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Abstract. A spherical polynomial is the restriction to the sphere 52
of a polynomial in the three coordinates x,y, z of R3. Let T be an ar-
bitrary triangulation on the sphere, and let PE[T]/S? (resp HE[T]/S?)
be the space of all Cp-continuous functions f from 52 to R such that
the restriction of f to each triangle of T is a spherical polynomial (resp.
homogeneous). These are the spherical polynomial (resp homogeneous)
splines of degree < d (resp. exactly d) and continuity k.

In a previous paper, we have shown that PE[1]/S? = HE[T]/S* @
Hz_l[T] /S?. Alfeld, Neamtu and Schumaker have recently constructed
explicit bases for the spaces HE[T]/S?. Combining these two results, we
obtain explicit constructions for bases of 73,‘3 [T]/S2.

We believe that the general spline spaces PE[T]/S? provide better
approximations than the homogeneous spaces ”Hg[T] /S? when used over

the relatively large regions (radius 107! to 1072) that are likely to occur
in pratice. In this paper we report numerical experiments in least squares
approximation which offer some evidence for this claim.

§1. Introduction

The problem of modeling or approximating a real function defined on the
sphere S? arises in many applications, such as geophysics, meteorology, com-
puter graphics, etc. [8]. Such functions are usually represented as polynomials
on the spherical coordinates ¢, 0, (longitude and latitude). This approach,
however, has several drawbacks: the resulting functions are often discontinu-
ous at the poles, the geodesic lines correspond to curves in the (¢, ) plane,
the resolution of (¢, #) grids is not uniform over the sphere, and so on. These
problems are particularly annoying for applications that require irregular or
adaptive meshes.

These difficulties have recently led some researchers to consider the mod-
eling of spherical functions as functions of the spatial cartesian coordinates
(x,y, z), restricted to the sphere. Alfeld, Neamtu e Schumaker [1,2,3] investi-
gated the use of homogeneous spherical polynomial splines as an approximation
space for functions defined on S?. We showed in a previous work [7] that the
general (non-homogeneous) spherical polynomial splines of degree < d may be
written as the direct sum of homogeneous splines of degree d and d — 1.

In this work, we explore the use of such non-homogeneous splines for
least square approximation of functions. We compare the accuracy of the
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results obtained with both kinds of splines, and show evidence that the non-
homogenous splines seem to offer more uniformly accurate approximations
than their homogeneous subspaces alone.

62. Spherical Polynomials

A spherical polynomial is a polynomial in the three coordinates z,vy, z of IR?,
restricted to the unit sphere S2. Let P?/S? be the space of spherical polyno-
mials with degree < d. It can be shown [7,6] that

Pt)s? =HT/S* @ HI/S?, (1)

where H?/S? denotes the space of homogeneous polynomials of degree d in
x,y,z. (Recall that function f from R" to R is said to be homogeneous of
degree m if f(az) = a™ f(z), for any a € R and z € R".)

2.1. Spherical Harmonics

There is a strong relationship between the spherical polynomials and the well-
known spherical harmonics [4]. We denote by Y the space of the real spherical
functions from S? to IR generated by the real and imaginary parts of the
spherical harmonics Y;™ of degree k < d. We also denote by W* the subspace
of V¢ generated by the spherical harmonics of degree d, d — 2, ..., d — 2{%].
Fausshauer and Schumaker [6] prove the following results:

Theorem 1. The space W coincides with the space H?/S?.

Theorem 2. The space Y coincides with the space P%/S?.

§3. Spherical Splines

It turns out that the decomposition of P?/S2% (1) can be extended to the
splines defined on a geodesic triangulation T on the sphere. Let PZ[T]/S? be
the space of all functions f from S? into IR such that (i) the restriction of f
to each triangle of T' coincides with a function of P¢/S52; and (ii) the function
f has continuity of order k across the edges of T'. Let also H{[T]/S? be the
subspace of PZ[T]/S? that consists of the functions that are homogeneous of
degree d (i.e, H?/S?) in each triangle of T. These are the spherical polynomial
(resp homogeneous) splines of degree < d (resp. exactly d) and continuity k.

We have shown [7] that

Theorem 3. PP[T]/S? = HI[T]/S?* & H{[T]/S>
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3.1 Spline Bases

Alfeld, Neamtu, and Schumaker [2] obtained an explicit basis, with local sup-
port, for each space HE[T]/S?, when d > 3k + 2, in terms of the Bernstein-
Bézier polynomials. (Their construction assumes that the triangulation 7' is
non-degenerate, in the sense that no two edges incident to the same vertex are
coplanar. Every triangulation 7" which is mentioned in this paper is assumed
to have this property.)

The Alfeld-Neamtu-Schumaker (ANS) construction implies that the di-
mension of the space HE[T]/S?, for d > 3k + 2, is

dim HE[T]/S% = (d* — 3dk + 2k*)v — 2d* + 6dk — 3k 4 3k + 2
= (d? — 3dk + 2k*)t/2 + k* + 3k + 2,

where v and t are respectively the number of vertices and triangles of the
triangulation. Therefore, by Theorem 3, a basis for PZ[T]/S? is obtained
through the concatenation of a basis of #¢[T]/S? and a basis of HI~'[T]S2.
Thus we get the dimension of the space P2[T]/S?, for d > 3k + 3:

dim PET] = (2d* — 6dk + 4k* — 2d + 3k + 1)v — 4d* + 12dk + 4d — 6k* + 2
= (2d* — 6dk + 4k* — 2d + 3k + 1)t/2 + 2k* + 6k + 4.

The lowest-degree spaces PE[T]/S? that have ANS bases are P3[T]/S? for
continuity class Cy, and P?[T]/S? for continuity class Cy. Table 1 gives the
dimensions of those spaces and of their homogeneous components, as well as of
the homogeneous spaces Ha[T']/S? and HI[T]/S? which have approximately
the same dimensions.

Co spaces Dimensions C, spaces Dimensions
HAT]/S? | 4v—6 = 2t+2 HIT)/S? |120—-18 = 6t+6
HIT)/S? | v—16 = 9t/2+2 ||HS[T]/S? |20v—-34 = 10t+6
HYT)/S? |160—-30 = 8t+2 HI[T)/S? |30v—54 = 15t+6
P3IT]/S? |13v—22 = 13t/2+4 || P9[T]/S? |320—52 = 16t + 12

Tab. 1. Dimensions of some general and homogeneous spline spaces.

Each element of an ANS basis is associated with a face, an edge, or a
vertex of the triangulation. Figure 1 shows some ANS basis elements for the
space HS$[T]/S?, where T is the central projection of a regular icosahedron
onto the sphere.
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three per edge

Fig. 1. Typical Alfeld-Neamtu-Schumaker basis elements.

§4. Approximation with Spherical Splines

In order to test the effective accuracy obtainable with these splines spaces, we
have performed some numerical experiments in least squares approximation.

Let f be a real function on the sphere, and {¢;}} a basis for some space
F of real functions on S2. Let (,) be an inner product for spherical functions,
and ||f||> = (f, f) its associated squared norm. We want to find a function
u(p) = Y1, xi$i(p) that best approximates f in the sense that ||u(p) — F®I?
is minimuin.
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It is well known that u can be obtained by solving the normal system of
linear equations Gx = b. In this system, the unknowns =z = (z1,z2...2,)
are the coefficients of the approximation u(p) in the basis {¢;}7; the elements
of the matrix G are the inner products Gi; = (¢i, ¢;), 1,5 =1...n; and the
elements of the independent vector b are b; = (f, ¢;), i =1...n.

In our tests, we used the spline spaces shown in table 1. Each of these
spaces was used to approximate the functions f(p) = z2, f(p) = 23, f(p)
exp(z), f(p) = sin(x) and f(p) = cos(z), where p = (z,y,2) € S%. We also
the tested the function f*(p) = 1+ 28 +exp(2y3®) +exp(22?) + 10zyz with was
used by Alfeld, Neamtu and Schumaker [3]. Tables 2 and 3 below summarize
the approximation errors obtained in these tests.

Cy spaces (dimensions)
Functions | HE[T)] (34) |H3[T] (74) | HG[T] (130) | P3[T] (108)
z? 1.5x 1071 [3.9x 1072 [9.0 x 1071 4.8 x 10713
3 1.0x 1071 |2.0x 1071 |1.4x 1072 |5.8x 10713
exp(z) |[1.2x107t |1.7x 1071 |33x1072 [1.2x1073
sin(z) |[1.2x 107" |3.7x107* [29x 1072 |28 x 1074
cos(r) |6.6x 1073 |1.8x 1071 |4.5x107° ]9.0x 10~*
f*(p) 23x107t [1.2x107! |3.7x1072 |3.2x 1072
Tab. 2. Errors of C least squares aproximations.
C. spaces (dimensions)

Functions | H3[T] (102) | HS[T] (166) | HI[T] (246) | PS[T] (268)
z? 1.1x1072 [44x1072 [22x107% |1.7x1078
3 L.7x 107" [3.7x107% |27x 107" |1.0x 1078

exp(r) |6.1x1072 [9.6x1073 |[1.7x1072 |1.6x 1077
sin(z) [29x107% [98x 1073 |[7.1x107% |1.0x1077
cos(x) |5.7x1072 [1.2x1077 [1.6x 1072 |4.3x 1078
f*(p) |41x1072 |94x1072 [89x10~2 |1.4x1073

Tab. 3. Errors of C; least squares aproximations.
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The mesh T' (with 24 edges, 10 vertices and 16 triangles) was a Delaunay
triangulation of 10 irregularly distributed points. The approximation error
was estimated by evaluating ||u(pr) — f(pk)|| for a set of 7216 points pg, with
an approximately uniform distribution over the sphere S2.

Observe that with the space P3[T]/S? we usually obtain better approxi-
mations to general functions than with the space Hg[T]|/S?, even though the
the latter has more degrees of freedom (130 against 108). Likewise, the space
PS[T]/S? usually provides better approximations than H7[T]/S?, which is
only a little smaller (246 degrees of freedom against 268). The exceptions
seem to be functions which happen to lie in the homogeneous space, either
exactly (such as z2 for Ha, and 3 for HJ), or nearly so (such as cos(x) for
H3 and sin(x) for HJ).

§5. Conclusion

In light of Theorems 13, it is obvious that the space PZ[T]/S? can approx-
imate exactly any spherical harmonic function of degree d. The same is not
true of the space HE[T]/S?, which is the subspace of PE[T]/S? generated by
the spherical harmonics whose degrees have the same parity as d.

Our numerical experiments seem to indicate that, for the relatively large
triangles one is likely to use in practice (with radii around 10~! or 1072), the
approximation errors obtained with the splines H¢ [T']/S? are usually larger
than those otained with splines P [T]/S?, even when the degrees d’ and d”
are chosen so that the two spaces have approximately the same dimension.
(Similar results were obtained in the integration of partial differential equa-
tions on the sphere by finite element methods; these results will be reported
elsewhere.)

The experiments by Alfeld, Neamtu and Schumaker [3] with local inter-
polation methods for homogeneous splines confirm the expected approxima-
tion order O(r?*1) of those spaces for meshes of vanishing triangle radius r.
Unfortunately, we were unable to perform the analogous experiments for non-
homogeneous splines, since we were unable to devise local interpolation meth-
ods that would generate the full space PZ[T]/S%—even for continuity k = 0.
(One difficulty is the coincidence of two Bézier knots (c4,0,0 and cg—1,0,0) at
each vertex, which call for two independent scalar data values at that point,
depending only on those coefficients.) Thus the asymptotic approximation
order of the non-homogeneous splines is still an open question.

tAppendix A
A.1. Numerical Integration on the Sphere

In order to apply the least square approximation method, it is necessary
to compute the dot products (¢;,¢;) and (f,¢;) where the ¢; are splines
basis functions and f is an arbitrary given function. We chose (f,g) =
Js2 f(p)g(p) dp as the inner product of spherical functions.
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To evaluate the integral, we first break it into a sum of integrals over
individual triangles of T'. For each spherical triangle ¢t € T, let ¢ be the plane
triangle with the same vertices as t. Then, we can write:

/th(p) dp = /{h(%)w(q) dq, (2)

where w(q) = dp/dq is the spherical correction, the ratio between the area of
an element dq of ¢ around the point ¢, and the area of its central projection
dp onto the sphere—that is, w(q) = n o q/||q||* where n is the normal of the
plane triangle ¢. The integral on the right-hand-side of the equation (2) is
then approximated by a 13-point, seventh-order Gauss cubature formula for
a plane triangle, described by G. R. Cowper [5].

Notice that the functions h that we have to integrate may be the products
of two polynomials of degree 6 (that is, polynomials of degree 12) times a
non-polynomial spherical correction factor. For that reason, we found that
the Tth-order cubature formula was not sufficient to calculate (f,g) with the
necessary accuracy, on the triangulation 7" used in our tests. To get around
this problem, we had to partition each triangle ¢ into four sub-triangles, and
apply the cubature formula to each part.
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