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Non-Homogeneous Spline Bases forApproximation on the SphereAnamaria Gomide and Jorge Stol�Abstra
t. A spheri
al polynomial is the restri
tion to the sphere S2of a polynomial in the three 
oordinates x; y; z of IR3. Let T be an ar-bitrary triangulation on the sphere, and let Pdk [T ℄=S2 (resp Hdk[T ℄=S2)be the spa
e of all CCCCCCCCCk-
ontinuous fun
tions f from S2 to IR su
h thatthe restri
tion of f to ea
h triangle of T is a spheri
al polynomial (resp.homogeneous). These are the spheri
al polynomial (resp homogeneous)splines of degree � d (resp. exa
tly d) and 
ontinuity k.In a previous paper, we have shown that Pdk [T ℄=S2 = Hdk[T ℄=S2 �Hd�1k [T ℄=S2. Alfeld, Neamtu and S
humaker have re
ently 
onstru
tedexpli
it bases for the spa
es Hdk [T ℄=S2. Combining these two results, weobtain expli
it 
onstru
tions for bases of Pdk [T ℄=S2.We believe that the general spline spa
es Pdk [T ℄=S2 provide betterapproximations than the homogeneous spa
es Hdk [T ℄=S2 when used overthe relatively large regions (radius 10�1 to 10�2) that are likely to o

urin prati
e. In this paper we report numeri
al experiments in least squaresapproximation whi
h o�er some eviden
e for this 
laim.x1. Introdu
tionThe problem of modeling or approximating a real fun
tion de�ned on thesphere S2 arises in many appli
ations, su
h as geophysi
s, meteorology, 
om-puter graphi
s, et
. [8℄. Su
h fun
tions are usually represented as polynomialson the spheri
al 
oordinates �; �, (longitude and latitude). This approa
h,however, has several drawba
ks: the resulting fun
tions are often dis
ontinu-ous at the poles, the geodesi
 lines 
orrespond to 
urves in the (�; �) plane,the resolution of (�; �) grids is not uniform over the sphere, and so on. Theseproblems are parti
ularly annoying for appli
ations that require irregular oradaptive meshes.These diÆ
ulties have re
ently led some resear
hers to 
onsider the mod-eling of spheri
al fun
tions as fun
tions of the spatial 
artesian 
oordinates(x; y; z), restri
ted to the sphere. Alfeld, Neamtu e S
humaker [1,2,3℄ investi-gated the use of homogeneous spheri
al polynomial splines as an approximationspa
e for fun
tions de�ned on S2. We showed in a previous work [7℄ that thegeneral (non-homogeneous) spheri
al polynomial splines of degree � d may bewritten as the dire
t sum of homogeneous splines of degree d and d� 1.In this work, we explore the use of su
h non-homogeneous splines forleast square approximation of fun
tions. We 
ompare the a

ura
y of the



2 A. Gomide and J. Stol�results obtained with both kinds of splines, and show eviden
e that the non-homogenous splines seem to o�er more uniformly a

urate approximationsthan their homogeneous subspa
es alone.x2. Spheri
al PolynomialsA spheri
al polynomial is a polynomial in the three 
oordinates x; y; z of IR3,restri
ted to the unit sphere S2. Let Pd=S2 be the spa
e of spheri
al polyno-mials with degree � d. It 
an be shown [7,6℄ thatPd=S2 = Hd=S2 �Hd�1=S2; (1)where Hd=S2 denotes the spa
e of homogeneous polynomials of degree d inx; y; z. (Re
all that fun
tion f from IRn to IR is said to be homogeneous ofdegree m if f(ax) = amf(x), for any a 2 IR and x 2 IRn.)2.1. Spheri
al Harmoni
sThere is a strong relationship between the spheri
al polynomials and the well-known spheri
al harmoni
s [4℄. We denote by Yd the spa
e of the real spheri
alfun
tions from S2 to IR generated by the real and imaginary parts of thespheri
al harmoni
s Y mk of degree k � d. We also denote by Wd the subspa
eof Yd generated by the spheri
al harmoni
s of degree d, d � 2, : : :, d� 2bd2
.Fausshauer and S
humaker [6℄ prove the following results:Theorem 1. The spa
e Wd 
oin
ides with the spa
e Hd=S2.Theorem 2. The spa
e Yd 
oin
ides with the spa
e Pd=S2.x3. Spheri
al SplinesIt turns out that the de
omposition of Pd=S2 (1) 
an be extended to thesplines de�ned on a geodesi
 triangulation T on the sphere. Let Pdk [T ℄=S2 bethe spa
e of all fun
tions f from S2 into IR su
h that (i) the restri
tion of fto ea
h triangle of T 
oin
ides with a fun
tion of Pd=S2; and (ii) the fun
tionf has 
ontinuity of order k a
ross the edges of T . Let also Hdk[T ℄=S2 be thesubspa
e of Pdk [T ℄=S2 that 
onsists of the fun
tions that are homogeneous ofdegree d (i.e, Hd=S2) in ea
h triangle of T . These are the spheri
al polynomial(resp homogeneous) splines of degree � d (resp. exa
tly d) and 
ontinuity k.We have shown [7℄ thatTheorem 3. Pdk [T ℄=S2 = Hdk[T ℄=S2 �Hd�1k [T ℄=S2:



Non-Homogeneous Splines 33.1 Spline BasesAlfeld, Neamtu, and S
humaker [2℄ obtained an expli
it basis, with lo
al sup-port, for ea
h spa
e Hdk[T ℄=S2, when d � 3k + 2, in terms of the Bernstein-B�ezier polynomials. (Their 
onstru
tion assumes that the triangulation T isnon-degenerate, in the sense that no two edges in
ident to the same vertex are
oplanar. Every triangulation T whi
h is mentioned in this paper is assumedto have this property.)The Alfeld-Neamtu-S
humaker (ANS) 
onstru
tion implies that the di-mension of the spa
e Hdk[T ℄=S2, for d � 3k + 2, isdimHdk[T ℄=S2 = (d2 � 3dk + 2k2)v � 2d2 + 6dk � 3k2 + 3k + 2= (d2 � 3dk + 2k2)t=2 + k2 + 3k + 2;where v and t are respe
tively the number of verti
es and triangles of thetriangulation. Therefore, by Theorem 3, a basis for Pdk [T ℄=S2 is obtainedthrough the 
on
atenation of a basis of Hdk[T ℄=S2 and a basis of Hd�1k [T ℄S2.Thus we get the dimension of the spa
e Pdk [T ℄=S2, for d � 3k + 3:dimPdk [T ℄ = (2d2 � 6dk + 4k2 � 2d+ 3k + 1)v � 4d2 + 12dk + 4d� 6k2 + 2= (2d2 � 6dk + 4k2 � 2d+ 3k + 1)t=2 + 2k2 + 6k + 4:The lowest-degree spa
es Pdk [T ℄=S2 that have ANS bases are P30 [T ℄=S2 for
ontinuity 
lass CCCCCCCCC0, and P61 [T ℄=S2 for 
ontinuity 
lass CCCCCCCCC1. Table 1 gives thedimensions of those spa
es and of their homogeneous 
omponents, as well as ofthe homogeneous spa
es H40[T ℄=S2 and H71[T ℄=S2 whi
h have approximatelythe same dimensions.CCCCCCCCC0 spa
es DimensionsH20[T ℄=S2 4v � 6 = 2t+ 2H30[T ℄=S2 9v � 16 = 9t=2 + 2H40[T ℄=S2 16v � 30 = 8t+ 2P30 [T ℄=S2 13v � 22 = 13t=2 + 4
CCCCCCCCC1 spa
es DimensionsH51[T ℄=S2 12v � 18 = 6t+ 6H61[T ℄=S2 20v � 34 = 10t+ 6H71[T ℄=S2 30v � 54 = 15t+ 6P61 [T ℄=S2 32v � 52 = 16t+ 12Tab. 1. Dimensions of some general and homogeneous spline spa
es.Ea
h element of an ANS basis is asso
iated with a fa
e, an edge, or avertex of the triangulation. Figure 1 shows some ANS basis elements for thespa
e H61[T ℄=S2, where T is the 
entral proje
tion of a regular i
osahedrononto the sphere.



4 A. Gomide and J. Stol�
one per fa
e g � 3 per vertex of degree g

six per vertex
three per edgeFig. 1. Typi
al Alfeld-Neamtu-S
humaker basis elements.x4. Approximation with Spheri
al SplinesIn order to test the e�e
tive a

ura
y obtainable with these splines spa
es, wehave performed some numeri
al experiments in least squares approximation.Let f be a real fun
tion on the sphere, and f�ign1 a basis for some spa
eF of real fun
tions on S2. Let h; i be an inner produ
t for spheri
al fun
tions,and kfk2 = hf; fi its asso
iated squared norm. We want to �nd a fun
tionu(p) =Pni=1 xi�i(p) that best approximates f in the sense that ku(p)� f(p)k2is minimum.



Non-Homogeneous Splines 5It is well known that u 
an be obtained by solving the normal system oflinear equations Gx = b. In this system, the unknowns x = (x1; x2 : : : xn)are the 
oeÆ
ients of the approximation u(p) in the basis f�ign1 ; the elementsof the matrix G are the inner produ
ts Gij = h�i; �ji, i; j = 1 : : : n; and theelements of the independent ve
tor b are bi = hf; �ii, i = 1 : : : n.In our tests, we used the spline spa
es shown in table 1. Ea
h of thesespa
es was used to approximate the fun
tions f(p) = x2, f(p) = x3, f(p) =exp(x), f(p) = sin(x) and f(p) = 
os(x), where p = (x; y; z) 2 S2. We alsothe tested the fun
tion f�(p) = 1+x8+exp(2y3)+exp(2z2)+10xyz with wasused by Alfeld, Neamtu and S
humaker [3℄. Tables 2 and 3 below summarizethe approximation errors obtained in these tests.CCCCCCCCC0 spa
es (dimensions)Fun
tions H20[T ℄ (34) H30[T ℄ (74) H40[T ℄ (130) P30 [T ℄ (108)x2 1:5� 10�15 3:9� 10�2 9:0� 10�15 4:8� 10�13x3 1:0� 10�1 2:0� 10�15 1:4� 10�2 5:8� 10�13exp(x) 1:2� 10�1 1:7� 10�1 3:3� 10�2 1:2� 10�3sin(x) 1:2� 10�1 3:7� 10�4 2:9� 10�2 2:8� 10�4
os(x) 6:6� 10�3 1:8� 10�1 4:5� 10�5 9:0� 10�4f�(p) 2:3� 10�1 1:2� 10�1 3:7� 10�2 3:2� 10�2Tab. 2. Errors of CCCCCCCCC0 least squares aproximations.
CCCCCCCCC1 spa
es (dimensions)Fun
tions H51[T ℄ (102) H61[T ℄ (166) H71[T ℄ (246) P61 [T ℄ (268)x2 1:1� 10�2 4:4� 10�12 2:2� 10�3 1:7� 10�8x3 1:7� 10�12 3:7� 10�3 2:7� 10�11 1:0� 10�8exp(x) 6:1� 10�2 9:6� 10�3 1:7� 10�2 1:6� 10�7sin(x) 2:9� 10�6 9:8� 10�3 7:1� 10�9 1:0� 10�7
os(x) 5:7� 10�2 1:2� 10�7 1:6� 10�2 4:3� 10�8f�(p) 4:1� 10�2 9:4� 10�3 8:9� 10�3 1:4� 10�3Tab. 3. Errors of CCCCCCCCC1 least squares aproximations.



6 A. Gomide and J. Stol�The mesh T (with 24 edges, 10 verti
es and 16 triangles) was a Delaunaytriangulation of 10 irregularly distributed points. The approximation errorwas estimated by evaluating ku(pk)� f(pk)k for a set of 7216 points pk, withan approximately uniform distribution over the sphere S2.Observe that with the spa
e P30 [T ℄=S2 we usually obtain better approxi-mations to general fun
tions than with the spa
e H40[T ℄=S2, even though thethe latter has more degrees of freedom (130 against 108). Likewise, the spa
eP61 [T ℄=S2 usually provides better approximations than H71[T ℄=S2, whi
h isonly a little smaller (246 degrees of freedom against 268). The ex
eptionsseem to be fun
tions whi
h happen to lie in the homogeneous spa
e, eitherexa
tly (su
h as x2 for H40, and x3 for H70), or nearly so (su
h as 
os(x) forH40 and sin(x) for H70). x5. Con
lusionIn light of Theorems 1|3, it is obvious that the spa
e Pdk [T ℄=S2 
an approx-imate exa
tly any spheri
al harmoni
 fun
tion of degree d. The same is nottrue of the spa
e Hdk[T ℄=S2, whi
h is the subspa
e of Pdk [T ℄=S2 generated bythe spheri
al harmoni
s whose degrees have the same parity as d.Our numeri
al experiments seem to indi
ate that, for the relatively largetriangles one is likely to use in pra
ti
e (with radii around 10�1 or 10�2), theapproximation errors obtained with the splines Hd0k [T ℄=S2 are usually largerthan those otained with splines Pd00k [T ℄=S2, even when the degrees d0 and d00are 
hosen so that the two spa
es have approximately the same dimension.(Similar results were obtained in the integration of partial di�erential equa-tions on the sphere by �nite element methods; these results will be reportedelsewhere.)The experiments by Alfeld, Neamtu and S
humaker [3℄ with lo
al inter-polation methods for homogeneous splines 
on�rm the expe
ted approxima-tion order O(rd+1) of those spa
es for meshes of vanishing triangle radius r.Unfortunately, we were unable to perform the analogous experiments for non-homogeneous splines, sin
e we were unable to devise lo
al interpolation meth-ods that would generate the full spa
e Pdk [T ℄=S2|even for 
ontinuity k = 0.(One diÆ
ulty is the 
oin
iden
e of two B�ezier knots (
d;0;0 and 
d�1;0;0) atea
h vertex, whi
h 
all for two independent s
alar data values at that point,depending only on those 
oeÆ
ients.) Thus the asymptoti
 approximationorder of the non-homogeneous splines is still an open question.xAppendix AA.1. Numeri
al Integration on the SphereIn order to apply the least square approximation method, it is ne
essaryto 
ompute the dot produ
ts h�i; �ji and hf; �ii where the �i are splinesbasis fun
tions and f is an arbitrary given fun
tion. We 
hose hf; gi =RS2 f(p)g(p) dp as the inner produ
t of spheri
al fun
tions.



Non-Homogeneous Splines 7To evaluate the integral, we �rst break it into a sum of integrals overindividual triangles of T . For ea
h spheri
al triangle t 2 T , let �t be the planetriangle with the same verti
es as t. Then, we 
an write:Zt h(p) dp = Z�t h( qjqj)w(q) dq; (2)where w(q) = dp=dq is the spheri
al 
orre
tion, the ratio between the area ofan element dq of �t around the point q, and the area of its 
entral proje
tiondp onto the sphere|that is, w(q) = n Æ q=kqk2 where n is the normal of theplane triangle �t. The integral on the right-hand-side of the equation (2) isthen approximated by a 13-point, seventh-order Gauss 
ubature formula fora plane triangle, des
ribed by G. R. Cowper [5℄.Noti
e that the fun
tions h that we have to integrate may be the produ
tsof two polynomials of degree 6 (that is, polynomials of degree 12) times anon-polynomial spheri
al 
orre
tion fa
tor. For that reason, we found thatthe 7th-order 
ubature formula was not suÆ
ient to 
al
ulate hf; gi with thene
essary a

ura
y, on the triangulation T used in our tests. To get aroundthis problem, we had to partition ea
h triangle t into four sub-triangles, andapply the 
ubature formula to ea
h part.A
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