bound. Finally, to estabilish the robuteness of our approach, a sensibil-
ity analysis was performed indicating that the technique performs well when
solving similar instances.

1 Introduction

Petrobras is one of the world most efficient companies concerning the extraction of
petroleum in deep sea waters. Bacia de Campos is a large sea area where Petrobras
explores petroleum. There are a lot of specific locations in this site that have been
determined as promising oil wells. Before the extraction begins, these locations must
be fully developed.
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Roughly, the development process begins when the well is drilled. After that,
a huge metal structure, named ANM, must be placed on its top. This structure
avoids the spill of oil and has special connections where equipments and pumps can
be attached to receive the extracted oil. Next, an oil pipe connects the ANM to a
manifold or directly to a platform on the surface. A manifold is a structure that
interconnects several oil pipes at the sea bottom. This structure connects to the
surface by a single pipe. After these activities are executed, the real oil extraction
can begin.

Petrobras is interested in routing the resources and scheduling the activities in-
volved in the development process of wells at Bacia de Campos. The objective is to
maximize the oil production in a given amount of time. In a typical problem instance,
up to 500 activities and 130 promising oil wells are considered. Clearly this is a very
large and real important combinatorial optimization problem.

In this paper, we propose a hybrid method that combines constraint program-
ming (CP) techniques and a tabu search heuristic that explores a very large scale
neighborhood to solve the problem. The aim in developing hybrid techniques to solve
combinatorial optimization problems is to strength the good features of the methods
that are being combined to compensate for their weakness, since these problems are
generally NP-hard [14].

Recently, a great deal of research has been focused on the integration of CP and
metaheuristics [15]. This can bring promising results when solving combinatorial
optimization problems [28, 29, 23]. Much effort has also been concentrated on the
study of local search algorithms that explore efficiently very large scale neighborhoods,
yielding very good results in several problems [13, 1, 2]. These algorithms can visit
large neighborhoods in polynomial time. When the exploration of a neighborhood
is NP-hard or when a polynomial algorithm is not known, a heuristic is used. The
integration cited earlier makes possible the exploration of large neighborhoods in
competitive time. As a result, the possibilities to obtain real improvement in the
solutions are very high, because with better quality and bigger sizes in a neighborhood,
the more efficient metaheuritics tend to perform.

We use CP to help the exploration of a very large scale neighborhood in a tabu
search framework. In our approach, CP is not used just to generate the initial solution
to the tabu search [27], nor just to verify the feasibility and cost of the neighbors like
in [25, 11, 8]. It is also not used to control the entire process needed to visit the
neighbors [23]. At each neighbor, the routing problem and a first feasibility test are
performed initially, without using CP. Next, CP is used to assign the start time of
the activities. A similar approach was used in [7] to solve the job shop problem.

The main objective of this work is to obtain the best solution to the problem
under consideration, but comparisons between a hybrid technique and a pure tabu
search approach is also appropriate. We want to investigate how well the tabu ap-
proaches adapt to this problem. So we also use a pure abu search with a polynomial
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neighborhood to solve the problem.

As there are no previous results for the instances used in this paper, an effort
to calculate strong bounds is undertaken. Finally, we also want to establish the
robustness of the methods, so a sensibility analysis is performed.

The remainder of this paper is organized as follows. Section 2 describes the prob-
lem and section 3 describes the instance provided by Petrobras and an instance gener-
ator. Section 4 presents the methods applied to solve the problem. Section 5 discusses
the calculation of upper bounds while section 6 shows the computational results ob-
tained. Section 7 describes the sensibility analysis. Finally, a conclusion is presented
in section 8.

2 The problem

Bacia de Campos is a large sea area (oil field) where Petrobras explores petroleum.
There are a lot of specific locations there that have been determined as promising
oil wells. Before extraction begins, these locations must be fully developed. This
process involves a number of different engineering activities, such as drilling activities,
connection activities and extraction activities. Some of the wells may be in different
stages of the development process.

Given a set of wells and the correspondent activities to be performed in each
well and a set of resources, like boats and derricks, the objective is to determine
a scheduling and a routing of the activities into the resources, satisfying certain
constraints and maximizing the oil production in a given period of time. This period
of time is called the horizon. It is important to note that activities can be scheduled
after the horizon. Preemption in not allowed.

The most relevant constraints to this problem are:

1. Technological Precedence: this constraint defines a partial order between
activities. If activity A must be performed before activity B, there is a tech-
nological precedence from A to B. This kind of precedence applies between
activities that belong to the same oil well.

2. Date Constraint: an activity may have a fixed date to begin and to end.
Another date constraint is that an activity must end before or begin later than
a specified date with or without lag time.

3. Activity Features: the execution of an activity may require an specific type
of resource. The resource must be able to operate at the appropriate depth and
it should also have the type of equipments required to execute the activity.
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4. Resource Availability: resources can only perform one activity at a time. Re-
sources can also become unavailable during a certain period due to maintenance
or due to contract constraints.

5. Oil Well Availability: each well can have only one of its associated activity
executed at a time. Even if there is no precedence constraint between two of
its activities.

6. Area Constraint: On some wells that are close to each other, for safety reasons
and depending on the type of the resources needed, overlapping execution of
activities should be avoided.

7. Efficiency factor: the processing time of an activity may change due to an
efficiency factor associated to the resource that will execute it.

In this paper, only constraints 1, 3,4, 5 are taken into account. These are the main
constraints. The real data provided by Petrobras only cover these constraints. But
other constraints, can be incorporated in the hybrid model without much effort, since
one of the features of CP is to allow the addition of new constraints easily. In the
tabu search approach, there is a stronger connection between the constraints and the
neighborhood, which makes it harder to introduce modifications in the model.

The production of petroleum is calculated as follows: each oil well has an associ-
ated outflow per day and a last activity that is responsible to turn it into a productor
well. When this activity is finished, the well is ready to produce oil. The total oil
production is given adding the values obtained by multiplying the daily outflow of
each well by the number of days between the beginning of its production and the
horizon. Wells that begin their production after the horizon are not considered in the
calculation.

3 The real instance and the instance generator

Petrobras has provided one real instance of the problem, which we call the real in-
stance. In order to access the robustness of our techniques, an instance generator
was implemented. The instance generator introduces small random changes in the
petroleum instances.

In this section, the features of the real instance and how the instance maker was
created will be presented.

The partial order of the activities associated with each well of the real instance
follows a pattern. The pattern is determined by the type of the activities and by the
precedence relationship between them. These patterns are depicted in figure 1. In
this figure, the nodes are the activities and the arcs are the precedence relationship
between them. There are different patterns with the same graph. This happens due
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to the fact that these patterns have the same precedence relationship between their
activities, but the type of their activities differs. For example, patterns 17, 19 and 20
present a total order between their activities, but the activities type of these patterns
are different. Figure 1 also shows that the order of the activities on the wells is not

always total. This fact will be important to establish that our neighborhoods are very
large.
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Figure 1: Precedence relationship between the activities of each pattern

Table 1 presents some numerical data associated with each pattern. Note that
the frequency of occurrence of each pattern is not uniform. For example, just a well
presents pattern 3, while 42 wells present pattern 19.

There are two type of resources: boats and derricks. In the real instance, there
are 3 boats and 5 derricks available. Whenever an activity requires a resource, any
of its kind can be allocated to it. That is, there is no distinction or restriction to
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[[ Pattern | #Oil Wells | %Oil Wells | #Activities [[ Pattern | #Oil Wells | %Oil Wells | #Activities ||

1 1 0,8772 1 13 8 7,0175 1
2 1 0,8772 1 14 2 1,7544 1
3 1 0,8772 1 15 1 0,8772 1
1 5 41,3860 2 16 1 0,8772 5
5 1 0,8772 2 17 2 10,5263 5
6 1 0,8772 2 18 7] 3,5088 5
7 1 0,8772 2 19 12 36,8421 5
3 1 0,8772 3 20 1 0,8772 5
9 21 18,4211 3 21 2 1,7544 5
10 1 0,8772 3 22 1 0,8772 6
11 1 0,8772 3 23 1 0,8772 7
12 3 2,6316 1 24 1 0,8772 12

Table 1: Pattern data - Real Instance

use any of the 3 boats, when an activity requires a boat. The same is true for the
derricks. The type of each activity determines the kind of resource needed to execute
it.

Table 2 shows the number of oil wells, activities, boats, derricks and patterns in
the real instance. Table 3 shows some numerical data about the activities processing
time in the real instance.

#0il Wells | #Activities | #Boats | #Derricks | #Patterns
130 482 3 5 24

Table 2: Quantitative data - Real instance

Mean | Median | Mode | Interval | Min | Max | Sum
17 12 1 129 1 130 8195

Table 3: Numerical data about the activities processing time - Real instance

Figure 2 shows the histograms for the outflow and the depth of the wells. The
unity of measure for the depth is meters and for the outflow it is an internal measure
unit used by Petrobras. We will always use this internal unity of measure in all fig-
ures and tables. This figure also shows that values of the outflows vary a lot. This
feature makes our problem harder, because there are two factors to be considered and
to be balanced: the outflow of each well and the minimum time required to execute
all of its activities until the well can produce oil. Another relevant information that
figure 2 brings is the fact that the maximum depth is 1600 meters. As all resources
of the real instance are able to operate on this depth, we conclude that the depth
of the wells do not restrict the choice of the resources needed to perform the activities.
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Figure 2: Histograms - Real instance

The Instance Generator

The pattern of the wells of the generated instances was determined by the fre-
quency of occurrence of each pattern on the real instance. The processing time (dura-
tion) of each generated activity was randomly chosen among the activities processing
time that have the same type as the generated activity on the real instance. The
outflow and the depth associated with each generated well were established following
a uniform distribution between the minimum and maximum values of the outflow and
depth, respectively, of the real instance wells.

As mentioned before, the resources of the real instance have all the necessary
features and are able to operate on depths greater than the depths associated to the
wells. So the generated resources also have all the possible features and are able to
operate in depths greater than the generated ones.

The number of oil wells, boats and derricks are the input parameters for the pro-
gram that generates the instances. The number of activities of each well is fixed once
its pattern is determined.

The notation used for the instance names are standardized as follows: the name
contains an identifier, the number of oil wells, derricks and boats. For example, the
name 2W112S5B3 means that instance 2 has 112 oil wells, 5 derricks and 3 boats.

When the instance generator was applied to produce an instance with 112 wells,
5 derricks and 3 boats, the result obtained appears in tables 4, 5 and 6 and in
figure 3. This instance was named 2W11255B3. Comparing with tables 2, 3 and 1,
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respectively, it can be seen that the results are very similar, except for some random
variations introduced by the instance generator. In tables 1 and 6 pattern 19 is the
most common one representing about 36% of the wells. Also, tables 3 and 5, show
that the mean processing time is about 17 days.

#0il Wells | #Activities | #Boats | #Derricks | #Patterns
112 464 3 5 24

Table 4: Quantitative data - Instance 2W112S5B3

Mean | Median | Mode | Interval | Min | Max | Sum
16.65 12 1 129 1 130 7726

Table 5: Numerical data about the activities processing time - Instance 2W11255B3

[ Pattern | #0Oil Wells | %Oil Wells [ #Activities || Pattern | #Oil Wells [ %Oil Wells [ #Activities |

1 1 0,892857143 1 13 3 2,678571429 4
2 0 0 1 14 5 4,464285714 4
3 0 0 1 15 0 0 4
4 5 4,464285714 2 16 0 0 5
5 0 0 2 17 7 6,25 5
6 4 3,571428571 2 18 3 2,678571429 5
7 0 0 2 19 40 35,71428571 5
8 0 0 3 20 4 3,571428571 5
9 28 25 3 21 1 0,892857143 5
10 3 2,678571429 3 22 2 1,785714286 6
11 2 1,785714286 3 23 1 0,892857143 7
12 2 1,785714286 4 24 1 0,892857143 12

Table 6: Pattern data - Instance 2W112S5B3

In this paper, four instances will be considered. The real instance 1W130S5B3
and instances 2W11254B3, 3W9555B3 and 4W130S5B3 generated by the instance
generator. The first generated instance shows a small number of wells and resources.
The second one maintains the number of resources and considers a smaller number
of wells. The last one was generated using the same number of wells and resources
as the original instance.

4 Techniques

We propose a hybrid method that combines constraint programming techniques and
a tabu search heuristic that explores a very large scale neighborhood. We use CP to
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Figure 3: Histograms - Instance 2W11255B3

help the exploration of a very large scale neighborhood in a tabu search framework. At
each neighbor, the routing problem and a first feasibility test are performed initially.
Next, CP is used to assign the start time of the activities.

This section describes, in details, how each of these techniques are applied and
combined to solve the oil problem. Subsection 4.1 shows how the initial solutions
were generated. Subsection 4.2 describes the neighborhoods used in this paper. It
also presents a proof that finding the start time of the activities in each neighbor, while
maximizing the total production is an NP-hard problem . Subsection 4.3 details how
CP is used to assign start times. Finally, subsection 4.4 describes some particularities
of tabu search when each neighborhood of section 4.2 is used. It also describes a pure
tabu search approach.

4.1 Initial Solution

The tabu search method requires a feasible initial solution. This subsection will
describe four techniques that were used to generate initial solutions to the problem.
The first two techniques are based on constraint programming and were imple-
mented using the ILOG Scheduler and the ILOG Solver'. We will call them CP1
and CP2, respectively.
The variables and constraints used on CP1 and CP2 are the same. A set of
variables is associated to the resources and another set is associated to the start

!Softwares from the ILOG suite. http://www.ilog.com
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times. As described in section 2, only constraints 1,3, 4,5 were enforced. We did not
spend much effort on refining the constraint programming models, since the initial
solution were not our main objective.

The last two techniques are greedy heuristics. We will call them H1 and H2.
These two heuristics proved much faster than the previous techniques and the oil
production obtained using H1 proved to be the highest among all techniques for all
considered instances, as will be discussed later.

e CP1

The relevant point about this technique is the strategy used to instantiate the
variables. The variables that represent the resources are instantiated first and
then the values of the start time variables are determined.

The order used for selecting the next variable for labelling is the same for the two
sets of variables. It is based on the following rule: the variable that represents
the activity with the greatest number of direct successors, greatest total number
of successors and longest duration is chosen first.

The values assigned are chosen by internal algorithms of the ILOG Scheduler.
Due to limitations of the software, in this model, all activities must be executed
before the horizon.

o CP2

As in the previous technique, the relevant information is the instantiation strat-
egy. And again the resources are instantiated before the start time and the order
is the same for both sets of variables.

The selection order is based on the following priority rule: the estimated yield
of the correspondent well of each activity is added to the number of its direct
successors. The variable that represents the activity with the greatest sum is
selected first. The yield of each well is estimated considering that all of its
activities are executed sequentially without interruptions, and its production
starts when the last activity of the sequence is finished. As the yield values are
either equal or differ by a great amount, the number of direct successors is used
to break ties.

The value chosen depends on the type of the variable. The value designated
to variables that represent resources corresponds to that resource that matches
the activity type and which has the least number of activities assigned to it.
The value assigned to the start time variables is the least value of their present
domain.
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e H1

This heuristic tries to finish first the wells that have the greatest outflow or the
wells that have the least remaining time.

To reach this objective, an available resource is immediately allocated to an
activity that is feasible to be executed by this resource at this moment. If there
is more than one such feasible activity, the activity chosen is:

1. The activity that has the best value for

(horizon — (actualTime + remainingTime)) x out flow

where horizon is the time limit specified, actualTime is the start time for
the activity, remainingTi1me is the total processing time for all remaining
activities in the correspondent well, and outflow is the outflow of the
associated well;

2. The activity with the greatest number of total successors;

3. The activity with the longest duration.

The second and third rules are used to break ties.

Initially, the algorithm follows these rules and assigns activities to resources
until all of them are busy. Every time an activity is terminated, its resource
is released. At this moment all its successor activities become available for
scheduling. Another activity is selected, following the priority rules described
earlier, and the cycle repeats. The algorithm terminates when all start times
are assigned.

e H2

This heuristic, as in the first two techniques, first allocates the resources and
then assigns the start times.

For each activity, the heuristic verifies if there are activities on the same well
that are already allocated to resources. If this is true and if among the resources
allocated to the activities of the same well, there are resources able to execute
the considered activity, the heuristic chooses randomly one of these resources. If
one of the last two conditions is false the heuristic chooses randomly a resource
among all possible resources.

To determine the start times, a data structure is used to store all available
activities, i.e., the activities whose predecessors have already been scheduled.
Initially, this data structure contains all activities without predecessors. At



12 Nascimento, Moura, and Souza

each iteration, an activity is chosen from this data structure, following the
priority rule of H1. The actuallvme of each activity is the earliest possible time
permitted by the actual scheduled resource and the other executing activities
that belong to the same well. The algorithm finishes when all activities are
scheduled. i.e., the data structure is empty.

Table 7 shows the production obtained for the initial solution of the real and
generated instances that are considered. The horizon was 1500 days for all instances.
The computational time of techniques CP1 and CP2 was less than 200 seconds and
less than 60 seconds, respectively, for all four instances. The computational time of
both H1 and H2 was less than a second. Cells without value means that no solution
was found in 200 seconds?.

H Instance H CP1 ‘ CP2 ‘ H1 ‘ H2 H
1W130S5B3(real) || 163.6 | 207.4 | 246.2 | 206.5
2W11254B3 - 184.3 | 220.3 | 173.3
3W9555B3 155.6 | 187.3 | 225.4 | 185.7
4W13055B3 - 218.9 | 276.5 | 218.3

Table 7: Initial solutions

As H1 obtained the best results for all instances, it will be used to generate the
initial solution of our instances. In order to test the behavior of our techniques when
a poorer initial solution is considered, we will also use H2 as an algorithm to obtain
initial solutions, since it is much faster then CP1 and CP2. Whenever H2 is used
for initial solutions, this fact will be clearly stated.

4.2 Neighborhoods

It is easy to note that our problem and the Flexible Job Shop problem (FJS) [20] and
the Job Shop Schedule with Multi Purpose Machines problem (MPM) [6] are very
similar. In each case, an oil well corresponds to a job and the set of activities to be
performed in each well corresponds to the set of operations associated with each job.
The precedence constraints between the activities corresponds to the order between
the operations of each job. If the FJS is considered, there is a total order among the
operations of the same job. In our problem, this is not necessarily true. In some wells,
the precedence restrictions only give a partial order. The boats and derricks are the
machines that execute the operations. Given these similarities, our neighborhoods
are inspired by ideas already used to solve these problems [10, 9, 17, 20].

2All computational times refer to a PC platafform with 1 GHz processor and 1 Gb of memory
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Disjunctive Graphs

We use the disjunctive graph model (DG) to represent our neighbors. Disjunctive
graphs were created by Roy and Sussmann [26] to model and solve job shop problems
(JSP). Balas [5] was another author to extensively explore the proprieties of this
graph.

Figure 4 shows a disjunctive graph for a JSP with 4 jobs and 3 machines. In
this figure, complete lines are called conjunctive arcs. They represent the precedence
constraint among the activities. The dashed lines are the disjunctive arcs. They
represent the order of the activities in the resources. Every time two activities are
assigned to the same machine, a new bi-directed disjunctive arc is added between
these two activities. Whenever the order between two activities is established, the
correspondent bi-directed disjunctive arc is oriented, representing this order. It is
important to note that when there is no precedence constraint between two operations
of the same job, or in our case, two activities of the same well, bi-directed disjunctive
arcs are added between these activities, since the order of execution is not known.

Machine

<----p»  disjunctive arc

Figure 4: Disjunctive Graph

—®  conjuctive arc

The solutions and neighbors of this paper are represented using this graph. If after
the addition and orientation of the disjunctive arcs an acyclic graph is obtained, the
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solution/neighbor is considered feasible and the activities start times can be assigned.
If the arcs establish a total order among the activities, the start times can be obtained
in polynomial time by running a topological sort algorithm [12]. This situation will
be addressed on the following paragraphs. If a total order is not established, the
problem of assigning the start times to the activities maximizing the production is
NP-Hard. Subsection 4.2.2 presents a reduction that proves this fact.

Regular Measure of Performance - Dominant Sets - Types of Schedules

Baker [4] defines regular measure of performance and dominant sets for it. He
also defines the types of schedule: semiactive, active and nondelay. These definitions
are important because they explain why only the earliest possible start time of each
activity should be considered when the activities are totally ordered.

A schedule is called semiactive if given the order of the operations on the machines
and the total order of the operations on the jobs, no operation can be started earlier
without violating the established order. A schedule is active if no operation can be
started earlier without delaying other operations. Finally, a schedule is nondelay if
no machine is kept idle when there is an operation available for processing.

A performance measure Z is regular if the scheduling objective is to minimize
(maximize) Z, and Z can increase (decrease) only if at least one of the completion
times in the schedule increases.

According to [4], a set D is a dominant set of schedules for regular measures of
performances, if only solutions that are in this set are needed to be considered when
searching for the optimal solution.

In the case of job shop problems, active and semiactive schedules dominate the set
of all schedules if the objective is a regular measure of performance. In our problem,
the oil production is a regular measure of performance, so we can concentrate our
attention to active and semiactive schedules.

The following subsections describe the neighborhoods used in this paper.

4.2.1 Neighborhood 1 - Insertion

Given a solution represented by a disjunctive graph, this neighborhood is obtained
by choosing each activity and inserting it in all possible positions of all resources
that are able to execute it. The feasibility of each neighbor is tested by verifying if
the new disjunctive graph obtained is acyclic. Figure 5 shows the disjunctive graph
for a solution and the disjunctive graphs for the neighbors obtained when activity 1
is inserted in the second position of resource 3 and when this activity is inserted in
the third position of resource 3. The latter is infeasible, since its graph contains a
cycle, while the former is feasible. Note that the conjunctive arcs are the same for
all neighbors, due to the fact they represent the precedence constraint between the
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activities that belong to the same well. The disjunctive arcs are the ones that change
for each neighbor, since they represent the position of the activities on the resources.
In this figure, redundant disjunctive arcs are not shown. Clearly, this neighborhood
has O(n?) neighbors.

It is important to observe that on each neighbor, all existing disjunctive arcs
determine a total order of the activities on each resource. Clearly, in face of the
conjunctive arcs that may be, this is not sufficient to determine an optimal schedule for
all activities. Even when considering, in addition, the conjunctive arcs, the ordering
of the activities in a given well may not be known. This fact makes the optimal
assignment of the activities start time an NP-Hard problem. We use a reduction to
prove it. Therefore, this neighborhood is a very large scale neighborhood, because
despite the polynomial number of neighbors, the exploration of each neighbor is still
an NP-hard problem. On the other hand, if the conjunctive arcs define a total order
in each well, an optimal schedule can be found in O(n), as the semiactive schedules
are a dominant set.

4.2.2 Reduction

We consider two problems.

1. Assignment of optimal start times (Neighborhood 1) - Decision Prob-
lem

e Instance: Total oil production V' € Z*, horizon H € Z*, set P of oil wells,
set R of resources. For each r € R there is an associated ordered collection
of activities ax[r], 1 < k < n,, i.e., the resource r executes activity a[r].
For each such activity a (notation a is an abbreviation for ax[r]) there is
a processing time [(a) € Z;, an oil well p(a) € {1,2,---, P}, a type t(a)
and an outflow v(a) associated to it. The activity type defines a partial
order between the activities of the same well.

e Question: Is there a time instantiation o(a) for each activity a, such that
the order of the activities on each well and the order of the activities on
each resource is respected, and the total oil production obtained within
the horizon H is equal or greater than V7 Activities from the same well
may not overlap. The oil production is given by:

> max(0, H — o(a) — l(a)) x v(a).

2. Job shop scheduling - Decision Problem
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cycle

(c) Infeasible neighbor

Figure 5: Current solution and neighbors obtained when activity 1 is moved to the
second and third positions of resource 3
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e Instance: A deadline H € Z*, number m € Z* of processors, set .J of jobs,
each j € J consisting of an ordered collection of operations #,[j],1 < k <
nj. For each such operation ¢ (the notation ¢ is an abbreviation for t[j])
there is an associated length [(t) € Z; and processor p € {1,2,---,m},
where p(t[j]) # p(tr+1lj]) forall j € Jand 1 < k <n,.

e Question: Is there a time instantiation o(¢) for each operation ¢, such
that the order of the operations on each job is respected, two operations
designated to the same processor do not overlap, and o(t) + () < H?

Theorem 1: Problem Assignment of optimal start times is NP-hard.

Proof: 1t is easy to see that problem 1 belongs to NP. As problem 2 is NP-hard
[14], a reduction that transforms problem 2 to problem 1, in polynomial time, proves
that the latter is NP-hard. We will consider that the answer obtained to problem 1
will be the answer given to problem 2.

Let an arbitrary instance of problem 2 be given by the deadline H, m processors,
the set J of jobs and the ordered sequence of operations associated with each job. In
order to map this problem into problem 1, each job j € J turns into a resource r € R.
The set of operations associated with each job in problem 2 is the ordered collection of
activities of each resource. The length of the operations /() is the processing time of
the activities [(a) and the processor of each operation p(t) is now the well associated
to each activity p(a). The activities type in problem 1 is chosen in such a way that it
does not have precedence relationship with any other type. The horizon of problem
1 is set to H 4+ 1 and the total production V is set to 1.

In addition, a dummy oil well is created and |.J| + 1 dummy activities are created.
The processing time of these activities will be zero and their associated well will be
the dummy well. The resource designated to the first dummy activity is resource 1,
the resource associated to the second dummy activity is resource 2, and so on. Each
dummy activity will be placed at the last position of the corresponding resource. It is
feasible to associate to each dummy activity a unique resource and a position on this
resource, because an instance for problem 1 provides an ordered colletion of activities
to each resource. The dummy activity |.J| + 1 does not need a resource. The type
of the first |J| activities is t1, a new type. The type of the last dummy activity is
production, also a new type. The precedence relationship between these two types
is: t1 — production .

Therefore, the instance of problem 1, that is created, will have |.J| resources, m+1
oil wells and (3 ;c;n;) + |J| 4 1 activities.

The outflow associated with each activity a is set to zero, except when a is the
last dummy activity, in which case its outflow is set to 1.

Figure 6 shows an instance of problem 2 with 2 jobs and 3 processors, and the
instance of problem 1 obtained using the transformation described above.
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Figure 6: Example of reduction
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Since the dummy activity associated with each resource is the last to be executed in
that resource, and given the precedence relationship between these dummy activities
and dummy activity |J| + 1, we can conclude that dummy activity |J| + 1 will be
the last one to be concluded among all activities. So, by construction, the expression
that gives the total oil production reduces to

max (0, H + 1 — o(d)),

where d is the dummy activity |J|+ 1. Therefore, the total oil production is equal
or greater than V', if and only if, o(d) < H. Since o(a)+(a) < o(d) for all activities
a, it implies that o(a) + ((a) < H for all activities a. As the activities of problem 1
corresponds to the operations of problem 2, we also have that o(t) 4+ ((t) < H for all
operations t. So if the answer to the question of problem 1 is yes, the answer to the
question of problem 2 must also be yes.

On the other hand, the total oil production is less than V', if and only if, o(d) > H.
This means that it was not possible to terminate all the activities before the horizon, i.
e., o(a)+1(a) > H for an activity a. Due to the mapping between the two problems,
it is known that the operation ¢ that corresponds to the activity a is not finished
before the deadline H either. So if the answer to the question of problem 1 is no, the
answer to the question of problem 2 must also be no.

Clearly, the mapping that transforms problem 2 to problem 1 can be done in
polynomial time. This establishes that problem 1 is NP-hard.

4.2.3 Neighborhood 2 - Window

This neighborhood is a generalization of the former one. The motivation is to gen-
erate neighbors more able to perform big modifications on the current solution than
the neighbors of the previous neighborhood. The intention is to obtain a greater im-
provement of the total oil production. To reach this objective, this neighborhood will
consider two sets of activities called windows and a main activity. The windows are
choosing according to this activity. The activities in the windows will be freed from
their current position, but their resources will remain the same. Their new positions
will be determined later, when the start times are assigned.

Now the neighborhood will be explained in details. The main idea is not only to
insert a single operation on every position of each resource that is able to execute it,
but also to free the current positions on the resources of the activities that are inside
a window. The considered activity, that from now on will be called main activity is
on the center of the window and a parameter sets its length. The parameter indicates
how many consecutive activities will be freed on each side of the main activity. If
the parameter is zero, only the main activity will be considered. Activities that are
scheduled earlier on the same resource than the main activity are on its left and
activities scheduled later are on its right. If there are less activities on a side than
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the parameter, only these activities will be considered on that side. The order of the
activities outside the window is preserved. In other words, the disjunctive arcs of the
activities in the window are not oriented in the neighbors. The disjunctive arcs that
were related with the main activity are deleted, and new disjunctive bi-directed arcs
are inserted between the main activity and the activities that are allocated on the
new resource of the main activity.

A window is also considered in the destiny resource of the main activity. Just
like the other window, a parameter will determine its length. The center of this
window be the activity that occupies the same position as the main activity on its
original resource. If the position of the main activity on its original resource is greater
than the highest position of the destiny resource, then the highest position will be
considered as the center of the window. In that case, the right side will be null.
The activities within this window will be freed of their positions, like the activities of
the first window. This means that their disjunctives arcs will turn from oriented to
bi-directed. If the parameter is zero, this window will not be considered.

Figure 7 illustrates the disjunctive graph of a current solution and the disjunctive
graph obtained when activity 1 is the main activity and the new resource allocated
to it is resource 2. The parameters of both windows are 1.

Note that as in neighborhood 1, each activity will be assigned to all resources
that are able to execute it. But unlike neighborhood 1, a fixed position will not
be assigned to the activity. This will be established implicitly when the start times
are determined. The other difference is that the positions of the activities within the
windows are not known either. Clearly, if both parameters are zero the only difference
between neighborhood 1 and this neighborhood is that on the former, the position of
the main activity is fixed on the new resource, and this does not occur on the latter.

It is easy easy to see that the neighbors are defined by the main activities and
their destiny resource. It occurs because the windows are determined depending
just on the choice of the main activity and its destiny resource, since the length
of the windows is a constant parameter. So, there are O(nm) neighbors in this
neighborhood, where n is the number of activities and m the number of resources.
On the previous neighborhood, the position of the activities on each resource was
known before the start times were assigned. Although, even considering this fact, the
problem of assigning the optimal start times proved NP-hard. In this neighborhood,
the position of the activities is not known for certain resources. So, the problem of
assigning the optimal start times for the neighbors of this neighborhood is at least as
hard as the corresponding problem of the previous neighborhood.

4.2.4 Neighborhood 3 - Well

The idea behind this neighborhood is the intuition that activities of the same well
should stay close to each other in order to maximize the production of the oil field.
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(a) Current Solution

Window 1 Main activity

R1

Window 2

R2

(b) Main activity and windows when parameter of both
windows is 1

(c) Disjunctive graph representing the neighbor

Figure 7: Example of neighborhood 2 - Window
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Therefore, this neighborhood is slightly different from the previous one. There is
also a main activity that is the activity that may change from its current resource to
all possible resources. But instead of freeing the position of activities that are within
a window, this neighborhood frees the position of the activities that belongs to same
oil well of the main activity, preserving their resources.

The activities of other wells may also be freed. There is a parameter that indicates
how many wells will be freed. When this parameter is set to one, only the well of
the main activity is considered. If the parameter is greater than 1 the priority rule
to choose the wells is: on the current solution, for each well, determine the maximum
distance (difference of start times) between two consecutive activities of the well.
Then, multiply this distance by the corresponding outflow of the wells. The higher
this value, the higher the priority. Using this priority rule, we will select wells which
activities are more spread and that have a bigger outflow. So there will be the chance
to put together these activities and maybe improve the production.

Figure 8 illustrates the disjunctive graph of a current solution and the disjunctive
graph obtained when activity 1 is the main activity and the new resource allocated
to it is resource 2. The parameter is set to 1. Activities 2,3 belongs to the same well
as activity 1, so they are freed of their positions.

As neighborhood Window, this one has O(nm) neighbors, and again the optimal
start time assignment to each activity, given the disjunctive graph, is an NP-hard
problem, as this problem is at least as hard as the corresponding problem of neigh-
borhood Insertion, due to the fact that the activities position on certain resources in
this neighborhood is not known before the start times instantiation.

4.3 Assigning the start times

Two techniques were used to instantiate the start times of the activities on each
neighbor. One will be called Greedy and the other one will be called Optimized. The
first is a greedy strategy and the latter uses CP to perform the instantiation.

e Greedy: This technique was implemented in C++ without using CP. A heap
S is used to store the activities that are ready to be scheduled, as all their
predecessors have been scheduled. The order on the heap is based on the earliest
possible start time of the activities. The earlier the start time, the higher the
priority on the heap. An algorithm that generates nondelay schedules [4] is used
and the top activity of the heap is the one selected on each iteration.

Initially, heap S contains all activities without predecessors. On each iteration,
the top activity of S, called a, is removed and its start time is set to the earliest
time allowed by its actual resource and the other executing activities that belong
to the same well. After that, all successors of activity a are inserted in S. When
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(c) Disjunctive graph representing the neighbor

Figure 8: Example of neighborhood 3 - Well
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S gets empty, the algorithm terminates. When this happens all activities are
already scheduled.

Optimized: This technique is based on CP and was implemented using the
ILOG Solver. The constraints of the model are:

1. technological precedence constraints;
2. the order of the activities on the resources;

3. constraints that state that activities on the same resource or of the same
well can not overlap.

One of the most common branching strategy for scheduling problems that have
the makespan as the objective function is called Settling FEssential Conflicts
(SEC) [18, 3]. This strategy determines a scheduling order for all activities,
i.e., it determines the orientation of the disjunctive arcs until all of them are
directed. Then, given the total order that was constructed, a simple topological
sort algorithm determines the activities start times, generating an semiactive
schedule.

This strategy performs well when the objective is the makespan due to certain
proprieties of the underlying graph [17] and due to an efficient calculation of
some lower bounds [17, 20, 19] that enable, on each node of the tree, the orien-
tation of several disjunctive arcs at a time. Since our objective function is not
related to the makespan, this branching strategy can not be applicated to our
problem. So we considered a different strategy.

In our strategy, constraints 1 and 2 are imposed upon the model at the begin-
ning, as is natural in any CP model. At this moment, these constraints are
given by the disjunctive arcs that are already oriented and by the set of con-
junctive arcs. These restrictions are used to prune the domain of the variables.
The variables of this model represent the start time of each activity. At the
labelling phase, the CP solver establishes the start times.

At first, the default labelling mechanism present in the ILOG Solver was used.
As required by the CP solver, parameters indicating the objective function and
the maximum execution time were also indicated. Furthermore, a priority rule
to choose the order of instantiation of the variables and a rule to choose a
value of the domain were also specified. The priority rule was: among the
activities not yet instantiated, the one that had the earliest possible start time
was selected. Ties were broken arbitrarily. The value chosen was the smallest
of the current domain.

Note that using this default procedure we are not taking into account the knowl-
edge that the active schedules are a dominant set for this problem. But there is
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a more serious problem with this procedure. The default labelling mechanism
acts like this: if a variable a is instantiated before a variable b, in order to
backtrack to a new value for a, all the domain of b must be exhausted.

A simple example shows how this can be bad to the performance of this strategy.
The instance is: two oil wells, a set of 5 activities and 2 resources. Activities
1,2 and 3 belong to well 1 and activities 4 and 5 to well 2. All resources are able
to execute all activities and the precedence constraints are represented in figure
9. Activities 3 and 5 turn the respective wells into production. The outflow of
both wells is 10 and the horizon is also 10.

Figure 9: Technological Precedence Constraint

Suppose that on a neighbor the order of the activities on the resources is: Re-
source 1: 1,4,5 and Resource 2: 2,3. If the instantiation order, according to
the earliest possible start time, is 2, 1,4, 3,5, the start time of each activity will
be set to values as shown on table 8. The total production is 650. But if the
start times were selected as in table 9, the production would be 700.

Activity | Start time
1 5
2 0
3 10
4 10
5 15

Table 8: First variable instantiation

The labelling algorithm would have to instantiate activity 2 with time values
1,2,3,4,5 before it reached the same result. Worse yet, since activity 2 is the
first activity on the instantiation order, the domain of all the other variables
would have to be exhausted before a new value is assigned to it.

On the other hand, if, by some means, after reaching the solution shown in
table 8, the labelling mechanism could be forced to immediately return to the
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root of the search tree, and be given a new instantiation order as 1, 2,4, 3,5, the
improved solution of table 9 would be readily reached.

Activity | Start Time
1 0
2 5
3 5
4 10
5 10

Table 9: Final variable instantiation

In our strategy, the default labelling mechanism was replaced by a new special-
ized mechanism. Our mechanism changes the instantiation order, considering
only active schedules. To accomplish this, the variable instantiation is made in
two phases. At each level of the search tree, a variable is created to represent
the activities that can be instantiated on that level. These variables are called
level variables. The feasible activities of each level (those that are on the domain
of the level variable), are the activities with indegree zero and that obey the
active schedule rule. The indegree of an activity is the number of unscheduled
predecessors of the activity. The indegree is dynamically updated during the
whole search process. The start indegree is given by the orientated arcs of the
disjunctive graph that represents each neighbor. Each step of the search process
consists in choosing a value of the domain of the corresponding level variable
and assigning the earliest possible time to the variable that represents the start
time of the activity indicated be the level variable. So, when a solution is found
or when an fail occurs, the backtracking is done on the level variable, not on the
variable that represents the start time, allowing changes on the instantiation
order of the start time variables to occur. Furthermore, to improve the Solver
pruning mechanism, whenever a solution is found, a constraint that states the
following solutions must have a production higher than the production of the
current solution is added.

Figure 10 shows the time and the total oil production obtained per iteration
of a hybrid tabu search algorithm applying the default and the specialized [a-
belling mechanism to the same problem instance and the initial solution. The
neighborhood used was neighborhood Insertion. The tabu search algorithm will
be explained in detail on the next subsection. The maximum execution time
per iteration allowed was 410 seconds.

Analysing this figure, it is easy to see that the specialized mechanism is about
100 times faster than the default mechanism, on most iterations. Furthermore,
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the specialized mechanism was able to find an optimal solution. On most itera-
tions, the default mechanism terminated when it reached the maximum allowed
execution time, without finding an optimal solution.

For this reason, only the specialized version was considered when using the
optimized technique to assign the start times.

4.4 The tabu search metaheuristic

In subsection 4.2 the structure of the neighborhoods was explored and subsection
4.3 explained how the start times were selected. This subsection gives details of the
tabu search method for each neighborhood. These details include the stop rule, the
tabu list, the aspiration rule and the selection of the neighbor. This subsection also
discusses a pure tabu search approach and the neighborhood used in this approach.

e Stop Rule

The stop rule for all neighborhoods is the execution time. This makes the com-
parison among the neighborhoods fair, since no matter how many iterations or
neighbors each one has, after the same amount of time all of them are termi-
nated and the results are compared. In this paper the maximum execution time
is 3600 seconds.

Tabu List

For neighborhoods Insertion and Window the main activity of the selected
neighbor is considered tabu. This means that this activity can not be the
main activity while it is considered tabu, unless it satisfies the aspiration rule.
A neighbor is considered tabu if its main activity is tabu. In this paper an
activity is considered tabu for 50 iterations.

For neighborhood Well, the well of the main activity is considered tabu. This
means that the activities of this well can not be freed while the corresponding
well is considered tabu, i.e., they can not be the main activities nor the well
can be among the ones whose activities can be freed. In this neighborhood,
we do not have tabu neighbors. It is not allowed to join a tabu well to the
wells that will be freed. For this reason, the aspiration rule does not apply for
this neighborhood. So in section 6, whenever the number of tabu neighbors is
mentioned for this neighborhood, it means the number of times a tabu well was
forbidden to join the wells to be freed. In this paper a well is considered tabu
for 10 iterations.
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e Aspiration Rule

The aspiration rule for the neighborhoods Insertion and Window is: whenever
the production of a tabu neighbor is better than the best production found so
far, this neighbor is considered.

e Selection of the neighbor

The selection of the neighbor is quite different for the neighborhood Insertion
and the other two neighborhoods. So they will be explained separately.

Insertion neighborhood

Several approaches were tested to select the neighbor of this neighborhood. At
first, the whole neighborhood was explored using the Optimized technique
to instantiate the start times, and the best neighbor was selected. As the
time required for each neighbor was about 0.2 seconds, this approach turned to
be impractical, since there is approximately 250000 neighbors. In the second
approach, the whole neighborhood was explored using the Greedy technique
to instantiate the start times. This took approximately 15 seconds. Next, the
best x neighbors were explored again using the Optimized technique and the
best neighbor was selected. But computational tests showed that exploring only
the first y neighbors that improves the best solution was better than exploring
the whole neighborhood [22].

In the third approach, the one used in this paper, the neighborhood is explored
using the Greedy technique until y neighbors that improve the best solution
are found. Then x neighbors, © < y, are explored using the Optimized tech-
nique and then the best neighbor is selected. Two different strategies are used
to choose the x neighbors. The first chooses the x best neighbors deterministi-
cally. This approach was called ID. The second chooses = neighbors randomly
among the y neighbors. This approach was called IA. The values chosen for
y and = were y = 10 and x = 10, in the ID approach and y = 20,2 = 5, in
the IA approach. These numbers were chosen based on computational results
obtained in [22]. It is clear that if there are not y neighbors that improve the
best solution, the y best neighbors of the entire neighborhood are considered.

The Window and Well neighborhoods

For these two neighborhoods, the rule to select the neighbor is the same. On
both neighborhoods it was not practical to use the Greedy technique to select
neighbors. It was also not practical to explore the whole neighborhood, nor
even to select the first y best neighbors. The use of the Optimized technique
to find the optimal start times of the neighbors proved impractical too. This is
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probably due to the fact that obtaining good solutions in these more complex
neighborhoods is much harder. Note that the Greedy technique was operat-
ing on neighborhoods with a large number of disjunctive arcs that were not
oriented. This may have caused it to produce inferior solutions when consid-
ering neighbors that had a much better solution if a different ordering of the
activities was chosen. The Optimized technique takes about a second to find
a first solution at each neighbor and a great amount of time to prove that such
a solution is optimal.

We decided to use a strategy where the neighborhood is explored using the Op-
timized technique until a neighbor that improves the best solution is found, or
until the execution time on the neighborhood reaches 20 seconds. Furthermore,
the Optimized technique has a limited execution time on each neighbor. For
neighborhood Window this time limit was set to 1 second and for neighborhood
Well this time limit was set to 3 seconds. This means that the optimality of
each neighbor may not be proved. The selected neighbor is the best one found.

In section 6, we will call WI the neighborhood Window when this approach is
used. Similarly, when neighborhood Wellis used with this approach we will call
it WE.

After performing some computational tests using neighborhood Window, the
value chosen for the window length of the main activity was 3 at the original
resource, and was set to 4 at the destiny resource. After testing neighborhood
Well, the number of wells freed was set to 90.

As just the first y best neighbors are explored by all approaches, the order of
exploration of the neighbors makes a difference. The priority rule used to choose
the main activity, i.e., to choose the neighbor, is the same priority rule used by
algorithm CP2 of subsection 4.1.

The Pure Tabu Search Technique
This tabu search approach was implemented by Vinicius Fortuna in his under-

graduate project.

First of all, before defining the neighborhood used, it will be explained how solu-

tions are represented. A solution is represented by an ordered list of activities together
with a data structure that indicates which resource is allocated to each activity.

Consider graph G where its nodes represent the activities and its arcs the prece-

dence relationship between them. Using this graph, a schedule is obtained in the
following way:

1. Add arc (aj, aj) to G if activity a; is placed before activity a; in the ordered list

and they belong to the same well or are executed by the same resource. Note
that graph G provides a total order between the activities.
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2. The start time is obtained running a polynomial time topological sort algorithm
over graph G.

There are two movements that define the neighborhood. The first consists in
changing the resource allocated to an activity to all resources able to execute it.
The second consists in removing an activity from its position on the ordered list and
inserting it in all positions of the list, preserving the allocation of the resources. Both
the feasibility and the schedule of each neighbor is obtained by running a topological
sort algorithm over the correspondent graph G. This neighborhood has O(nm + n?)
neighbors, where n is the number of activities and m is the number of resources.

The stop and aspiration rules are the same rules used for the hybrid approaches.
Two strategies were adopted to identify tabu movements. The first considers tabu
just the movement used to generate the selected neighbor. This strategy will be called
TabuPF. The second considers tabu groups of movements. If the chosen movement
alters the resource of an activity, then all movements that alter the resource of this
activity are considered tabu. If the movement changes the position of an activity, all
movements that change the position of this activity are considered tabu. This strategy
will be called TabuPR. A movement or a group of movements are considered tabu
for 25 iterations.

The first neighbor that improves the best solution is the selected neighbor.

5 Upper Bounds

As there are no previous computational results for the problem instances used in this
paper, the calculation of upper bounds is important to determine the quality of our
solutions.

This section explains how four upper bounds were calculated to the problem. In
fact, from one approach to another, the intention was to improve the bound. So the
first approach, called Upper0 provides the weakest bounds, while the last approach,
called Upper3 provides the tighter bounds. Upper0 is based on a combinatorial
argument while the other bounds are obtained solving relaxations of the original
problems using Integer Linear Programming.

e Upper0
This bound is given by the following equation:

w

S(H- Y d)xu

=1 jEAct;
where w is the number of wells, H is the time horizon, Act; is the set of activities
of well 7, d; is the the processing time of activity j and v; is the outflow of well
i.
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This equation assumes that there is an unlimited number of resources that are
able to execute any of the activities. The number of resources is not being taken
into account and, since this number is very limited, the bound obtained with
this approach is poor.

Upperl

In this approach, an integer linear model is formulated to obtain the bound.
The corresponding I[P model takes into account the fact that there is a lim-
ited number of resources. In this model, all available resources can execute all
activities, i.e., we have a situation similar to a parallel machine environment

[24].

The model considers that each well has just one activity. The processing time
of this activity, denoted by A, is the sum of the processing time of all activities
of the correspondent well. After this activity is executed, the well is considered
apt to produce oil. Since this single activity represents all activities of a well,
preemption will be allowed. In this case preemption can occur at any instant
during the execution time of an activity. This turns this problem into a relaxed
version of the original problem. The objective function is the same as the
original problem, that is, to maximize the total oil production. This relaxed
version of the problem will be denoted by P||Production.

In the model used in this approach, the value of A will be rounded to the
highest multiple of 5 less than or equal to A, as the time in this model will be
discretized in unities of 5, i.e., each time unity in the model represents 5 time
unities in the original problem. It will be done to reduce the size of the model,
since computational tests showed that it is impractical to consider models where
the time is discretized in unities of 1.

The binary variables of this model are x;, and it is set to 1 if well ¢ is finished
at time ¢, and, it is set to 0 otherwise.

The objective function is:

max Z Z(H — t)vimy,
=1 t=0
where constants w, H and v; retain their meaning.

The constraints of this model are:

L. Zf:/gl"itﬁl, i=1-w;
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2, 22:0 i1 xikAi/E) <txm, t=0-- -H/5,
where m is the number of resources;

3. x;y =0, forall ¢ and ¢ such that A; > t.

Constraint 1 says that there is at most one termination time for each well.
Constraint 2 enforces that there must be enough time, summed over all the
resources, to execute all the wells that are terminated by instant . Note that
this constraint allows the execution of a well in more than one resource at the
same time. It is important to observe that if the time horizon is large enough
for all wells to be terminated within the time horizon, then all of them will
be performed, as that the total production is maximized. Restriction 3 tries
to reduce the number of possibilities, by forcing a well not to be terminated if
there is not enough time by instant ¢.

e Upper2

This approach improves upon the previous one, by not permitting simultane-
ous execution of the same well on different resources. The relaxed version of
the problem modelled in this approach is the same as the previous one. The
difference being that, except for constraint 2, which is replaced for two new
constraints and for a new integer variable.

The replaced constraint reflects the fact that, according to theorem 2 below,
preemptions are redundant for problem P||Production, i.e., the objective value
may not be improved by allowing preemptions.

Theorem 2: For problem P||Production preemptions are redundant.

Proof: The proof is divided in two cases. Case 1 occurs when the time horizon
is large enough for all wells to be finished within it. Case 2 occurs when this is
not true.

— Case 1:
In this case, solving problem P||Production is equivalent to solve problem
P|| > w;C; (the a|B|y-notation of [16] is used to represent the parallel
machine problem of minimizing the weighted sum of completion time).
A classical result of McNaughton [21] shows that for P|| > w;C; preemp-
tion is redundant. Therefore, preemption is also redundant for P||Production,
since they are equivalent.

— Case 2:

Consider an optimal solution for P||Production, when preemption is al-
lowed and let S be the set of wells which are finished before the horizon.
Then, according to Case 1, the wells in S can also be optimally scheduled
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in an nonpreemptive way. As the wells not in S do not contribute to the
objective function, an optimal solution for P||Production, when preemp-
tion is not allowed, is also an optimal solution when preemption is allowed.
So the theorem is established.

The new integer variables of this model are r,. It counts how many resources are
busy at time ¢. Since the problem has m resources, a straightforward constraint
is:

re<m, t=0---H/5

Constraint 2 of the previous model is replaced by this constraint. In addition,
a new constraint must be written so that r; reflects the number os active wells
at instant ¢. The following constrain is used:

H/5
rt:Z Z Tig, t=0---H/5.
k=t ik<t+A

It states that if a well ¢ is finished at instant k, a resource is considered busy
during instants k — 1,k — 2,--- k — (A; — 1), since the well will be executed
without interruptions.

In fact, we do not need to consider variables r; explicitly. In the implementation,
these variables will be replaced by the sum they represent, which in known in
advance.

Some of the possibilities of the previous model are eliminated, as there must
be enough time in each resource to execute all the activities that are allocated
to it. This was not true in the previous model, since the time available in all
resources was checked at each instant.

Upper3

All the three previous models did not take into account some relevant informa-
tions present in the problem instances considered.

One such information is that there are two main groups of resources: derricks
and boats. In the instances considered, all the activities that require derricks
may be executed by any of them. The same occurs with the activities that
require boats. But the relevant fact is that there are more derricks than boats
and many more activities that require the former than the latter.

Moreover, the pattern present in all wells uses resources in a sequence
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Derrick — Boat — Derrick.

Observe that the number of activities being executed in each phase may be
different, including zero.

Thus, the version of the problem considered in this approach assumes that each
well consists of three activities. The first activity represents all activities of the
well that are executed by the first derrick. The processing time of this activity
will be the sum of the processing time of the represented activities or it will
be zero, if the well does not have this type of activity. The same mechanism
is applied for the other two activities. The first activity of well ¢ will be called
Al and its processing time Al the second will be called A? and its processing
time A?, and the third will be called A? and its processing time A2, Activities
Al and A? must be executed by derricks and activities A? must be executed
by boats. Furthermore, the precedence relationship A} — A? — A? must be
respected. The production of well 7 starts when activity A? finishes. Again, the
objective function is the same as the original problem, that is to maximize the
total oil production.

Unfortunately, preemption is nonredundant for this relaxed version of the prob-
lem. A simple counter example shows it. Suppose there are two wells, two
derricks (51,52) and one boat (B1). The horizon considered is 25. The outflow
of the wells and the processing time of their activities is given in table 10.

[Wel [ A [A7] &7 [ Owflov |
1 10 7 2 1
2 15 1 2 2

Table 10: Durations and outflow

Figure 11 shows the optimal solution when preemption is allowed and when it is
not allowed. In this figure, the values inside the rectangles indicate the activity
that is being executed and the corresponding execution time. The values above
the rectangles indicate which resource is being used. The production for the first
case is 19 units, and it is 16 units in the second case, showing that preemption
is important in this example.

The idea behind the new model used in this approach to represent this version of
the problem is similar to the one used in approach Upperl. Note that in this
model there are constraints to represent the precedence relationship between
the activities of a well. As in the previous models, the values of A}, A? and A?
will be rounded to the highest multiple of 5 less than or equal to A}, A? and

)
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| S1 B1 P S|
Well 1: ' AW11/10 AW21/5 | | Atv21/2 Atv31/2l
s2 'Bl! S2 !
Well2: | Atv12/15 1 rtfzi Atv32/2| 1
0 10 15 16 18 20
(a) Optimal preemptive schedule - Production = 19
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(b) Optimal nonpreemptive schedule - Production = 16

Figure 11: Preemption is nonredundant

A2, respectively, as the time in this model will be discretized in unities of 5,
i.e., each time unity in the model represents 5 time unities in the problem.

This model has three groups of binary variables: x;, y;; and z;. Variables x;
are set to 1 if activity A} is finished at instant ¢ and 0 otherwise. Similarly,
variable y;; assumes value 1 if activity A? is finished at instant ¢ and 0 otherwise,
and z;; assumes value 1 if activity A? is finished at instant ¢ and 0 otherwise .

The objective function is:

w H/5

maxz Z(H — t)vizit

i=1 t=0
where the meaning of the constants w, H and v; is the same as in the former
three approaches.

The constraints for this model are:
L. (a) Zf:/glfzt <1, i=1-- w;

(b) Zf:/(?yitél, iZl---w;
(€) S <1, i=1-w;
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of boats;

3. (a
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b)
c)
)
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4. (a

~—~

b) Ll

thi/(;é Yit = 07
Etfi/(;é Zit = 07
Etfi/(;é Zit = 07

1=1---w;
i=1---w;
i=1---w;

(.’I?ZkAll/E) + ZZkA?/E)) S t X ma, t=0
the number of derricks;

Zk OE 1kaA/5<tXm27 t:O.

zy =0, Vit such that ¢t < Al/5;
yi =0, Vi, t such that ¢t < (A} + A?)/5;

ziy =0, Vi, t such that ¢ < (A} + A7 + A?)/5.
ZH/5t(yzt —xy) > A2/5, i=1--w
t(zzt — yur) > A} /5,

i=1w
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-~ H/5, where m, is

- H/5, where my is the number

Constraint 1 says that all phases of a well are terminated exactly once within

the time horizon or none of them are.

Like in the model used in approach

Upper0, constraint 2 enforces that there must be enough time in the resources
to execute all the activities that are finished before instant ¢. In addition, in
the current model it was necessary to consider the existence of two types of
resources. Note that this constraint allows the execution of an activity in more
than one resource at the same time. Constraint 3 tries to reduce the number of

possibilities. Constraint 4 states the precedence relationship.

Table 11 shows quantitative data for the integer linear models of the last three

approaches.

The instance considered is the real instance.

In this table, column

Constraints is the number of constraints, column Variables is the number of binary
variables, column Const. NZ is the number of nonzeros coefficients in the constraints
and column Obj.NZ is the number of nonzeros coefficients in the objective function.

Approach Constraints Variables | Const.NZ | Obj.NZ
Less | Greater | Equal

Upperl | 407 - 1470 31906 4819470 31694

Upper2 | 407 - 1470 31906 491189 31694

Upper3d | 920 212 3925 95718 12326123 | 31694

Table 11: Model quantitative data - Upper Bound - Real Instance

It can be observed from table 11 that the model for approach Upper3 is much

larger than the other two models.

On the other hand, the models of approaches
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Upperl and Upper2 have the same number of constraints and variables. The
difference between them lies in the number of nonzeros coefficients.

The order of magnitude of the number of constraints, variables and nonzeros is
the same for models that represent the real instance and for the corresponding models
for instances 2W112S54B3, 3W95S5B3 and 4W130S5B3. So the data of table 11 is
representative for all instances considered in this paper.

Table 12 shows the best bound obtained for the production by each approach. The
value between parenthesis indicates the percentage by which approaches Upperl,
Upper2 and Upper3 improved upon the values obtained for approach UpperO.
The value of the bound is in millions of unities. The models were implemented
and solved using the ILOG CPLEX. The maximum execution time was set to 3600
seconds. Table 13 shows the number of nodes in the branch tree traversed by each
approach and the gap between the best upper and lower bounds.

H Instance H Upper0 ‘ Upperl ‘ Upper2 ‘ Upper3 H
1W130S5B3(real) 378.6 | 310.2 (17.3%) | 300.6 (20.4%) | 287.4 (23.9%)
2W11254B3 363.8 | 310.4 (14.6%) | 302.4 (16.8%) | 270.9 (25.5%)
3W9555B3 317.8 | 280.3 (11.8%) | 274.9 (13.5%) | 257.2 (19.0%)
4W13055B3 420.7 | 371.6 (11.6%) | 369.6 (12.1%) | 334.7 (20.4%)

Table 12: Upper Bounds

Instance Upperl Upper2 Upper3
Node | Gap || Node | Gap || Node | Gap

1W130S5B3 || 1600 | 1.88% 1 0 1 00
2W112S4B3 || 1200 | 1.87% 1 0 1 00
3W95S5B3 || 2580 | 0.55% 1 0 1 00
4W130S5B3 || 800 | 2.27% 1 0 1 00

Table 13: Computational quantitative data - Upper Bound

These two tables convey important informations. The only model limited by the
maximum execution time was Upperl. Model Upper2 is an improvement upon
Upper 1. This improvement made it possible for model Upper2 to find the optimal
solution for all instances and, after exploring just one node of the search tree. On
the other hand, Upper3 is the approach that provided the best bounds, improving
upon approach Upper0 by more than 19% in all instances. But this approach failed
to provide a feasible integer solution, since it execution was terminated because the
software ran out of memory after exploiting the first node of the search tree. The
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same occurred when some of the execution parameters of the ILOG CPLEX were
changed in an attempt to avoid this behavior. This fact can be explained by the
considerable size of this model.

Since Upper 1 was the only approach to explore more than a node of the branch
tree, figure 12 shows the evolution of the upper and the lower bounds on each node
for the real instance. Note that the upper bound remains the same in all nodes and
the lower bound is changed in just few nodes. A similar behavior was observed on all
the other instances.

312

Lower i30und [ —
Upper Bound  ---------

310

308

306

Production

304 [
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300

298
0 200 400 600 800 1000 1200 1400 1600

Node

Figure 12: Lower and upper bounds on the nodes of approach Upperl - Real instance

6 Computational Results

In this section we present the computational results obtained with instances 1W130S5B3
(real instance), 2W112S4B3, 3W95S5B3 and 4W130S5B3 when the techniques de-
scribed in section 4 are applied. For all these instances, the considered horizon was
set to 1500 days and the maximum execution time was set to 3600 seconds.

Table 14 summarizes the computational results for all tested instances. In all
cases, the initial solution was obtained using the H1 technique.

The columns in table 14 have the following meaning:

e Instance: instance identification;



40 Nascimento, Moura, and Souza

e Approach: approach identification;

e [t: total number of iterations;

e Neighbors: total number of feasible neighbors;

e Tabu: total number of tabu neighbors;

e AR: total number of tabu neighbors that satisfied the aspiration rule;
e Production: best value for the production;

e Time: total execution time.

For each instance, the best value obtained for the production is set to bold.

In column Approach, the names refer to the various tabu search strategies de-
scribed in section 4.

For the particular case of the real instance 1W130S5B3, we have more detailed
data, describing the behavior of each of the columns Neighbors, Tabu, AR, Production
and Time along the iterations. Figure 13 describes the behavior of the total number of
feasible neighbors explored at each iteration for each of the tabu strategies considered.
Figure 14 does the same for the total number of tabu neighbors; figure 15 treats the
total number of neighbors that satisfied the aspiration rule; figure 16 shows the total
oil production; and figure 17 depicts the total time per iteration.

Figure 18 presents more details about the total oil yield when each of the tabu
strategies was exercised for the real instance. Figures 19, 20 and 21 do the same for
the generated instances, 2W11254B3, 3W9555B3 and 4W130S5B3, respectively.

Figure 13 shows that the number of feasible neighbors visited during each iteration
varies a lot, since an iteration is finished after y neighbors that improve the best
solution are found. The only approach that does not present this pattern is WE. In
the ID and I A approaches, it can be observed a tendency for the number of feasible
neighbors to increase along with the computation. This indicates that it is easier to
improve the best solution on the beginning of the computation, since we search for
the first y best neighbors. Comparing figures 13 and 17, it is clear that the time
per iteration is roughly proportional to the number of feasible neighbors. Concerning
the total number of neighbors, table 14 shows that approaches TabuPF, TabuPR,
ID, TA can explore a number of neighbors three orders of magnitude larger than
approaches WE, WI. This was already expected, since these approaches are large
scale neighborhoods. Furthermore, techniques ID and IA use a greedy strategy to
select the best feasible neighbors. In the WE strategy, we only allow 20 seconds for
the search of the best feasible neighbors. Figure 13.f shows that this technique is
actually using the allowed time to find 7 such neighbors per iteration.
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H Instance ‘ Approach ‘ It ‘ Neighbors ‘ Tabu ‘ AR ‘ Production ‘ Time ‘

1W130S5B3 | TabuPF | 348 | 5404175 1762 9 260480500 | 3624
TabuPR | 368 | 6078448 | 390383 | 112 | 260955920 | 3619

ID 216 | 5097314 | 482245 | 65 | 261797010 | 3621

1A 234 | 5549670 | 569485 | 74 | 262968780 | 3616

WE 169 1172 1645 0 247388220 | 3618

WI 188 1882 174 4 250410270 | 3606

2W11254B3 | TabuPF | 485 | 6437783 2446 15 | 250305872 | 3625
TabuPR | 494 | 6772949 | 562549 | 139 | 250448195 | 3631

ID 185 | 1955786 | 345472 | 116 | 246309923 | 3639

IA 153 | 1462175 | 262204 | 198 | 248792249 | 3616

WE 176 708 1715 0 220362248 | 3609

WI 200 3361 425 21 | 224523265 | 3618

3W95S55B3 | TabuPF | 307 | 5453469 1648 2 | 238685695 | 3644
TabuPR | 335 | 6999181 | 309804 | 68 | 238685695 | 3604

ID 128 | 2247780 | 165676 | 109 | 233766103 | 3630

1A 155 | 2891257 | 224596 | 65 | 238258503 | 3628

WE 166 1164 1615 0 225755389 | 3614

WI 184 1789 262 3 227267290 | 3605

4W130S5B3 | TabuPF | 331 | 5669485 1760 11 | 296412436 | 3622
TabuPR. | 307 | 5232493 | 441899 | 98 | 294203512 | 3603

ID 154 | 1568798 | 198769 | 156 | 297504129 | 3656

1A 163 | 1919470 | 236697 | 425 | 298814360 | 3667

WE 175 704 1705 0 276423927 | 3600

WI 193 1752 316 15 | 280450182 | 3607

Table 14: Quantitative Data - H1

41
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Figure 14 shows that the number of tabu neighbors tends to be higher on the final
iterations when compared with the initial iterations, when strategies ID and IA were
used. This happens because more neighbors are explored on the final iterations and
because the tabu list contains fewer elements on the beginning.

Figure 15 indicates that the number of tabu neighbors that satisfies the aspiration
rule does not follow a recognizable pattern. Note that strategy WE does not use the
aspiration rule. Table 14 indicates that the number of neighbors considered tabu is
high, given the total number of feasible neighbors that was visited, except for approach
TabuPF, because its tabu criteria is the less restrictive among all the strategies. On
the other hand, the number of tabu neighbors that satisfies the aspiration rule is very
small for all approaches. It is important to recall that for approach WE, column
Tabu indicates how many times a well could not have all its activities freed in an
iteration due to the fact that the well was tabu. This explains why the number of
tabu wells is greater than the total number of neighbors when technique WE was
used in all instances. See table 14.

The most interesting results concern the evaluation of the production curve as
depicted in figures 18, 19, 20 and 21. Approach IA gave the best production for
instances 1W130S5B3 (the real instance) and 4W130S5B3, while approach TabuPR
gave the best production for the 3W95S5B3 and 2W11254B3 instances. Approaches
WE and WI got into an inferior production plateau and were not able to escape
from it in all tested instances. An explanation for this behavior could be that these
approaches were not able to explore a large number of neighbors, and the explored
neighbors were unable to provide reasonable improvements over the oil production.
These figures show a desirable behavior of large scale neighborhoods. Strategies ID
and I A showed a steep rise in the oil production at the very beginning in all instances,
to a lesser extent for strategy ID in instance 3W95S5B3. This was particularly intense
on the real instance, as can be seen from figure 18. We believe that the quality os the
neighbors generated by strategies ID and IA was superior, while still maintaining
a competitive computational time. Even though TabuPR gave the best production
for two instances, the results obtained by the IA strategy on those instances were
very close to the best ones.

Figure 16 shows that a production plateau was not reached when TabuPF,
TabuPR and IA were used. In order to verify if it was possible to increase the
production in these cases, the strategies were allowed to run for 3 more hours. A
plateau of 363.5 millions of unities was then reached by all of them and could not be
improved.

To observe the behavior of the approaches when a poorer initial solution was used,
all techniques were exercised with an initial solution obtained using H2. Table 15
and figures 22.b, 23.b, 24.b, 25.b are the correspondents of table 14 and figures 18,
19, 20, 21, respectively, when H2 was used instead of H1. Figures 22.a, 23.a, 24.a,
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25.a explore the initial 360 seconds of these computations.

H Instance ‘ Approach ‘ It ‘ Neighbors ‘ Tabu ‘ AC ‘ Production ‘ Time

1W130S5B3 | TabuPF | 435 | 4096832 1726 13 | 243419100 | 3641
TabuPR | 458 | 5377802 | 344077 | 121 | 243639100 | 3614

ID 171 | 5222193 | 452063 | O 242923630 | 3603
IA 181 | 5549303 | 452396 | O | 244595390 | 3602
WE 172 1166 1675 0 241947730 | 3602
WI 218 3618 424 6 243724840 | 3600

2W11254B3 | TabuPF | 475 | 5272845 2137 11 | 223398783 | 3623
TabuPR | 486 | 6057373 | 447554 | 129 | 223389183 | 3657
ID 212 | 1444141 | 191602 | 235 | 232061191 | 3651
IA 207 | 2066677 | 306046 | 217 | 230394281 | 3622
WE 174 1164 1695 0 216710680 | 3615
WI 250 3544 661 34 | 225733988 | 3618

3W95S5B3 | TabuPF | 428 | 4776629 2393 22 | 227393876 | 3621
TabuPR | 466 | 6717009 | 198437 | 119 | 227536172 | 3613

ID 222 | 2319646 | 320605 | 119 | 229981247 | 3634
IA 202 | 2727995 | 370660 | 266 | 229520098 | 3634
WE 181 1172 1765 0 223389186 | 3612
WI 222 3941 452 8 227100961 | 3602

4W130S5B3 | TabuPF | 445 | 4133240 1694 21 | 272924096 | 3629
TabuPR | 457 | 4280146 | 271755 | 141 | 274236257 | 3608

ID 203 | 1184770 | 145761 | 220 | 283119592 | 3663
IA 209 | 1475233 | 178982 | 220 | 283119592 | 3647
WE 180 708 1755 0 273515507 | 3616
WI 224 3624 343 10 | 281009822 | 3609

Table 15: Quantitative Data - H2

Table 15 shows that the number of feasible and tabu neighbors, as well as the
number of neighbors that satisfies the aspiration rule is the same as in the previous
cases. The production curves deserve closer attention. Approach TA gave the best
production for instances 1W130S5B3, 3W95S5B3 and 4P130S5B3, while approach ID
gave the best production for instance 2W11254B3. Note that the pure tabu search
approaches (TabuPF and TabuPR) did not yield the best production for none of
these instances. Furthermore, in the previous case, the gap between the production
obtained by the pure tabu search approach and the hybrid approaches was less than
1%. In this case, for instances 2W11254B3 and 4W130S5B3 the gap was near 4%
in favor of the hybrid approach. Another interesting result is, in the previous case,
the production obtained with strategy WI was not as good when compared to the
production obtained with strategies TabuPF, TabuPR, ID and IA. In this new
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case, the production obtained with approach WI was higher than the production
obtained by the pure approaches TabuPF and TabuPR in all instances, except in
instance 3W95S5B3. But in this instance, the production obtained with the WI
approach was less than 1% poorer.

Figures 22.a, 23.a, 24.a, 25.a details the first 360 seconds of computation of each
instance. Note how quickly each approach overcomes a poor initial solution. On the
former case, when H1 was used, IA improved the initial solution quickly. In this
case, strategy WE does it faster than any other in all instances. The pure tabu
search approaches are only able to reach this level of production after more than 360
seconds. Unfortunately, the WE approach gets into an inferior plateau and is not
able to escape from it.

Another pattern that can be observed is that when all strategies use initial solu-
tions obtained by the H2 method, they get stuck in an inferior plateau when compared
with the plateau reached when the H1 was used. This indicates that a poor initial
solution probably leads to poorer final results. The relevant aspect of the results
obtained by using H2, however, is fact that the hybrid approaches improved a poor
initial solution more quickly than the pure approaches and gave best production val-
ues.

Figures 26.a and 26.b show the initial solution, the best oil production and the
upper bound for all four tested instances, when H1 and H2 are applied, respec-
tively. Table 16 shows by which percentage the best solution improved the initial
one and shows by which percentage the best solution is under the upper bound.
Clearly, there was a bigger improvement between the initial and the best solution
when H2 was applied. Note, however, that when considering H2, a poor initial so-
lution was used. The gap between the best solution and the upper bound was also
bigger for this case. Nevertheless, the most important information conveyed by this
table is that the best solutions are less than 9% from the upper bound for instances
1W130S5B3, 2W11254B3, 3W95S5B3 and is at 10.7% from the upper bound for
instance 4W130S5B3. This indicates that the best solutions are already very good
ones.

Instance H1 H2
Initial Solution | Upper Bound || Initial Solution | Upper Bound
1W130S5B3 6.8% 8.5% 18.4% 14.9%
2W11254B3 13.9% 7.55% 28.9% 17.5%
3W9555B3 5.89% 7.2% 23.84% 10.6%
4W130S5B3 8.06% 10.7% 29.7% 15.4%

Table 16: Distance among the initial solution, best solution and upper bound
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7 Sensibility Analysis

In this section a sensibility analysis is presented in order to verify the behavior of our
techniques when the instances are perturbed.

Two kinds of perturbation are considered. As discussed in section 5, there are
more derricks than boats and many more activities that require the former than the
latter resource. In addition, the resources needed by all wells follow the pattern

Derrick — Boat — Derrick.

Also, the boats can be considered the bottleneck in the process of developing
a well. Moreover, the processing time of all activities which require a boat is in
the interval of [5,17] days. These informations were crucial to the development of
approach Upper3. The processing time of those activities that require a boat will
be perturbed. The original processing time of these activities will be replaced by
processing times generated using an uniform distribution between the intervals [1, 30],
[1,60] and [1,90]. This procedure originated the variant instances that we call Act,
with its three subcases Act30, Act60, Act90 that correspond, respectively, to the
new three intervals for activities that require a boat.

In all the instances considered in this paper, all derricks can execute all activi-
ties that require this type of resource. The same occurs with the boats. Note that
constraint 3 of the original problem, described in section 2 says that there may ex-
ist instances where not all resources of a certain type are able to perform all the
activities that require that type of resource. The other perturbation we considered
over the original instances was that each activity was associated with a subset of the
resources that are able to perform it. So, in the perturbed instances, to each activity
is attributed x specific resources among all the resources that have the type compat-
ible with the activity. The x resources are chosen randomly. This procedure created
the variant we call Res. This variant also has three subcases, named Resl, Res2,
Res3, that correspond to subcases when x assumes the values 1, 2 and 3, respectively.

In this section, only strategy H1 will be considered to generated the initial solu-
tions. Furthermore, only approaches TabuPR, IA, WE, WI will be tested, since
strategies TabuPF and ID displayed a poorer performance when compared to strate-
gies TabuPR and IA.

Table 17 presents the initial solution to the perturbed instances. The production
is in millions of unities.

The upper bound values for the perturbed instances that follow the Res variants
are the same as the values presented in section 5 for the original instances. Note that
the relevant information for these models are the activities processing time and the
number of derricks and boats. All these values remained the same on the perturbed
instances.
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Instance Variant

Resl | Res2 | Res3 || Act30 | Act60 | Act90
1W130S5B3 || 229.8 | 240.2 | 243.4 || 243.9 | 227.0 | 168.7
2W11254B3 || 206.2 | 216.7 | 216.2 || 216.5 | 205.2 | 163.3
3W9555B3 218.1 | 222.8 | 224.0 || 220.7 | 205.2 | 133.6
4W130S5B3 || 262.2 | 272.7 | 273.3 || 270.9 | 238.8 | 186.9

Table 17: Initial solution - H1

On the other hand, as the activities processing time were altered on the perturbed
instances that follow the Act variant, new bounds were computed for these pertubed
instances. Table 18 is similar to table 11. The instance used was 4W130S5B3 -
variant Act90. As in table 11, column Constraints is the number of constraints,
column Variablesis the number of binary variables, column Const. NZ is the number of
nonzeros coefficients in the constraints and column Obj. NZ is the number of nonzeros
coefficients in the objective function. The values in this table have the same order
of magnitude as the correspondig values, even considering that table 11 was created
using the real instance.

Approach Constraints Variables | Const.NZ | Obj.NZ
Less | Greater | Equal

Upperl | 420 - 2463 36000 5321013 35760

Upper2 | 420 - 2463 36000 777093 35760

Upper3 | 962 240 6497 10800 13656007 | 35760

Table 18: Model quantitative data - Upper Bound - Instance 4W130B5S53 - Variant
Act90

Table 19 is similar to table 12, and table 20 is similar to table 13. In the latter case,
variant Act90 was used. Table 19 shows the best bound obtained for the production
by each approach. The value between parenthesis indicates the percentage by which
approaches Upperl, Upper2 and Upper3 improved upon the values obtained for
approach UpperO.

As expected, the bound values shown in table 19 are smaller than the correspond-
ing bounds on table 12. Note that the activities processing time are higher in the
pertubed case. As in the original instances, the computation using strategy Upperl
was limited in one hour and did not find the optimal solution. Strategy Upper2
found the optimal solution, and strategy Upper3 ran out of memory and was not
able to find a feasible integer solution.

Table 20 shows the number of nodes and the gap between the upper bound and the
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H Instance ‘ Variant ‘ Upper0 ‘ Upperl ‘ Upper2 Upper3 H
1W130S5B3 | Act30 366.6 | 307.0 (16.2%) | 297.4 (18.8%) | 284.0 (22.5%)
Act60 363.7 | 293.4 (19.3%) | 282.5 (22.3%) | 280.6 (22.8%)
Act90 357.6 | 263.9 (26.2%) | 250.3 (30.0%) | 253.8 (29.0%)
2W11254B3 | Act30 361.9 | 296.2 (18.1%) | 287.3 (20.6%) | 267.9 (25.9%)
Act60 358.9 | 284.4 (20.7%) | 273.9 (23.6%) | 265.7 (25.9%)
Act90 354.5 | 255.8 (27.8%) | 243.6 (31.3%) | 248.5 (29.9%)
3W95S5B3 | Act30 316.2 | 275.9 (12.7%) | 268.0 (15.4%) | 255.8 (19.1%)
Act60 358.9 | 267.1 (25.5%) | 258.2 (28.0%) | 253.9 (29.2%)
Act90 308.9 | 248.3 (19.6%) | 237.2 (23.2%) | 241.4 (21.8%)
4W130S5B3 | Act30 453.2 | 364.2 (19.5%) | 352.3 (22.2%) | 332.0 (26.7%)
Act60 449.3 | 344.0 (30.2%) | 330.2 (26.5%) | 326.8 (27.2%)
Act90 443.8 | 313.6 (29.3%) | 297.8 (32.4%) | 302.9 (31.7%)

Table 19: Upper Bound - Activities processing time variant

Table 20:

Instance Upper 1 Upper 2 Upper 3
Node | Gap || Node | Gap || Node | Gap

1W130S5B3 || 700 | 2.10% 1 0 1 00
2W112S4B3 | 600 | 3.37% 1 0 1 00
3W95S5B3 || 2000 | 2.57% 1 0 1 00
4W130S5B3 || 500 | 3.27% 1 0 1 00

Computational quantitative data - Upper Bound - Variant Act90

29
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best solution when variant Act90 was used in all tested instances. The unexpected
behavior was that the bound obtained using strategy Upper2 was tighter than the
bound obtained using Upper3. There are at least two possible explanations for this
fact. This may have occurred because Upper3 ran out of memory and was unable
to improve the bound, while Upper2 found the optimal solution. Or this may have
occurred because with Upper2 preemptions and parallel activities are not allowed
while they are permitted with Upper3. Since this was not a problem when the orig-
inal instances were used, the problem may have arisen due to the large variability of
the activities processing time on the perturbed instances.

As for the computational results, table 21 is similar to table 14 and shows some
data for all Act variants. The columns of this table show the instance identification,
the approach identification, the total number of iterations, the total number of feasible
neighbors, the total number of tabu neighbors, the total number of tabu neighbors
that satisfied the aspiration rule, the best value for the production and the total
execution time.

This table shows that the total number of feasible and tabu neighbors as well as
the total number of neighbors that satisfies the aspiration rule, are of the same order
of magnitude obtained for these values when using the original instances. Except for
approach WI, where these values were approximately multiplied by 2 in instances
1W130S5B3, 3W9555B3 and 4W130S5B3.

Figures 27, 28 and 29.b are similar to figure 18 for the real instance. They plot the
total oil production when variants Act30, Act60 and Act90, respectively, are exer-
cized. Each figure shows the production when each of the TabuPR, IA, WI and WE
strategies were used. Figures 30, 31 and 32.b do the same for instance 2W11254B3,
the corresponding figure for the unperturbed case being figure 19. Figures 33, 34
and 35.b corresponde to instance 3W9555B3 and the unperturbed case is shown in
figure 20. Finally, figures 36, 37 and 38.b corresponde to instance 4W130S5B3 and
are similar to figure 21.

The behavior for variants Act30 and Act60 was very similar to their behavior
when the unperturbed instances were considered. When variant Act90 is considered,
however, the behavior was different. In order to get more details for the beginning
of the computation, figures 29.a, 32.a, 35.a and 38.a depict the first 360 seconds of
computation for, respectively, instances 1W13055B3, 2W11254B3, 3W95S5B3 and
4W130S5B3 when variant Act90 is considered.

It can be observed from these figures that the IA strategy produced the best
solution for all instances and all variants. When variant Act90 is considered, ap-
proach WI gave better results than the pure approach TabuPR consistently on all
instances. In fact, the solution obtained using TabuPR was much inferior than the
best solution found, showing that this strategy is not robust. As occurred with the
original instances, when poor initial solutions were considered, approach WE quickly
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H Instance ‘ Variant ‘ Approach ‘ It ‘ Neighbors ‘ Tabu ‘ AR ‘ Production ‘ Time ‘

IW130S5B3 | Act30 | TabuPR | 248 | 5848316 | 352747 | 63 251490660 | 3627
IA 237 | 5484254 | 783616 | 228 | 254289300 | 3607

WE 175 880 1705 0 243813630 | 3604

WI 199 3519 180 6 248671800 | 3620

Act60 | TabuPR | 334 | 4640070 | 430279 | 59 244399700 | 3649

IA 278 | 5331636 | 757380 | 492 | 249390940 | 3616

WE 177 879 1725 0 233244810 | 3603

WI 213 3383 216 9 240629260 | 3609

Act90 | TabuPR | 907 | 4641809 | 440276 | 224 | 213631730 | 3601

IA 645 | 5503132 | 754402 | 2697 | 223935480 | 3600

WE 176 878 1715 0 199547050 | 3605

WI 262 3350 412 48 213792920 | 3601

2W11254B3 | Act30 | TabuPR | 485 | 5874813 | 520058 | 122 | 240914193 | 3607
IA 324 | 5633385 | 883573 | 487 | 242807762 | 3600

WE 177 881 1725 0 217363213 | 3608

WI 211 3472 368 14 224353344 | 3618

Act60 | TabuPR | 426 | 4640689 | 501234 | 126 | 227219755 | 3621

IA 310 | 5664917 | 891038 | 468 | 228336202 | 3613

WE 177 880 1725 0 213016072 | 3602

WI 227 3384 382 32 223265432 | 3612

Act90 | TabuPR | 734 | 4384954 | 465444 | 217 | 206954958 | 3604

IA 509 | 5734307 | 911740 | 1566 | 219941934 | 3597

WE 180 879 1755 0 196999164 | 3606

WI 269 3382 369 48 207684901 | 3616

3W95S5B3 | Act30 | TabuPR | 258 | 4906162 | 334880 | 57 229788564 | 3644
IA 296 | 6571118 | 896624 | 361 | 236134527 | 3600

WE 178 887 1735 0 222951271 | 3612

WI 199 3771 177 7 224902175 | 3613

Act60 | TabuPR | 353 | 6096266 | 481720 | 68 223263212 | 3614

IA 315 | 6451718 | 997282 | 440 | 231285153 | 3607

WE 178 884 1735 0 217123963 | 3601

WI 233 3750 318 12 223601108 | 3615

Act90 | TabuPR | 1115 | 5494002 | 441047 | 283 | 204158392 | 3619

IA 619 | 6003403 | 974865 | 1776 | 215480227 | 3598

WE 179 886 1745 0 194854023 | 3617

WI 258 3422 566 34 206585222 | 3616

4W130S5B3 | Act30 | TabuPR | 329 | 4650514 | 383225 | 76 287747684 | 3642
IA 247 | 4746251 | 525334 | 914 | 290475965 | 3609

WE 178 880 1735 0 273238548 | 3616

WI 211 3433 206 9 279779931 | 3619

Act60 | TabuPR | 388 | 4764056 | 550489 | 101 | 267388916 | 3644

IA 265 | 4552634 | 600832 | 521 | 274690795 | 3612

WE 179 880 1745 0 261125166 | 3612

WI 250 3428 245 21 274013147 | 3604

Act90 | TabuPR | 857 | 4415545 | 212685 | 262 | 237760960 | 3695

IA 574 | 4934794 | 688041 | 2275 | 265915404 | 3608

WE 176 875 1715 0 241748970 | 3601

WI 281 3374 330 48 254766742 | 3607

Table 21: Quantitative Data - Variant: Activities duration
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Figure 27: Production X Time - 1W130S5B3 (Real Instance) - Variant Act30

repaired the initial solutions, but, again, got stuck in a production plateau.

Table 22 shows the same kind of data as table 16. TheAct variants were used
to produce the results shown in this table. Observing this table, it can be inferred
that the initial solution algorithm could not generate good solutions for the variant
Act90. But the hybrid approach was able to reach a good solution for all instances,
since the gap between the best solution and the upper bound was around 10% for all
instances, in this case.

Table 23 repeats table 14 using the pertubed Res variants. This table shows that
the total number of feasible and tabu neighbors, and the total number of neighbors
that satisfied the aspiration rule are of the same order of magnitude as those values
obtained with the original instances using strategies TabuPR and WE. For the WI
approach, these values are higher in the pertubed case, for all instances. When using
approach ITA, these values are higher in this perturbed case for instances 2W11254B3
and 3W95S5B3.

As was done for the Act variants, we used the Res pertubed instances derived
from all four original test instances in order to observe the behavior of the TabuPR,
IA, WI and WE strategies on these perturbed instances. The production obtained
with the real perturbed instance is depicted in figures 39.b, 40.a and 41. For the
generated 2W11254B3 instance, the corresponding plots are shown in figures 42.b,
43 and 44. The set of figures 45.b, 46 and 47, shows the data when using instance
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Figure 28: Production X Time - 1W130S5B3 (Real Instance) - Variant Act60

Instance Variant H1
Initial Solution | Upper Bound
1W130S5B3 | Act30 4.2% 10.4%
Act60 9.8% 11.1%
Act90 32.7% 10.5%
2W11254B3 | Act30 12.1% 9.3%
Act60 11.2% 14.0%
Act90 34.6% 9.7%
3W95S55B3 | Act30 7.0% 7.6%
Act60 12.7% 8.9%
Act90 61.2% 9.1%
4W130S5B3 | Act30 7.2% 12.5%
Act60 15.0% 15.9%
Act90 42.2% 10.7%

Table 22: Distance among the initial solution, best solution and upper bound - Variant
Act
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H Instance ‘ Variant ‘ Approach ‘ It ‘ Neighbors ‘ Tabu ‘ AR ‘ Production ‘ Time H

1W130S5B3 | Resl TabuPR | 166 | 5653569 763500 | 53 | 241408310 | 3615
IA 624 | 4492228 663962 | 604 | 251537690 | 3600

WE 176 881 870 0 234670140 | 3606

WI 248 3797 170 6 243599460 | 3605

Res2 TabuPR | 311 | 4589353 431117 | 82 | 254654730 | 3640

IA 376 | 5122923 766713 | 218 | 255802210 | 3609

WE 177 881 875 0 241946220 | 3608

WI 225 4062 168 12 | 246220480 | 3612

Res3 TabuPR | 335 | 6095363 368879 | 96 | 257360240 | 3611

IA 299 | 5263970 774131 | 387 | 259247850 | 3610

WE 178 883 880 0 244006440 | 3618

WI 208 3935 159 7 248637620 | 3600

2W11254B3 | Resl TabuPR | 335 | 7010706 | 1423290 | 113 | 235086600 | 3605
IA 634 | 4640316 695738 | 994 | 239540901 | 3597

WE 177 882 875 0 209531118 | 3607

WI 247 4476 231 21 | 225024965 | 3604

Res2 TabuPR | 430 | 6955965 606570 | 143 | 243662371 | 3612

IA 355 | 4831703 814819 | 553 | 244840697 | 3603

WE 175 880 865 0 216533315 | 3600

WI 206 4640 165 3 220505606 | 3600

Res3 TabuPR | 504 | 7110939 840412 | 155 | 246225063 | 3608

IA 301 | 5037286 839687 | 543 | 247090041 | 3599

WE 176 881 870 0 216348434 | 3609

WI 246 3988 244 26 | 228074446 | 3616

3W9555B3 Resl TabuPR | 217 | 7343330 | 1115067 | 64 | 231892638 | 3613
IA 901 | 5204502 | 1004203 | 423 | 233020474 | 3602

WE 177 886 875 0 218454885 | 3607

WI 225 5190 207 15 | 225305466 | 3615

Res2 TabuPR | 311 | 7141765 454913 | 70 | 237532302 | 3614

IA 511 | 5683934 952828 | 648 | 238780333 | 3600

WE 177 887 875 0 222826848 | 3613

WI 219 4998 177 14 | 228407393 | 3617

Res3 TabuPR | 223 | 5895968 393610 | 42 | 235592424 | 3610

IA 361 | 5762413 982374 | 568 | 237120503 | 3602

WE 176 885 870 0 223421262 | 3606

WI 211 4711 148 6 228464110 | 3606

4W130S5B3 | Resl TabuPR | 197 | 4823039 915161 | 58 | 274715220 | 3615
IA 411 | 2763139 378327 | 622 | 291119199 | 3605

WE 176 877 870 0 264782298 | 3600

WI 253 3887 204 17 | 277047062 | 3651

Res2 TabuPR | 224 | 4806321 511323 | 56 | 288863831 | 3605

IA 266 | 3405275 478866 | 354 | 293240295 | 3624

WE 176 881 870 0 274430520 | 3617

WI 238 4130 145 13 | 279930174 | 3602

Res3 TabuPR | 249 | 4731748 397284 | 70 | 292684155 | 3613

IA 244 | 4444513 598703 | 391 | 295370753 | 3617

WE 175 880 865 0 274279895 | 3619

WI 211 4387 145 8 279542790 | 3600

Table 23: Quantitative Data - Variant: number of resources
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3W95S5B3. Finally, figures 48.b, 49 and 50 treat instance 4W130S5B3.

Variants Res2 and Res3 showed a behavior very similar to their correspond-
ing behaviors when the original instances were considered. When variant Resl is
considered, however, the behavior was different. As the tests using variant Resl
produced results that differed the most from the results obtained with the original
instances, figures 39.a, 42.a, 45.a and 48.a show details of the first 360 seconds of
computation of each test instance. It can be observed from these figures that the IA
strategy provided the best solution over all instances and all variants in this case.
Note that approach WI gave better results than the pure TabuPR approach over
instances 1W130S5B3 and 4W130S5B3. In fact, the solution provided by TabuPR
was inferior than the best solution found, indicating that this strategy is not robust.
Approach WE did not perform well, even on the beginning of the computation, just
like it occurred when variant Act90 was used.

Table 24 shows the same kind of data for the perturbed Res variants as does table
16 for all four unperturbed instances. Observing this table, it can be inferred that
the initial solution algorithm could generate good solutions for all instances, when
these variants were considered. Notice that the maximum improvement obtained was
14.2%. Moreover, the best solutions obtained were good ones, as the gaps between
the best solutions and the upper bounds were around 10%.

Instance Variant H1
Initial Solution | Upper Bound
1W130S5B3 | Res30 9.4% 12.5%
Res60 6.4% 10.9%
Res90 6.5% 9.7%
2W11254B3 | Res30 16.1% 11.4%
Res60 12.9% 9.6%
Res90 14.3% 8.7%
3W9555B3 | Res30 6.8% 9.4%
Res60 7.2% 7.1%
Res90 5.8% 7.8%
4W130S5B3 | Res30 11.0% 13.0%
Res60 7.5% 12.3%
Res90 8.1% 11.7%

Table 24: Distance among the initial solution, best solution and upper bound - Variant
Res
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8 Conclusions

Several conclusions may be inferred from this work. First of all, approach IA can
the considered the best and more robust approach, since it provided the best solution
for the vast majority of the tested instances and variants considered in this paper.
Furthermore, the quality of its solutions are very high, as the gap between its so-
lutions and the correspondent upper bounds were around 10% for all instances and
all variants. On the other hand, the solutions obtained with the pure tabu search
approach were good when the quality of the initial solutions was also good. Other-
wise its performance was not that good, specially if it is considered how quickly this
approach can improve a poor solution. Moreover, this approach proved to be weak
to solve the variants Act90 and Resl.

The hybrid methods proved very efficient in improving poor solutions, specially
approach WE. But, unfortunately, this approach was not able to escape from produc-
tion plateaus after a good solution was found. Also, approach WI did not perform
well when the initial solutions were already good ones. To improve performance of
both WE and WI, two orthogonal features of these approaches must be considered.
First, the neighborhood exploration for these approaches may be improved, making
an effort to eliminate intrinsic symmetries. In this way, more promising neighbors
could be visited. The other feature that needs to be considered is the tabu list. It
should be better studied in order to prevent these approaches from getting stuck in
production plateaus.

Regarding the sensibility analysis, variants Act 30, Act60, Res2 and Res3
did not impact the behavior of the methods. On the other hand, the behavior of
approaches TabuPR, WE and W1 were modified when variants Act90 and Resl
were considered.

In summary, the methods implemented provided high quality solutions to the oil
production problem. The hybrid methods adapted well for this problem. The next
step is to improve approaches WE and WI, in order to make them comparable to
approach TA.
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