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Non-Homogeneous Spline Bases forApproximation on the SphereAnamaria Gomide and Jorge Stol�Abstrat. A spherial polynomial is the restrition to the sphere S2of a polynomial in the three oordinates x; y; z of IR3. Let T be an ar-bitrary triangulation on the sphere, and let Pdk [T ℄=S2 (resp Hdk[T ℄=S2)be the spae of all CCCCCCCCCk-ontinuous funtions f from S2 to IR suh thatthe restrition of f to eah triangle of T is a spherial polynomial (resp.homogeneous). These are the spherial polynomial (resp homogeneous)splines of degree � d (resp. exatly d) and ontinuity k.In a previous paper, we have shown that Pdk [T ℄=S2 = Hdk[T ℄=S2 �Hd�1k [T ℄=S2. Alfeld, Neamtu and Shumaker have reently onstrutedexpliit bases for the spaes Hdk [T ℄=S2. Combining these two results, weobtain expliit onstrutions for bases of Pdk [T ℄=S2.We believe that the general spline spaes Pdk [T ℄=S2 provide betterapproximations than the homogeneous spaes Hdk [T ℄=S2 when used overthe relatively large regions (radius 10�1 to 10�2) that are likely to ourin pratie. In this paper we report numerial experiments in least squaresapproximation whih o�er some evidene for this laim.x1. IntrodutionThe problem of modeling or approximating a real funtion de�ned on thesphere S2 arises in many appliations, suh as geophysis, meteorology, om-puter graphis, et. [8℄. Suh funtions are usually represented as polynomialson the spherial oordinates �; �, (longitude and latitude). This approah,however, has several drawbaks: the resulting funtions are often disontinu-ous at the poles, the geodesi lines orrespond to urves in the (�; �) plane,the resolution of (�; �) grids is not uniform over the sphere, and so on. Theseproblems are partiularly annoying for appliations that require irregular oradaptive meshes.These diÆulties have reently led some researhers to onsider the mod-eling of spherial funtions as funtions of the spatial artesian oordinates(x; y; z), restrited to the sphere. Alfeld, Neamtu e Shumaker [1,2,3℄ investi-gated the use of homogeneous spherial polynomial splines as an approximationspae for funtions de�ned on S2. We showed in a previous work [7℄ that thegeneral (non-homogeneous) spherial polynomial splines of degree � d may bewritten as the diret sum of homogeneous splines of degree d and d� 1.In this work, we explore the use of suh non-homogeneous splines forleast square approximation of funtions. We ompare the auray of the



2 A. Gomide and J. Stol�results obtained with both kinds of splines, and show evidene that the non-homogenous splines seem to o�er more uniformly aurate approximationsthan their homogeneous subspaes alone.x2. Spherial PolynomialsA spherial polynomial is a polynomial in the three oordinates x; y; z of IR3,restrited to the unit sphere S2. Let Pd=S2 be the spae of spherial polyno-mials with degree � d. It an be shown [7,6℄ thatPd=S2 = Hd=S2 �Hd�1=S2; (1)where Hd=S2 denotes the spae of homogeneous polynomials of degree d inx; y; z. (Reall that funtion f from IRn to IR is said to be homogeneous ofdegree m if f(ax) = amf(x), for any a 2 IR and x 2 IRn.)2.1. Spherial HarmonisThere is a strong relationship between the spherial polynomials and the well-known spherial harmonis [4℄. We denote by Yd the spae of the real spherialfuntions from S2 to IR generated by the real and imaginary parts of thespherial harmonis Y mk of degree k � d. We also denote by Wd the subspaeof Yd generated by the spherial harmonis of degree d, d � 2, : : :, d� 2bd2.Fausshauer and Shumaker [6℄ prove the following results:Theorem 1. The spae Wd oinides with the spae Hd=S2.Theorem 2. The spae Yd oinides with the spae Pd=S2.x3. Spherial SplinesIt turns out that the deomposition of Pd=S2 (1) an be extended to thesplines de�ned on a geodesi triangulation T on the sphere. Let Pdk [T ℄=S2 bethe spae of all funtions f from S2 into IR suh that (i) the restrition of fto eah triangle of T oinides with a funtion of Pd=S2; and (ii) the funtionf has ontinuity of order k aross the edges of T . Let also Hdk[T ℄=S2 be thesubspae of Pdk [T ℄=S2 that onsists of the funtions that are homogeneous ofdegree d (i.e, Hd=S2) in eah triangle of T . These are the spherial polynomial(resp homogeneous) splines of degree � d (resp. exatly d) and ontinuity k.We have shown [7℄ thatTheorem 3. Pdk [T ℄=S2 = Hdk[T ℄=S2 �Hd�1k [T ℄=S2:



Non-Homogeneous Splines 33.1 Spline BasesAlfeld, Neamtu, and Shumaker [2℄ obtained an expliit basis, with loal sup-port, for eah spae Hdk[T ℄=S2, when d � 3k + 2, in terms of the Bernstein-B�ezier polynomials. (Their onstrution assumes that the triangulation T isnon-degenerate, in the sense that no two edges inident to the same vertex areoplanar. Every triangulation T whih is mentioned in this paper is assumedto have this property.)The Alfeld-Neamtu-Shumaker (ANS) onstrution implies that the di-mension of the spae Hdk[T ℄=S2, for d � 3k + 2, isdimHdk[T ℄=S2 = (d2 � 3dk + 2k2)v � 2d2 + 6dk � 3k2 + 3k + 2= (d2 � 3dk + 2k2)t=2 + k2 + 3k + 2;where v and t are respetively the number of verties and triangles of thetriangulation. Therefore, by Theorem 3, a basis for Pdk [T ℄=S2 is obtainedthrough the onatenation of a basis of Hdk[T ℄=S2 and a basis of Hd�1k [T ℄S2.Thus we get the dimension of the spae Pdk [T ℄=S2, for d � 3k + 3:dimPdk [T ℄ = (2d2 � 6dk + 4k2 � 2d+ 3k + 1)v � 4d2 + 12dk + 4d� 6k2 + 2= (2d2 � 6dk + 4k2 � 2d+ 3k + 1)t=2 + 2k2 + 6k + 4:The lowest-degree spaes Pdk [T ℄=S2 that have ANS bases are P30 [T ℄=S2 forontinuity lass CCCCCCCCC0, and P61 [T ℄=S2 for ontinuity lass CCCCCCCCC1. Table 1 gives thedimensions of those spaes and of their homogeneous omponents, as well as ofthe homogeneous spaes H40[T ℄=S2 and H71[T ℄=S2 whih have approximatelythe same dimensions.CCCCCCCCC0 spaes DimensionsH20[T ℄=S2 4v � 6 = 2t+ 2H30[T ℄=S2 9v � 16 = 9t=2 + 2H40[T ℄=S2 16v � 30 = 8t+ 2P30 [T ℄=S2 13v � 22 = 13t=2 + 4
CCCCCCCCC1 spaes DimensionsH51[T ℄=S2 12v � 18 = 6t+ 6H61[T ℄=S2 20v � 34 = 10t+ 6H71[T ℄=S2 30v � 54 = 15t+ 6P61 [T ℄=S2 32v � 52 = 16t+ 12Tab. 1. Dimensions of some general and homogeneous spline spaes.Eah element of an ANS basis is assoiated with a fae, an edge, or avertex of the triangulation. Figure 1 shows some ANS basis elements for thespae H61[T ℄=S2, where T is the entral projetion of a regular iosahedrononto the sphere.



4 A. Gomide and J. Stol�
one per fae g � 3 per vertex of degree g

six per vertex
three per edgeFig. 1. Typial Alfeld-Neamtu-Shumaker basis elements.x4. Approximation with Spherial SplinesIn order to test the e�etive auray obtainable with these splines spaes, wehave performed some numerial experiments in least squares approximation.Let f be a real funtion on the sphere, and f�ign1 a basis for some spaeF of real funtions on S2. Let h; i be an inner produt for spherial funtions,and kfk2 = hf; fi its assoiated squared norm. We want to �nd a funtionu(p) =Pni=1 xi�i(p) that best approximates f in the sense that ku(p)� f(p)k2is minimum.



Non-Homogeneous Splines 5It is well known that u an be obtained by solving the normal system oflinear equations Gx = b. In this system, the unknowns x = (x1; x2 : : : xn)are the oeÆients of the approximation u(p) in the basis f�ign1 ; the elementsof the matrix G are the inner produts Gij = h�i; �ji, i; j = 1 : : : n; and theelements of the independent vetor b are bi = hf; �ii, i = 1 : : : n.In our tests, we used the spline spaes shown in table 1. Eah of thesespaes was used to approximate the funtions f(p) = x2, f(p) = x3, f(p) =exp(x), f(p) = sin(x) and f(p) = os(x), where p = (x; y; z) 2 S2. We alsothe tested the funtion f�(p) = 1+x8+exp(2y3)+exp(2z2)+10xyz with wasused by Alfeld, Neamtu and Shumaker [3℄. Tables 2 and 3 below summarizethe approximation errors obtained in these tests.CCCCCCCCC0 spaes (dimensions)Funtions H20[T ℄ (34) H30[T ℄ (74) H40[T ℄ (130) P30 [T ℄ (108)x2 1:5� 10�15 3:9� 10�2 9:0� 10�15 4:8� 10�13x3 1:0� 10�1 2:0� 10�15 1:4� 10�2 5:8� 10�13exp(x) 1:2� 10�1 1:7� 10�1 3:3� 10�2 1:2� 10�3sin(x) 1:2� 10�1 3:7� 10�4 2:9� 10�2 2:8� 10�4os(x) 6:6� 10�3 1:8� 10�1 4:5� 10�5 9:0� 10�4f�(p) 2:3� 10�1 1:2� 10�1 3:7� 10�2 3:2� 10�2Tab. 2. Errors of CCCCCCCCC0 least squares aproximations.
CCCCCCCCC1 spaes (dimensions)Funtions H51[T ℄ (102) H61[T ℄ (166) H71[T ℄ (246) P61 [T ℄ (268)x2 1:1� 10�2 4:4� 10�12 2:2� 10�3 1:7� 10�8x3 1:7� 10�12 3:7� 10�3 2:7� 10�11 1:0� 10�8exp(x) 6:1� 10�2 9:6� 10�3 1:7� 10�2 1:6� 10�7sin(x) 2:9� 10�6 9:8� 10�3 7:1� 10�9 1:0� 10�7os(x) 5:7� 10�2 1:2� 10�7 1:6� 10�2 4:3� 10�8f�(p) 4:1� 10�2 9:4� 10�3 8:9� 10�3 1:4� 10�3Tab. 3. Errors of CCCCCCCCC1 least squares aproximations.



6 A. Gomide and J. Stol�The mesh T (with 24 edges, 10 verties and 16 triangles) was a Delaunaytriangulation of 10 irregularly distributed points. The approximation errorwas estimated by evaluating ku(pk)� f(pk)k for a set of 7216 points pk, withan approximately uniform distribution over the sphere S2.Observe that with the spae P30 [T ℄=S2 we usually obtain better approxi-mations to general funtions than with the spae H40[T ℄=S2, even though thethe latter has more degrees of freedom (130 against 108). Likewise, the spaeP61 [T ℄=S2 usually provides better approximations than H71[T ℄=S2, whih isonly a little smaller (246 degrees of freedom against 268). The exeptionsseem to be funtions whih happen to lie in the homogeneous spae, eitherexatly (suh as x2 for H40, and x3 for H70), or nearly so (suh as os(x) forH40 and sin(x) for H70). x5. ConlusionIn light of Theorems 1|3, it is obvious that the spae Pdk [T ℄=S2 an approx-imate exatly any spherial harmoni funtion of degree d. The same is nottrue of the spae Hdk[T ℄=S2, whih is the subspae of Pdk [T ℄=S2 generated bythe spherial harmonis whose degrees have the same parity as d.Our numerial experiments seem to indiate that, for the relatively largetriangles one is likely to use in pratie (with radii around 10�1 or 10�2), theapproximation errors obtained with the splines Hd0k [T ℄=S2 are usually largerthan those otained with splines Pd00k [T ℄=S2, even when the degrees d0 and d00are hosen so that the two spaes have approximately the same dimension.(Similar results were obtained in the integration of partial di�erential equa-tions on the sphere by �nite element methods; these results will be reportedelsewhere.)The experiments by Alfeld, Neamtu and Shumaker [3℄ with loal inter-polation methods for homogeneous splines on�rm the expeted approxima-tion order O(rd+1) of those spaes for meshes of vanishing triangle radius r.Unfortunately, we were unable to perform the analogous experiments for non-homogeneous splines, sine we were unable to devise loal interpolation meth-ods that would generate the full spae Pdk [T ℄=S2|even for ontinuity k = 0.(One diÆulty is the oinidene of two B�ezier knots (d;0;0 and d�1;0;0) ateah vertex, whih all for two independent salar data values at that point,depending only on those oeÆients.) Thus the asymptoti approximationorder of the non-homogeneous splines is still an open question.xAppendix AA.1. Numerial Integration on the SphereIn order to apply the least square approximation method, it is neessaryto ompute the dot produts h�i; �ji and hf; �ii where the �i are splinesbasis funtions and f is an arbitrary given funtion. We hose hf; gi =RS2 f(p)g(p) dp as the inner produt of spherial funtions.



Non-Homogeneous Splines 7To evaluate the integral, we �rst break it into a sum of integrals overindividual triangles of T . For eah spherial triangle t 2 T , let �t be the planetriangle with the same verties as t. Then, we an write:Zt h(p) dp = Z�t h( qjqj)w(q) dq; (2)where w(q) = dp=dq is the spherial orretion, the ratio between the area ofan element dq of �t around the point q, and the area of its entral projetiondp onto the sphere|that is, w(q) = n Æ q=kqk2 where n is the normal of theplane triangle �t. The integral on the right-hand-side of the equation (2) isthen approximated by a 13-point, seventh-order Gauss ubature formula fora plane triangle, desribed by G. R. Cowper [5℄.Notie that the funtions h that we have to integrate may be the produtsof two polynomials of degree 6 (that is, polynomials of degree 12) times anon-polynomial spherial orretion fator. For that reason, we found thatthe 7th-order ubature formula was not suÆient to alulate hf; gi with theneessary auray, on the triangulation T used in our tests. To get aroundthis problem, we had to partition eah triangle t into four sub-triangles, andapply the ubature formula to eah part.Aknowledgments. We wish to thank L. Shumaker and an anonymousreferee for pointed ritiism of the �rst version of this paper, and for manyhelpful suggestions. This researh was partly funded by CNPq grant 301016-/92-5, by FAPESP grant 93/0655-1 and 99/03824-5, and by PRONEX/CNPqprojet number 76.97.1022.00. Referenes1. Alfeld, P., Neamtu, M. and Shumaker, L. L., Bernstein-B�ezier polyno-mials on irle, spheres, and sphere-Like surfaes. Computer Aided Geo-metri Design Journal 13, 333{349, 1996.2. Alfeld, P., Neamtu, M. and Shumaker, L. L., Dimension and loal basesof homogeneous spline spaes. SIAM Journal of Mathematial Analysis27(5), 1482{1501, 1996.3. Alfeld, P., Neamtu, M. and Shumaker, L. L., Fitting sattered data onsphere-like surfaes using spherial splines. Journal of Computational andApplied Mathematis 73 5{43, 1996.4. Courant R, and Hilbert D., Methods of Mathematial Physis, vol. I.Intersiene, New York, 1953.5. Cowper G, R., Gaussian quadrature formulas for triangles. InternationalJournal of Numerial Methods for Engineering 1(3), 405{408.6. Fausshauer, G. E. and M. and Shumaker, L. L., Sattered data �ttingon the sphere. Mathematial Methods for Curves and Sufaes, 117{166.Vanderbilt University Press, Nashville, TN, 1998.
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