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tEllipti
 
urve 
ryptography (ECC) was introdu
ed by Vi
tor Miller and Neal Koblitzin 1985. ECC proposed as an alternative to established publi
-key systems su
h as DSAand RSA, have re
ently gained a lot attention in industry and a
ademia. The main rea-son for the attra
tiveness of ECC is the fa
t that there is no sub-exponential algorithmknown to solve the dis
rete logarithm problem on a properly 
hosen ellipti
 
urve. Thismeans that signi�
antly smaller parameters 
an be used in ECC than in other 
ompet-itive systems su
h RSA and DSA, but with equivalent levels of se
urity. Some bene�tsof having smaller key sizes in
lude faster 
omputations, and redu
tions in pro
essingpower, storage spa
e and bandwidth. This makes ECC ideal for 
onstrained environ-ments su
h as pagers, PDAs, 
ellular phones and smart 
ards. The implementation ofECC, on the other hand, requires several 
hoi
es su
h as the type of the underlying�nite �eld, algorithms for implementing the �nite �eld arithmeti
, the type of ellip-ti
 
urve, algorithms for implementing the ellipti
 group operation, and ellipti
 
urveproto
ols. Many of these sele
tions may have a major impa
t on the overall perfor-man
e. In this paper we present a sele
tive overview of the main methods and te
h-niques used for pra
ti
al implementations of ellipti
 
urve 
ryptosystems. We alsopresent a summary of the most re
ent reported software implementations of ECC.Key words. Ellipti
 
urve 
ryptography, �nite �elds, ellipti
 s
alar multipli
ation.1 Introdu
tionIn 1985, Vi
tor Miller [56℄ and N. Koblitz [36℄, independently, proposed a publi
-key 
ryp-tosystem analogue of the ElGamal s
hemes [21℄ in whi
h the group Z�p is repla
ed by thegroup of points on an ellipti
 
urve de�ned over a �nite �eld. The main attra
tion of ellip-ti
 
urve 
ryptography (ECC) over 
ompeting te
hnologies su
h as RSA and DSA is thatthe best algorithm known for solving the underlying hard mathemati
al problem in ECC�Institute of Computing, State University of Campinas, 13081-970 Campinas, SP, Brazil, and Dept. ofComputer S
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An Overview of Ellipti
 Curve Cryptography 2(the ellipti
 
urve dis
rete logarithm problem (ECDLP)) takes fully exponential time. Onthe other hand, the best algorithms known for solving the underlying hard mathemati
alproblems in RSA and DSA (the integer fa
torization problem, and the dis
rete logarithmproblem, respe
tively) take sub-exponential time. This means that signi�
antly smallerparameters 
an be used in ECC than in other systems su
h as RSA and DSA, but withequivalent levels of se
urity. A typi
al example of the size in bits of the keys used in di�erentpubli
-key systems, with a 
omparable level of se
urity (against known atta
ks), is that a160-bit ECC key is equivalent to RSA and DSA with a modulus of 1024 bits.The la
k of a sub-exponential atta
k on ECC o�ers potential redu
tions in pro
essingpower, storage spa
e, bandwidth and ele
tri
al power. These advantages are spe
ially im-portant in appli
ations on 
onstrained devi
es su
h as smart 
ards, pagers, and 
ellularphones.From a pra
ti
al point of view, the performan
e of ECC depends mainly on the eÆ-
ien
y of �nite �eld 
omputations and fast algorithms for ellipti
 s
alar multipli
ations. Inaddition to the numerous known algorithms for these 
omputations, the performan
e ofECC 
an be sped up by sele
ting parti
ular underlying �nite �elds and/or ellipti
 
urves.Examples of �nite �elds are F 2m (for hardware and software implementations) and Fp,where p is a spe
ial prime (e.g., a Mersenne prime or a generalized Mersenne prime, see[79℄). Examples of families of 
urves that o�er 
omputational advantages for 
omputinga s
alar multipli
ation in
lude Koblitz 
urves over F2m . Thus, a fast implementation of ase
urity appli
ation based on ECC requires several 
hoi
es, any of whi
h 
an have a majorimpa
t on the overall performan
e.The remainder of this paper is organized as follows. A short introdu
tion to �nite �eldarithmeti
 is provided in Se
tion 2. A brief introdu
tion to ellipti
 
urves is presentedin Se
tion 3. A list of the main known atta
ks on the ellipti
 
urve dis
rete logarithmproblem (ECDLP) is provided in Se
tion 4. In Se
tion 5, we des
ribe several algorithmsfor 
omputing a s
alar multipli
ation whi
h is the 
entral operation of ECC. Finally, someimplementation issues are 
onsidered in Se
tion 6.2 Finite �eldsIn this se
tion we present the de�nition of groups and �nite �elds. These mathemati
alstru
tures are fundamental for the 
onstru
tion of an ellipti
 
urve 
ryptosystem.A group is an algebrai
 system 
onsisting of a set G together with a binary operation �de�ned on G satisfying the following axioms:� 
losure: for all x; y in G we have x � y 2 G;� asso
iativity: for all x; y and z in G we have (x � y) � z = x � (y � z);� identity: there exists an e in G su
h that x � e = e � x = x for all x in G;� inverse: for all x in G there exists y in G su
h that x � y = y � x = e:If in addition, the binary operation � satis�es the abelian property:� abelian: for all x; y in G we have x � y = y � x;



An Overview of Ellipti
 Curve Cryptography 3then we say that the group G is abelian.A �nite �eld is an algebrai
 system 
onsisting of a �nite set F together with two binaryoperations + and �, de�ned on F , satisfying the following axioms:� F is an abelian group with respe
t to \+";� F n f0g is an abelian group with respe
t to \�";� distributive: for all x; y and z in F we have:x� (y + z) = (x� y) + (x� z)(x+ y)� z = (x� z) + (y � z):The order of a �nite �eld is the number of elements in the �eld. A fundamental result onthe theory of �nite �elds (see [51℄), 
hara
terizes the existen
e of �nite �elds: there exists a�nite �eld of order q if and only if q is a prime power. In addition, if q is a prime power, thenthere is essentially only one �nite �eld of order q; this �eld is denoted by F q or GF (q). Thereare, however, many ways of representing the elements of F q, and some representations maylead to more eÆ
ient implementations of the �eld arithmeti
 in hardware or in software.If q = pm, where p is a prime and m is a positive integer, then p is 
alled the 
hara
ter-isti
 of F q and m is 
alled the extension degree of F q. Most standards whi
h spe
ify ECCrestri
t the order of the underlying �nite �eld to be an odd prime (q = p) or a power of 2(q = 2m).2.1 The �nite �eld F pLet p be a prime number. The �nite �eld F p, 
alled a prime �eld, 
onsists of the set ofintegers f0; 1; 2; : : : ; p� 1gwith the following arithmeti
 operations:� Addition: If a; b 2 F p, then a+ b = r, where r is the remainder of the division of a+ bby p and 0 � r � p� 1. This operation is 
alled addition modulo p.� Multipli
ation: If a; b 2 F p, then a � b = s, where s is the remainder of the division ofa � b by p and 0 � s � p� 1. This operation is 
alled multipli
ation modulo p.There are 
ertain primes p for whi
h the modular redu
tion 
an be 
omputed veryeÆ
iently. For example, let p be the prime 2192 � 264 � 1. To redu
e a positive integern < p2, write n = 5Xj=0Aj � 264j :Then n � T + S1 + S2 + S3 (mod p);where



An Overview of Ellipti
 Curve Cryptography 4T = A2 � 2128 + A1 � 264 + A0S1 = A3 � 264 + A3S2 = A4 � 2128 + A4 � 264S3 = A5 � 2128 + A5 � 264 + A5.Thus, the integer redu
tion by p 
an be repla
ed by three additions (mod p), whi
h are mu
hfaster. The prime number p is an example of a family of primes 
alled generalized Mersenenumbers, re
ently introdu
ed by Solinas [79℄. For more examples of primes that are wellsuited for ma
hine implementation, see [79℄ and [59℄. Several te
hniques for implementingthe �nite �eld arithmeti
 in Fp are des
ribed in [35, 54, 12, 32, 19, 30℄.2.2 The �nite �eld F 2mThe �nite �eld F 2m , 
alled a binary �nite �eld, 
an be viewed as a ve
tor spa
e of dimensionm over F 2. That is, there exists a set of m elements f�0; �1; : : : ; �m�1g in F2m su
h thatea
h a 2 F2m 
an be written uniquely in the forma = m�1Xi=0 ai�i; where ai 2 f0; 1g:The set f�0; �1; : : : ; �m�1g is 
alled a basis of F 2m over F2. We 
an then represent a as abinary ve
tor (a0; a1; : : : ; am�1). We now introdu
e two of the most 
ommon bases of F 2mover F2: polynomial bases and normal bases.Polynomial basis. Let f(x) = xm +Pm�1i=0 fixi (where fi 2 f0; 1g; for i = 0; 1 : : : ;m � 1)be an irredu
ible polynomial of degree m over F 2; f(x) is 
alled the redu
tion polynomial.For ea
h redu
tion polynomial, there exists a polynomial basis representation. In su
h arepresentation, ea
h element of F 2m 
orresponds to a binary polynomial of degree less thanm. That is, for a 2 F2m there exist m numbers ai 2 f0; 1g su
h thata = am�1xm�1 + � � �+ a1x+ a0:The �eld element a 2 F 2m is usually denoted by the bit string (am�1 : : : a1a0) of lengthm. The following operations are de�ned on the elements of F2m when using a polynomialrepresentation with redu
tion polynomial f(x): Assume that a = (am�1 : : : a1a0) and b =(bm�1 : : : b1b0).� Addition: a + b = 
 = (
m�1 : : : 
1
0), where 
i = (ai + bi) mod 2. That is, addition
orresponds to bitwise ex
lusive-or.� Multipli
ation: a � b = 
 = (
m�1 : : : 
1
0), where 
(x) =Pm�1i=0 
ixi is the remainder ofthe division of the polynomial (Pm�1i=0 aixi)(Pm�1i=0 bixi) by f(x).The following pro
edure is 
ommonly used to 
hoose a redu
tion polynomial: if an irre-du
ible trinomial xm + xk + 1 exists over F 2, then the redu
tion polynomial f(x) is 
hosen
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 Curve Cryptography 5to be the irredu
ible trinomial with the lowest-degree middle term xk.1 If no irredu
ibletrinomial exists, then sele
t instead a pentanomial xm + xk3 + xk2 + xk1 + 1, su
h that k1has the minimal value; the value of k2 is minimal for the given k1; and k3 is minimal forthe given k1 and k2.Normal basis. A normal basis of F2m over F2 is a basis of the form f�; �2; : : : ; �2m�1g,where � 2 F2m . It is well known (see [51℄) that su
h a basis always exists. Therefore,every element a 2 F 2m 
an be written as a = Pm�1i=0 ai�2i , where ai 2 f0; 1g. The �eldelement a is usually denoted by the bit string (a0a1 : : : am�1) of length m. A normalbasis representation of F 2m has the 
omputational advantage that squaring an element is asimple 
y
li
 shift of the ve
tor representation, an operation that is eÆ
iently implementedin hardware. Multipli
ation of di�erent elements, on the other hand, is in general a more
ompli
ated operation. Fortunately, for the parti
ular 
lass of normal bases 
alled Gaussiannormal bases (GNB), the �eld arithmeti
 operations 
an be implemented very eÆ
iently [31℄.The type T of a GNB is a positive integer measuring the 
omplexity of the multipli
ationoperation with respe
t to that basis; the smaller the type, the faster the multipli
ation.The existen
e of a Gaussian normal basis has been 
hara
terized in [58℄ and [6℄. Inparti
ular, a GNB exists whenever m is not divisible by 8. In addition, if m is divisible by8 and T is a positive integer, then a type T GNB for F 2m exists if and only if p = Tm+ 1is prime and g
d(Tm=k;m) = 1, where k is the multipli
ative order of 2 modulo p.The �nite �eld operations in F2m , using a Gaussian normal basis of type T , are de�nedas follows. Assume that a = (a0a1 : : : am�1) and b = (b0b1 : : : bm�1). Then:� Addition: a+b = 
 = (
0
1 : : : 
m�1), where 
i = (ai+bi) mod 2. That is, �eld additionis performed bitwise.� Squaring: Sin
e squaring is a linear operation in F2m ,a2 = (m�1Xi=0 ai�2i)2 = m�1Xi=0 ai�2i+1 = m�1Xi=0 ai�1 mod m�2i = (am�1a0a1 : : : am�2):Hen
e squaring a �nite �eld element is a simple rotation of the ve
tor representation.� Multipli
ation: Let p = Tm+ 1 and let u 2 F p be an element of order T . De�ne thesequen
e F (1); F (2); : : : ; F (p� 1) byF (2iuj mod p) = i for 0 � i � m� 1; 0 � j � T � 1:For ea
h l, 0 � l � m� 1, de�ne Al and Bl byAl = p�2Xk=1 aF (k+1)+l bF (p�k)+l; andBl = m=2Xk=1(ak+l�1 bm=2+k+l�1 + am=2+k+l�1 bk+l�1) +Al:1Although this sele
tion may a�e
t the speed of the almost inverse algorithm (see [19℄), it allows forfaster redu
tion modulo f(x).



An Overview of Ellipti
 Curve Cryptography 6Then a � b = 
 = (
0
1 : : : 
m�1), where
l = � Al if T is even;Bl if T is odd;for ea
h l; 0 � l � m� 1, where indi
es are redu
ed modulo m.See [31℄ for a good survey on �nite �eld algorithms using a normal basis in F 2m . Consult Ag-new, Mullin and Vanstone [2℄ and Rosing [67℄ for a hardware and software implementation,respe
tively, of a normal basis in F 2m .2.3 Finite �eld arithmeti
 in F 2m using a polynomial basisIn this se
tion we des
ribe various bit-level algorithms for performing 
omputations in the�nite �eld F 2m using a polynomial basis representation. These algorithms 
an be easilymodi�ed to obtain word-level algorithms, whi
h are well suited for software implementa-tions.Addition. Addition in F 2m is the usual addition of ve
tors over F2. That is, add the 
orre-sponding bits modulo 2.Algorithm 1: bit-level method for addition in F 2mInput: a = (am�1 : : : a1a0) 2 F2m and b = (bm�1 : : : b1b0) 2 F 2mOutput: 
 = a+ b = (
m�1 : : : 
1
0)1. for j from 0 to m� 1 doSet 
j  (aj + bj) mod 22. return(
).Modular redu
tion. By the de�nition of multipli
ation in F2m , the result of a polynomialmultipli
ation or squaring has to be redu
ed modulo an irredu
ible polynomial of degree m.This redu
tion operation is parti
ularly eÆ
ient when the irredu
ible polynomial f(x) is atrinomial or a pentanomial. The following algorithm for 
omputing a(x) mod f(x) worksby redu
ing the degree of a(x) until it is less than m.Algorithm 2: bit-level method for modular redu
tion in F 2mInput: a = (a2m�2 : : : a1a0) and f = (fmfm�1 : : : f1f0)Output: 
 = a mod f1. for i from 2m� 2 to m dofor j from 0 to m� 1 doif fj 6= 0 then ai�m+j  ai�m+j + ai2. return(
 (am�1 : : : a1a0)).
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 Curve Cryptography 7Squaring. This operation 
an be 
al
ulated in an eÆ
ient way by observing that the squareof a polynomial a is given bya(x)2 = (m�1Xi=0 aixi)2 = m�1Xi=0 a2i x2i:This equation yields a simple algorithm:Algorithm 3: bit-level method for squaring in F2mInput: a = (am�1 : : : a1a0) and f = (fmfm�1 : : : f1f0)Output: 
 = a2 mod f1. Set t Pm�1i=0 a2i x2i2. Set 
 t mod f //Use Algorithm 23. return(
).A known te
hnique for speeding up the 
omputation in step 1 is to use a table lookup (seeS
hroeppel et al [70℄ for details).Multipli
ation. The basi
 method for performing a multipli
ation in F 2m is the \shift-and-add" method. It is analogous to the binary method for exponentiation, with the square andmultipli
ation operations being repla
ed by the multipli
ation of a �eld element by x and�eld addition operations, respe
tively. Given a 2 F 2m , the shift-left operation xa(x) modf(x) 
an be performed as followsxa(x) mod f(x) = ( Pm�1j=1 aj�1xj if am�1 = 0;Pm�1j=1 (aj�1 + fj)xj + f0 if am�1 6= 0:Then the steps of the \shift-and-add" method are given below.Algorithm 4: \shift-and-add" methodInput: a 2 F 2m ; b 2 F2m and f = (fmfm�1 : : : f1f0)Output: 
 = ab mod f1. Set 
(x) 02. for j from m� 1 to 0 doSet 
(x) x
(x) mod f(x)if aj 6= 0 then Set 
(x) 
(x) + b(x)3. return(
).This method requires m � 1 shift-left operations and m �eld additions on average. Thespeed of this method 
an be improved by using programming tri
ks su
h as separated namevariables and loop-unrolled 
ode. In [50℄ we have proposed a fast algorithm for multipli
ationthat is signi�
antly faster than the \shift-and-add" method, but requires some temporarystorage.
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 Curve Cryptography 8Inversion. The basi
 algorithm for 
omputing multipli
ative inverses is the extended Eu-
lidean algorithm. A high level des
ription of this method is the following:Algorithm 5: Extended Eu
lidean algorithmInput: a 2 F 2m (a 6= 0) and f = (fmfm�1 : : : f1f0)Output: 
 = a�1 mod f1. Set b1(x) 1; b2(x) 0Set p1(x) a(x); p2(x) f(x)2. while degree(p1) 6= 0 doif degree(p1) < degree(p2) thenex
hange p1; p2 and b1; b2Set j  degree(p1)-degree(p2)Set p1(x) p1(x) + xjp2(x); b1(x) b1(x) + xjb2(x)3. return(
(x) b1(x)).An alternative method for 
omputing inverses, 
alled the almost inverse algorithm, wasproposed by S
hroeppel et al [70℄. This method works quite well when the redu
tion poly-nomial is a trinomial of the form xm + xk + 1 with k > w and m� k > w, where w is theword size of the 
omputer used. The authors suggested a number of implementation tri
ksthat 
an be used for improving the speed of this method; many of these tri
ks also work forthe extended Eu
lidean algorithm. Note that in the 
ontext of ellipti
 
urve 
omputationsover F 2m , most of the inversions required 
an be avoided by using a proje
tive s
heme [47℄.In this 
ase, we trade inversions for multipli
ations and other �nite �eld operations.3 Ellipti
 
urves over �nite �eldsIn this se
tion we give a short introdu
tion to the theory of ellipti
 
urves de�ned over �nite�elds. Additional information on ellipti
 
urves and its appli
ations to 
ryptography 
anbe found in Blake et al [12℄, Menezes [52℄, Chapter 6 of Koblitz's book [38℄, and [73℄.There are several ways of de�ning equations for ellipti
 
urves, whi
h depend on whetherthe �eld is a prime �nite �eld or a 
hara
teristi
 two �nite �eld. The Weierstrass equationsfor both �nite �elds Fp and F 2m are des
ribed in the next two se
tions.3.1 Ellipti
 
urves over F pLet p > 3 be an odd prime and let a; b 2 F p satisfy 4a3+27b2 6= 0 (mod p). Then an ellipti

urve E(F p) over F p de�ned by the parameters a; b 2 F p 
onsists of the set of solutions orpoints P = (x; y) for x; y 2 F p to the equation:y2 = x3 + ax+ b (1)together with a spe
ial point O 
alled the point at in�nity. For a given point P = (xP ; yP ),xP is 
alled the x-
oordinate of P , and yP is 
alled the y-
oordinate of P .



An Overview of Ellipti
 Curve Cryptography 9An addition operation + 
an be de�ned on the set E(F p) su
h that (E(F p);+) formsan abelian group with O a
ting as its identity. It is this algebrai
 group that is used to
onstru
t ellipti
 
urve 
ryptosystems. The addition operation in E(F p) is spe
i�ed asfollows:1. P +O = O + P = P for all P 2 E(F p).2. If P = (x; y) 2 E(F p), then (x; y) + (x;�y) = O. (The point (x;�y) 2 E(F p) isdenoted �P , and is 
alled the negative of P .)3. Let P = (x1; y1) 2 E(F p) and Q = (x2; y2) 2 E(F p), where P 6= �Q. Then P +Q =(x3; y3), wherex3 = �2 � x1 � x2; y3 = �(x1 � x3)� y1; and � = y2 � y1x2 � x1 :4. Let P = (x1; y1) 2 E(F p). Then P + P = 2P = (x3; y3), wherex3 = �2 � 2x1; y3 = �(x1 � x3)� y1 and � = 3x21 + a2y1 :This operation is 
alled the doubling of a point.Noti
e that the addition of two di�erent ellipti
 
urve points in E(F p) requires the fol-lowing arithmeti
 operations in F p: one inversion, two multipli
ations, one squaring andsix additions. Similarly, doubling an ellipti
 
urve point in E(F p) requires one inversion,two multipli
ations, two squarings and eight additions. Sin
e inversion in F p is, in general,an expensive operation, an alternative method to 
ompute the sum of two ellipti
 pointsis to use proje
tive 
oordinates. In this 
ase, the inversion operation is traded for moremultipli
ations and other less expensive �nite �eld operations. See [16℄ for several proposedproje
tive s
hemes.The following algorithm implements the addition of two points on E(F p) in terms ofaÆne 
oordinates.Algorithm 6: Addition on E(F p)Input: An ellipti
 
urve E(F p) with parameters a; b 2 Fp, andpoints P1 = (x1; y1) and P2 = (x2; y2).Output: Q = P1 + P2:1. if P1 = O, then return(Q P2)2. if P2 = O, then return(Q P1)3. if x1 = x2 thenif y1 = y2 then � (3x21 + a)=(2y1) mod pelse return(Q O) // y1 = �y2 //else � (y2 � y1)=(x2 � x1) mod p4. Set x3  �2 � x1 � x2 mod p5. Set y3  �(x1 � x3)� y1 mod p6. return(Q (x3; y3)).
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 Curve Cryptography 103.2 Ellipti
 
urves over F 2mA (non-supersingular) ellipti
 
urve E(F 2m) over F 2m de�ned by the parameters a; b 2F 2m ; b 6= 0, 
onsists of the set of solutions or points P = (x; y) for x; y 2 F 2m to theequation: y2 + xy = x3 + ax2 + b (2)together with a spe
ial point O 
alled the point at in�nity.As in the 
ase of ellipti
 
urves over F p, the set of points on E(F 2m) 
an be equippedwith an abelian group stru
ture. This addition operation is spe
i�ed as follows:1. P +O = O + P = P for all P 2 E(F 2m).2. If P = (x; y) 2 E(F 2m), then (x; y) + (x;�y) = O. (The point (x;�y) 2 E(F 2m) isdenoted �P , and is 
alled the negative of P .)3. Let P = (x1; y1) 2 E(F 2m) and Q = (x2; y2) 2 E(F 2m), where P 6= �Q. ThenP +Q = (x3; y3), wherex3 = �2 + �+ x1 + x2 + a; y3 = �(x1 + x3) + x3 + y1 and � = y2 + y1x2 + x1 :4. Let P = (x1; y1) 2 E(F 2m). Then P + P = 2P = (x3; y3), wherex3 = �2 + �+ a; y3 = �(x1 + x3) + x3 + y1 and � = x1 + x1y1 :Noti
e that the addition of two di�erent ellipti
 
urve points in E(F 2m) requires oneinversion, two multipli
ations, one squaring and eight additions in F 2m . Doubling2 a pointin E(F 2m) requires one inversion, two multipli
ations, one squaring and six additions. Forsituations3 where the 
omputation of an inversion operation is relatively expensive 
omparedto a multipli
ation, proje
tive s
hemes o�er 
omputational advantages. Fast algorithms forthe arithmeti
 of ellipti
 
urves over F 2m in proje
tive 
oordinates are des
ribed in [47℄.The following algorithm implements the addition of two points on E(F 2m) in terms ofaÆne 
oordinates.2An alternative method for 
omputing 2P is des
ribed in [47℄.3See [2℄ for a hardware implementation and [29℄ for a software implementation of F2m where an inversion
osts about 24 and 10 multipli
ations, respe
tively.
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 Curve Cryptography 11Algorithm 7: Addition on E(F 2m)Input: An ellipti
 
urve E(F 2m) with parameters a; b 2 F 2m , andpoints P1 = (x1; y1) and P2 = (x2; y2).Output: Q = P1 + P2:1. if P1 = O, then return(Q P2)2. if P2 = O, then return(Q P1)3. if x1 = x2 thenif y1 = y2 then � x1 + y1=x1; x3  �2 + �+ aelse return(Q O) // y2 = y1 + x1 //else � (y2 + y1)=(x2 + x1); x3  �2 + �+ x1 + x2 + a4. Set y3  �(x1 + x3) + x3 + y15. return(Q (x3; y3)).3.3 De�nitions and basi
 resultsS
alar multipli
ation. The 
entral operation of 
ryptographi
 s
hemes based on ECC is theellipti
 s
alar multipli
ation (operation analogue of the exponentiation in multipli
ativegroups). Given an integer k and a point P 2 E(F q), the ellipti
 s
alar multipli
ation kPis the result of adding P to itself k times. In Se
tion 5, we will des
ribe some eÆ
ientalgorithms for 
al
ulating kP .Orders. The order of a point P on an ellipti
 
urve is the smallest positive integer r su
hthat rP = O. If k and l are integers, then kP = lP if and only if k � l (mod r).Curve order. The number of points of E(F q), denoted by #E(F q), is 
alled the 
urve orderof the 
urve. This number 
an be 
omputed in polynomial time by S
hoof's algorithm[69℄. This algorithm is required for setting up an ellipti
 
urve system based on random
urves. In this 
ase, one sele
ts parameters a and b with the property that the 
urve orderof the resulting 
urve be divisible by a large prime (see Se
tion 4 for an explanation of this
ondition).Basi
 fa
ts. Let E be an ellipti
 
urve over a �nite �eld F q. Then:� Hasse's theorem states that #E(F q) = q+1� t, where jtj � 2pq. That is, the numberof points in E(F q) is approximately q.� If q is a power of 2, then #E(F q) is even. More spe
i�
ally, #E(F q) = 0 (mod 4) ifTr(a) = 0,4 and #E(F q) = 2 (mod 4) if Tr(a) = 1:� E(F q) is an abelian group of rank 1 or 2. That is, E(F q) is isomorphi
 to Zn1 � Zn2 ,where n2 divides n1 and q � 1.� If q is a power of two and P = (x; y) 2 E(F q) is a point of odd order, then the tra
e ofthe x-
oordinate of all multiples of P is equal to the tra
e of the parameter a. Thatis, Tr(x(kP )) = Tr(a) for ea
h integer k. This result, due to Seroussi [75℄, is the basisof an eÆ
ient algorithm for a 
ompa
t representation of points on ellipti
 
urves over4The tra
e Tr(�) is a linear map from F2m to F2 de�ned by Tr(a) =Pm�1i=0 a2i .
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 Curve Cryptography 12F 2m . Knudsen's method [34℄ for 
omputing ellipti
 s
alar multipli
ations is also basedon this result.3.4 ECC domain parametersThe operation of publi
-key 
ryptographi
 s
hemes involves arithmeti
 operations on anellipti
 
urve over a �nite �eld determined by some ellipti
 
urve domain parameters. Inthis se
tion, we des
ribe the ellipti
 
urve parameters over the �nite �elds F p and F 2m .ECC domain parameters over F q are a septuple:T = (q; FR; a; b;G; n; h)
onsisting of a number q spe
ifying a prime power (q = p or q = 2m), an indi
ation FR (�eldrepresentation) of the method used for representing �eld elements 2 F q, two �eld elements aand b 2 F q that spe
ify the equation of the ellipti
 
urve E over F q (i.e., y2 = x3+ax+ b inthe 
ase p > 3, and y2+xy = x3+ax2+b when p = 2), a base point G = (xG; yG) on E(F q),a prime n whi
h is the order of G, and an integer h whi
h is the 
ofa
tor h = #E(F q)=n.Several algorithms for the generation and validation of ellipti
 
urve domain parametershave been proposed (see for example [59℄ and [26℄). Sin
e the primary se
urity parameteris n, the ECC key length is thus de�ned to be the bit-length of n. For example, NIST
urves [59℄ are des
ribed by parameters whi
h avoid all known atta
ks. The se
urity levelprovided by these 
urves is at least as mu
h as symmetri
-key 
iphers with key lengths 80to 256 bits. In Table 1 we 
ompare key sizes of di�erent 
ryptosystems with a 
omparablelevel of se
urity (against known atta
ks).Symmetri
 
ipher Example ECC key length for DSA/RSA key length forkey length algorithm equivalent se
urity equivalent se
urity80 SKIPJACK 160 1024112 Triple-DES 224 2048128 128-bit AES 256 3072192 192-bit AES 384 7680256 256-bit AES 512 15360Table 1: ECC, DSA and RSA key length 
omparisons.3.5 Ellipti
 
urve proto
ols: ECDH, ECDSA, ECAESIn this se
tion, we give a short des
ription of three fundamental proto
ols based on ellipti

urves: the Ellipti
 Curve DiÆe-Hellman (ECDH), the Ellipti
 Curve Digital SignatureAlgorithm (ECDSA) and the Ellipti
 Curve Authenti
ated En
ryption S
heme (ECAES).The ECDH is the ellipti
 version of the well-known DiÆe-Hellman key agreement method;the ECDSA is the ellipti
 
urve analogue of the DSA, proposed by S
ott Vanstone [81℄ in1992; and the ECAES is a variant of the ElGamal publi
-key en
ryption s
heme, proposed
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 Curve Cryptography 13by Abdalla, Bellare and Rogaway [1℄ in 1999.Key generation. An entity A's publi
 and private key pair is asso
iated with a parti
ularset of ellipti
 
urve domain parameters (q; FR; a; b;G; n; h)5 .To generate a key pair, entity A does the following:1. Sele
t a random or pseudo-random integer d in the interval [1,n� 1℄.2. Compute Q = dG.3. A's publi
 key is Q; A's private key is d.Publi
 key validation. This pro
ess ensures that a publi
 key satis�es the arithmeti
 require-ments of ellipti
 
urve publi
 key (see [73℄). A publi
 key Q = (xQ; yQ) asso
iated witha domain parameter (q; FR; a; b:G; n; h) is validated using the following pro
edure (
alledexpli
it validation):1. Che
k that Q 6= O:2. Che
k that xQ and yQ are properly represented elements of F q:3. Che
k that Q lies on the ellipti
 
urve de�ned by a and b:4. Che
k that nQ = O:Publi
 key validation with step 4 omitted is 
alled partial publi
-key validation.ECDH. The basi
 idea of this primitive is to generate a shared se
ret value from a pri-vate key owned by one entity A and a publi
 key owned by another entity B so if bothentities exe
ute the primitive simultaneously with 
orresponding keys as input, they willre
over the same shared se
ret value. We assume that entity A has domain parametersD = (q; FR; a; b;G; n; h) and a private key dA. We also suppose that entity B has a publi
key QB asso
iated with D. The publi
 key QB should at least be partially valid.Entity A uses the following pro
edure to 
al
ulate a shared se
ret value with B:1. Compute P = dAQB = (xP ; yP ).2. Che
k that P 6= O.3. The shared se
ret value is z = xP .If step 1 is 
omputed as P = hdAQB = (xP ; yP ), then we 
all this primitive ellipti
 
urve
ofa
tor DiÆe-Hellman. The in
orporation of the 
ofa
tor h into the 
al
ulation of these
ret value is to provide eÆ
ient resistan
e to atta
ks su
h as small subgroup atta
ks (see[73℄).ECAES. The setup for en
ryption and de
ryption is the following. We suppose that re
eiverB has domain parameters D = (q; FR; a; b;G; n; h) and publi
 key QB . We also suppose5This asso
iation 
an be assured 
ryptographi
ally (i.e., with 
erti�
ates) or by 
ontext (e.g., all entitiesuse the same domain parameters)
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 Curve Cryptography 14that sender A has authenti
 
opies of D and QB . In the following, MAC denotes a messageauthenti
ation 
ode (MAC) algorithm su
h as HMAC [43℄, ENC a symmetri
 en
ryptions
heme su
h as Triple-DES, and KDF a key derivation fun
tion whi
h derives 
ryptographi
keys from a shared se
ret point.To en
rypt a message m for B, A performs:1. Sele
t a random integer r from [1,n� 1℄.2. Compute R = rG.3. Compute K = hrQB = (Kx;Ky). Che
k that K 6= O:4. Compute k1jjk2 = KDF(Kx).5. Compute 
 = ENCk1(m).6. Compute t = MACk2(
).7. Send (R; 
; t) to B.To de
rypt a 
iphertext (R; 
; t), B does:8. Perform a partial key validation on R.9. Compute K = hdBR = (Kx;Ky). Che
k that K 6= O.10. Compute k1jjk2 = KDF(Kx).11. Verify that t = MACk2(
).12. Compute m = ENC�1k1 (
).The time 
onsuming operations in en
ryption and de
ryption are the s
alar multipli
a-tions in steps 3 and 9.ECDSA. The setup for generating and verifying signatures using the ECDSA is the follow-ing. We suppose that signer A has domain parameters D = (q; FR; a; b;G; n; h) and publi
key QA. We also suppose that B has authenti
 
opies of D and QA. In the following SHA-1denotes the 160-bit hash fun
tion [60℄.To sign a message m, A does the following:1. Sele
t a random integer k from [1,n� 1℄.2. Compute kG = (x1; y1) and r = x1 mod n.If r = 0 then go to step 1.3. Compute k�1 mod n.4. Compute e = SHA-1(m).5. Compute s = k�1fe+ dA � rg mod n.If s = 0 then go to step 1.6. A's signature for the message m is (r; s).To verify A's signature (r; s) on m, B performs the following steps:7. Verify that r and s are integers in [1,n� 1℄.8. Compute e = SHA-1(m).
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 Curve Cryptography 159. Compute w = s�1 mod n.10. Compute u1 = ew mod n and u2 = rw mod n.11. Compute u1G+ u2QA = (x1; y1).12. Compute v = x1 mod n.13. A

ept the signature if and only if v = r.The time 
onsuming operations in signature generation and signature veri�
ation are thes
alar multipli
ations in steps 2 and 11.4 Dis
rete logarithm problemThe se
urity of ECC is based on the apparent intra
tability of the following ellipti
 
urvedis
rete logarithm problem (ECDLP): given an ellipti
 
urve E(F q), a point P 2 E(F q) oforder n, and a point Q 2 E(F q), determine the integer k, 0 � k � n� 1, su
h that Q = kP ,provided that su
h an integer exists.The Pohlig and Hellman algorithm [61℄ redu
es the 
omputation of l to the problem of
omputing l modulo ea
h of the prime fa
tors of n. Therefore, n should be sele
ted primeto obtain the maximum level of se
urity. In pra
ti
e, one must sele
t an ellipti
 
urve E(F q)su
h that #E(F q) = h � n where n is a prime and h is a small integer.The most eÆ
ient general algorithm known to date is the Pollard-� method [62℄, and itsre
ent modi�
ations by Gallant, Lambert, and Vanstone [24℄, and Wiener and Zu

herato[82℄, whi
h requires about p�n=2 ellipti
 group operations. Van Oors
hot and Wiener [63℄showed that the Pollard-� method 
an be parallelized, and that the expe
ted running timeof this algorithm, using r pro
essors, is roughly p�n=(2r) groups operations. This runtimeis exponential in n.Although no general subexponential algorithms to solve the ECDLP are known, thereare fast algorithms for solving the ECDLP on spe
ial 
urves (e.g., 
urves for whi
h thenumber of points has spe
ial properties). We list next some of these known atta
ks andexplain how they 
an be avoided in pra
ti
e.� Supersingular ellipti
 
urves.Menezes, Okamato and Vanstone [55℄ and Frey and R�u
k[22℄ showed that, under mild assumptions, the ECDLP 
an be redu
ed to the tradi-tional dis
rete logarithm problem in some extension �eld Fqk , for some integer k.This redu
tion algorithm is only pra
ti
al if k is small. For the 
lass of supersingular6ellipti
 
urves it is known that k � 6. Hen
e, this redu
tion algorithm gives a sub-exponential time algorithm for the ECDLP. However, Balasubramanian and Koblitz[8℄ have shown that for most randomly generated ellipti
 
urves we have k > log2 q.To avoid this atta
k in a parti
ular 
urve, one needs to 
he
k that n, the largest primefa
tor of the 
urve order, does not divide qk� 1 for all small k for whi
h the ordinarylogarithm problem in F qk is tra
table. In pra
ti
e this 
he
king is done for all k,1 � k � 30.6An ellipti
 
urve over Fq is said to be supersingular if the tra
e of E, t(E) = q+1�#E(Fq), is divisibleby the 
hara
teristi
 of Fq .
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 Curve Cryptography 16� Prime-�eld anomalous 
urves. An ellipti
 
urve E over F p is said to be prime-�eld-anomalous if #E(F p) = p. Semaev [74℄, Smart [76℄ and Satoh and Araki [68℄ in-dependently proposed a polynomial-time algorithm for the ECDLP in E(F p). Thisatta
k does not appear to extend to any other 
lass of ellipti
 
urves. In pra
ti
e thisatta
k is avoided by verifying that the 
urve order does not equal the 
ardinality ofthe underlying �nite �eld.� Binary 
omposite �nite �elds. Suppose that E is an ellipti
 
urve de�ned over the
omposite �nite �eld F 2m , where m = r � s. Re
ently, Galbraith and Smart [23℄,and Gaundry, Hess and Smart [25℄ have showed that the 
omplexity of the dis
retelogarithm problem on a signi�
ant portion of ellipti
 
urves de�ned over F24s is smallerthan the Pollard-rho method. The authors 
on
luded that this atta
k does not appearto be a threat to ellipti
 
urves de�ned over F2m , for m prime, but that only 
urvesthat satisfy an additional 
ondition (see [12, pp. 18℄), should be used for setting upan ellipti
 
urve 
ryptosystem.Additional information on other atta
ks for the ECDLP as well for atta
ks on ellipti
 
urveproto
ols 
an be found in ANSI X9.62 [3℄, ANSI X9.63 [4℄, Blake, Seroussi and Smart [12℄,Johnson and Menezes [33℄, Koblitz, Menezes and Vanstone [40℄, Araki, Satoh and Miura[5℄, and Certi
om's ECC 
hallenge [15℄.5 Algorithms for ellipti
 s
alar multipli
ationThe implementation of publi
 key proto
ols of ECC su
h as ECDH, ECDSA and ECAES,requires ellipti
 s
alar multipli
ations. That is, 
al
ulations of the formQ = kP = P + � � �+ P| {z }k timeswhere P is a 
urve point, and k is an integer in the range 1 � k � order(P ). Depending onthe proto
ol, the point P is either a �xed point that generates a large, prime order subgroupof E(F q), or P is an arbitrary point in su
h a subgroup.Many authors have dis
ussed methods for exponentiation in a multipli
ative group,whi
h 
an, therefore, be extended to 
omputing ellipti
 s
alar multipli
ation [27, 54, 41, 42℄.However, ellipti
 
urve groups have spe
ial properties that allow for some extra optimiza-tions. In this se
tion we will des
ribe some eÆ
ient algorithms for 
omputing kP . Thesealgorithms, depending on the ellipti
 
urve and the 
hara
teristi
 of the �nite �eld, 
anbe further optimized. Finally, we summarize re
ent te
hniques suitable for hardware orsoftware implementation of ECC.
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 methodsBinary method. The simplest (and oldest) method for 
omputing kP is based on the binaryrepresentation of k. If k =Pl�1i=0 kj2j , where ea
h kj 2 f0; 1g, then kP 
an be 
omputed askP = l�1Xj=0 kj2jP = 2(� � � 2(2kl�1P + kl�2P ) + � � �) + k0P:This method requires l doublings and wk�1 additions, where wk is the weight (the numberof ones) of the binary representation of k.An improved method for 
omputing kP 
an be obtained from the following fa
ts:� Every integer k has a unique representation of the form k = Pl�1j=0 kj2j , where ea
hkj 2 f�1; 0; 1g, su
h that no two 
onse
utive digits are nonzero. This representation,known as non-adja
ent form (NAF), was �rst des
ribed by Reitwiesner [65℄ (see also[12℄).� The expe
ted weight of a NAF of length l is l=3, see [12℄.� The 
omputation of the negation of a point P = (x; y) 2 E(F q) (�P = (x;�y) or�P = (x; x+ y)) is virtually free, so the 
ost of addition or subtra
tion is pra
ti
allythe same.There are, however, several algorithms for 
omputing the NAF of k from its binary rep-resentation (see for example [54℄). The following method, from Solinas [78℄, 
omputes theNAF of an integer k.Algorithm 8: Computation of NAF(k)Input: An integer kOutput: The non-adja
ent form of k, NAF(k)= (ul�1 : : : u1u0)1. Set 
 k, l  02. while 
 > 0 doif 
 odd thenSet ul  2� (
 mod 4)Set 
 
� ulelse Set ul  0Set 
 
=2; l l + 13. return(NAF(k)  (ul�1 : : : u1u0)).Addition-Subtra
tion method. This algorithm, analogue of the binary method, performs anaddition or subtra
tion depending on the sign of ea
h digit of k, s
anned from left toright.7 The details are given in Algorithm 9. This algorithm requires l doublings and l=3additions on average. This implies, for example, that for ellipti
 
urves over Fp, using theproje
tive 
oordinates given in [31℄, we obtain an improvement of about 14% over the binarymethod.7This algorithm 
an be modi�ed to obtain a right-to-left version, whi
h does not need storage for theNAF(k), see [78℄ for more details.
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 Curve Cryptography 18Algorithm 9: Addition-Subtra
tion methodInput: An integer k and a point P = (x; y) 2 E(F q)Output: The point Q = kP 2 E(F q)1. Compute NAF(k) = (ul�1 : : : u1u0)2. Set Q O3. for j from l � 1 downto 0 doSet Q 2Qif uj = 1 then Set Q Q+ Pif uj = �1 then Set Q Q� P4. return(Q).Window method. Several generalizations of the binary method su
h as the m-ary method,sliding method, et
., work by pro
essing simultaneously a blo
k of digits. In these methods,depending on the size of the blo
ks (or windows) a number of pre
omputed points arerequired. We des
ribe a typi
al window method 
alled the width-w window method (see[78℄).Let w be an integer greater than 1. Then every positive number k has a unique width-wnonadja
ent form k =Pl�1j=0 uj2j where:� ea
h nonzero uj is odd and less than 2w�1 in absolute value;� among any w 
onse
utive 
oeÆ
ients, at most one is nonzero.The width-w NAF is written NAFw(k) = (ul�1 : : : u1u0). A generalization of Algorithm 8for 
omputing NAFw(k) is des
ribed in Algorithm 10. Given the width-w NAF of an integerk, and a point P 2 E(F q), the 
al
ulation of kP 
an be 
arried out by Algorithm 11.Algorithm 10: Computation of NAFw(k)Input: An integer kOutput: NAFw(k)= (ul�1 : : : u1u0)1. Set 
 k, l  02. while 
 > 0 doif 
 odd thenSet ul  2� (
 mod 2w)if ul > 2w�1 then Set ul  ul � 2wSet 
 
� ulelse Set ul  0Set 
 
=2; l l + 13. return(NAFw(k) (ul�1 : : : u1u0)).
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 Curve Cryptography 19Algorithm 11: The width-w window methodInput: Integers k and w, and a point P = (x; y) 2 E(F q)Output: The point Q = kP 2 E(F q)// Pre
omputation:// Compute uP for u odd and 2 < u < 2w�11. Set P0  P; T  2P2. for i from 1 to 2w�2 � 1 doSet Pi  Pi�1 + T// Main Computation:3. Compute NAFw(k) = (ul�1 : : : u1u0)4. Set Q O5. for j from l � 1 downto 0 doSet Q 2Qif uj 6= 0 thenSet i (juj j � 1)=2if uj > 0 then Set Q Q+ Pielse Set Q Q� Pi6. return(Q).The number of nonzero digits in the NAFw(k) is on average l=(w + 1) [80℄. Therefore,Algorithm 11 requires 2w�2 � 1 additions and one doubling for the pre
omputation step,and l=(w+1) additions and l� 1 doublings for the main 
omputation. Note that althoughthe number of additions 
an be redu
ed by sele
ting an apropriate width w, the numberof doublings is the same as in the previous methods. The total number of �nite �eld op-erations required for 
omputing kP depends mainly on the algorithms used for the ellipti
operations (aÆne or proje
tive 
oordinates), the 
ost-ratio of inversion to multipli
ation,and the width w.Comb method. This method, developed by Lim and Lee [46℄, 
an be used for 
omputing kPwhen P is a �xed point, known in advan
e of the 
omputation. In order to 
ompute kP ,the l-bit integer k is divided into h blo
ks Kr, ea
h one of length a = dl=he. In addition,ea
h blo
k Kr is subdivided into v blo
ks of size b = da=ve. Thus, k 
an be written ask = h�1Xr=0 v�1Xs=0 b�1Xt=0 kvbr+bs+t2vbr+bs+t:Then, Lim/Lee's method uses the following expression for 
omputing kP :kP = b�1Xt=0 2t(v�1Xs=0G[s℄[Is;t℄);where the pre
omputation array G[s℄[u℄ for 0 � s < v, 0 � u < 2h, and u = (uh�1 : : : u0)2,
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 Curve Cryptography 20is de�ned by the following equations:G[0℄[u℄ = h�1Xr=0 ur2rvbP;G[s℄[u℄ = 2sbG[0℄[u℄;and the number Is;t, for 0 � s < v � 1 and 0 � t < b is de�ned byIs;t = h�1Xr=0 kvbr+bs+t2r:A detailed des
ription of Lim/Lee's method is given in Algorithm 12. This algorithmrequires v(2h�1) ellipti
 points of storage, and the average number of operations to performa s
alar multipli
ation is b�1 doublings and (2h�1)=2hvb�1 additions on average, but vb�1additions in the worst 
ase. The sele
tion of both parameters h and v presents a trade-o�between pre
omputation (memory) and online 
omputations (speed). Some improvementsto this algorithm are dis
ussed in [17℄. For other algorithms for 
omputing kP when P is aknown point, see [54℄.Algorithm 12: Lim/Lee methodInput: Integers k; h; v and an array of points G[s℄[u℄, with 0 � s < vand 1 � u < 2h.// The array G is 
omputed as:for u from 1 to 2h � 1 dofor s from 0 to v � 1 doSet u (uh�1 : : : u1u0)2Set G[s℄[u℄ 2sbPh�1i=0 ui2vbiP:Output: The point Q = kP 2 E(F q).// Main Computation:1. Set Q O2. for t from b� 1 downto 0 doSet Q 2Qfor s from v � 1 downto 0 doSet Is;t  Ph�1i=0 2ikvbi+bs+tif Is;t 6= 0 then Q Q+G[s℄[Is;t℄3. return(Q).5.2 Faster methodsIn re
ent years, the study of fast methods for 
omputing a s
alar multipli
ation has beenan a
tive resear
h area. In this se
tion we summarize some of these re
ent methods.
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omputing repeated doublings (i.e., 2iP ), for ellipti
 
urves de�nedover F 2m was proposed by L�opez and Dahab [47℄. This algorithm, an improvementover the formulas presented by Guajardo and Paar [28℄, 
omputes 2iP with only oneinversion, and it is faster than the usual method for 
omputing 2iP (i 
onse
utivedoublings) if the 
ost-ratio of inversion to multipli
ation is at least 2.5. This method
an be used to speed up window methods su
h as the one des
ribed in the previousse
tion.� Another algorithm for 
omputing repeated doublings, for ellipti
 
urves over F 2m ,was proposed by S
hroeppel [72℄. This algorithm is useful for situations where the
omputation of an inverse is relatively fast 
ompared to a multipli
ation. A slightlyimproved version of this method is the following:Algorithm 13: Repeated doublings on E(F 2m)Input: An integer i and a point P = (x; y) 2 E(F 2m)Output: The point Q = 2iP1. Set � x+ y=x2. for j from 1 to i-1 doSet x2  �2 + �+ aSet �2  �2 + a+ bx4 + bSet x x2; � �23. Set x2  �2 + �+ a; y2  x2 + (�+ 1) � x24. return(Q (x2; y2)).This method is based on the observation that doubling a point using the representation(x; �)8 is faster than using the aÆne representation (x; y). Thus, we save one �eldmultipli
ation in ea
h iteration of Algorithm 13. A further optimization is to use afast routine to multiply by the 
onstant b. This method 
an be used for speeding upwindow methods in aÆne 
oordinates.� For ellipti
 
urves over F p, Itoh et al [32℄ proposed fast formulas for 
omputing re-peated doublings in proje
tive 
oordinates, whi
h redu
e both the number of �eldmultipli
ations and the number of �eld additions. This te
hnique works in 
ombina-tion with window methods.� An optimized version of an algorithm developed by Montgomery [57℄, was proposed byLopez and Dahab [48℄. This algorithm works for every ellipti
 
urve de�ned over F 2m ,is faster than the addition-subtra
tion method, and it is suitable for both hardwareand software implementations. In addition, this algorithm has the property that inea
h iteration the same amount of 
omputation (an addition followed by a doubling)is performed. This may help to prevent timing atta
ks [39℄.� An algorithm for 
omputing ellipti
 s
alar multipli
ations whi
h repla
es the doublingoperation by the halving operation (i.e., the 
omputation of Q su
h that 2Q = P )8Every point P = (x; y) 2 E(F2m); x 6= 0, 
an be represented as the pair (x; �); � = x+ y=x, but (x; �)is not a point on E(F2m).
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 Curve Cryptography 22was proposed by Knudsen [34℄. This algorithm works for half of the ellipti
 
urvesde�ned over F2m (i.e., 
urves whose ellipti
 
urve parameter a satis�es Tr(a) = 1).The implementation of this method requires fast routines for the following operationsin F2m : the square root of a �eld element, the tra
e of a �eld element, and thesolution of quadrati
 equations of the form x2 + x = s, for s 2 F 2m . Sin
e theseoperations 
an be 
arried out very eÆ
iently using a normal basis, this approa
h issuitable for hardware implementations. The implementation of Knudsen's method,using a polynomial basis, presents a trade o� between memory and speed for bothimplementations hardware and software.5.3 Koblitz 
urvesThese 
urves, also known as binary anomalous 
urves, were �rst proposed for 
ryptographi
use by Koblitz [37℄. They are ellipti
 
urves over F2m with 
oeÆ
ients a and b either 0 or1. Sin
e it is required that b 6= 0, then the 
urves must be de�ned by the equations:E0 : y2 + xy = x3 + 1 and E1 : y2 + xy = x3 + x2 + 1:Koblitz 
urves have the following interesting property: if (x; y) is a point on Ea; a = 0 ora = 1, so is the point (x2; y2). Moreover, every point P = (x; y) 2 Ea satis�es the relation(x4; y4) + 2P = � � (x2; y2): (3)where � = (�1)1�a:By using the Frobenius map over F2: �(x; y) = (x2; y2), equation (3) 
an be written as�(�P ) + 2P = ��P; for all P 2 Ea:Then the Frobenius map �P 
an be regarded as a multipli
ation by the 
omplex number� = �+p�72 satisfying �2 + 2 = ��:Several methods have been proposed to take advantage of the Frobenius map, startingwith the observation of Koblitz [37℄, that four 
onse
utive doublings of a point P = (x; y) 2E1 
an be 
omputed eÆ
iently via the formula16P = �2P � �4P = (x4; y4)� (x16; y16):The fastest method known for 
omputing kP on Koblitz 
urves is due to Solinas [78℄. Thismethod uses an expansion for kP of the formkP = l�1Xi=0 ki� iP; ki 2 f�1; 0; 1g and l � log k:Then, the 
al
ulation of kP 
an be 
arried out by a similar method to Algorithm 9 wherethe doublings are repla
ed by evaluations of the Frobenius map. Before we des
ribe Solinas'method, the following sequen
es �a(n) and �a(n) are de�ned:
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 Curve Cryptography 23� �a(0) = 0; �a(1) = a� 1; �a(n+ 1) = ��a(n)� 2�a(n� 1) + a� 2:� �a(0) = 0; �a(1) = a� 1; �a(n+ 1) = ��a(n)� 2�a(n� 1):Algorithm 14 des
ribe Solinas' method for 
omputing an ellipti
 s
alar multipli
ationon the Koblitz 
urve Ea(F 2m).Algorithm 14: � - adi
 NAF method for Koblitz 
urvesInput: An integer k and a point P = (x; y) 2 Ea(F 2m).Output: The point Q = kP 2 Ea(F 2m)// Redu
tion modulo (�m � 1)=(� � 1)1. Set r  b�a(m) � k=2m�1
, s b�a(m) � k=2m
2. Set t 2�a(m) + ��a(m), v  �a(m) � s3. Set 
 k � t � r � 2v; d �a(m) � r � 2�a(m) � s// Main 
omputation4. Set Q O; D  P5. while 
 6= 0 or d 6= 0 doif 
 odd then Set u (
� 2d (mod 4))else Set u 0Set 
 
� uif u = 1 then Set Q Q+Dif u = �1 then Set Q Q�DSet D  �DSet e 
=2; 
 d+ �e; d �e6. return(Q).This algorithm requires, on average, m=3 ellipti
 additions and m evaluations of the Frobe-nius map. For 
omparison, if we implement Koblitz 
urves over F2163 , using a normalbasis9 with the proje
tive 
oordinates given in [47℄, Algorithm 9 takes 972 multipli
ations,while Solinas' algorithm requires 486 multipli
ations, obtaining a theoreti
al improvementof about 50%. Further speedups 
an be obtained by using window te
hniques; see Solinas[78℄10 for the \width-w � -addi
 NAF method" analogous to Algorithm 11.6 Implementation issuesWhen implementing ECC, there are many fa
tors that may guide the 
hoi
es required inthe implementation of a parti
ular appli
ation. The fa
tors in
lude: se
urity 
onsidera-tions (the ECDLP and se
urity of the proto
ols), methods for implementing the �nite �eldarithmeti
, methods for 
omputing ellipti
 s
alar multipli
ations, the appli
ation platform(hardware or software), 
onstraints of the 
omputing environment (pro
essor speed, 
odesize, power 
onsumption), and 
onstraints of the 
ommuni
ation environment (bandwidth,response time). Sin
e these fa
tors 
an have a major impa
t on the overall performan
e ofthe appli
ation, it is re
ommended that they all be taken together for better results.9For hardware implementations, the squarings are mu
h faster than multipli
ations.10Routine 6 from [78℄ fails when a = 0 and w = 6. A new version of this routine was given in [80℄.
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 Curve Cryptography 246.1 System setupSetting up an ellipti
 
urve 
ryptosystem requires several basi
 
hoi
es in
luding:� An underlying �nite �eld F q(e.g., q = p; q = 2m or q = pm; p > 3)� A representation of the �nite �eld elements(e.g., Montgomery residue for Fp, polynomial or normal basis for F 2m)� Algorithms for implementing the �nite �eld operations(e.g., Montgomery multipli
ation in Fp and F 2m , the extended Eu
lidean algorithmand the almost inverse algorithm for 
omputing multipli
ative inverses)� An appropriate ellipti
 
urve over F q(e.g., the NIST 
urves)� Algorithms for implementing the ellipti
 
urve operations(e.g., windows methods in aÆne or proje
tive 
oordinates)� Ellipti
 
urve proto
ols(e.g., ECDSA, ECDH)By an appropriate ellipti
 
urve, we mean an ellipti
 
urve de�ned over the �nite �eld F qthat resists all known atta
ks on the ECDLP. Spe
i�
ally:1. The number of points, #E(F q), is divisible by a prime n that is suÆ
ientlylarge to resist the parallelized Pollard �-atta
k [63℄ againts general 
urves, and itsimprovements [24, 82℄ whi
h apply to Koblitz 
urves.2. #E(F q) 6= q, to resist the following atta
ks: Semaev [74℄, Smart [76℄, and Satoh-Araki[68℄.3. n does not divide qk � 1 for all 1 � k � 30, to resist the Weil paring atta
k [55℄ andthe Tate paring atta
k [22℄.4. All binary �elds F2m 
hosen have the property that m is prime, to resist re
ent atta
ks[23, 25℄ on ellipti
 
urves de�ned over F 2m where m is 
omposite.Examples of appropriate 
urves to be used in real world 
ryptosystems are given in [59℄ and[26℄.6.2 Previous software implementations of ECCIn the last �ve years, there have been many reported software implementations of ellipti

urves over �nite �elds. Most of these implementations fo
us on a single 
ryptographi
appli
ation, su
h as designing a fast implementation of ECDSA for one parti
ular �nite�eld. Typi
al examples of �nite �elds used in these implementations are F2155 [70℄, F 2167 [13℄,F 2176 [28, 7℄, F2191 [19℄, F p (p a 160-bit prime) [30℄, Fp (p a 192-bit prime) [19℄, and F (263�25)3[9℄. In [49℄, we have 
ompiled timing results of several reported software implementationsof ECC. In this se
tion, we summarize three examples of software implementations of ECCon general purpose 
omputers.
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hroppel et al. [70℄ reported an implementation of an ellipti
 
urve analogue of DiÆe-Hellman key ex
hange algorithm over F 2155 with a trinomial basis representation.A detailed des
ription of the �nite �eld arithmeti
 in F2155 is provided, in
ludinga fast method for 
omputing re
ipro
als, 
alled the almost inverse algorithm. Animproved method for doubling an ellipti
 
urve point is also presented. Two 
omputerar
hite
tures were used to measure performan
e, a Sun Spar
-IPC (25 MHz), with 32bit word size, and a DEC Alpha 3000 (175 MHz), with a 64-bit size word. Theimplementation was written in C with several programming tri
ks. The performan
eresults are given in Table 2.Field and Curve Operations over F 2155 Spar
 IPC AlphaSquaring 11.9 0.64Multipli
ation 116.4 7.59Inversion 280.1 25.21ECDH key ex
hange 137,000 11,500DH key ex
hange (512 bits) 2,670,000 185,000Table 2: Timings (in mi
rose
onds) for �nite �eld and ellipti
 
urve operations.� De Win et al. [19℄ des
ribed an implementation of ECDSA, for both F p and F 2m ,and made 
omparisons with other signature algorithms su
h as RSA and DSA. Theplatform used was a Pentium-Pro 200 MHz runningWindows NT 4.0 and using MSVC4.2 and maximal optimization. The 
ode for RSA and DSA was written in C, usingma
ros in assembly language. The ellipti
 
urve 
ode was mainly written in C++ andfor F p the same multi-pre
ision routines in C were 
alled as for RSA and DSA. Themodulus for both RSA and DSA was 1024 bits long. For the ellipti
 
urves, the �eldsizes for F p and F2m were approximately 191 bits. Table 3 summarizes the results oftheir implementation. ECDSA F 2m ECDSA Fp RSA DSAKey generation 11.7 5.5 1 se
. 22.7Signature 11.3 6.3 43.3 23.6Veri�
ation 60 26 0.65 28.3S
alar multipli
ation 50 21.1 - -Table 3: Timing 
omparison of ECDSA , DSA, and RSA signature operations. All timingsin millise
onds, unless otherwise indi
ated.� Bailey and Paar [9℄ introdu
ed a new type of �nite �elds whi
h 
an be used to a
hievea fast software implementation of ellipti
 
urve 
ryptosystems. This 
lass of �nite�elds 
alled Optimal Extension Field (OEF), is of the form Fpm , where p is a prime
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ial form and m a positive integer. The OEFs take advantage of the fast integerarithmeti
 found on modern RISC workstation pro
essors. The authors provided alist of OEFs suitable for pro
essors with 8, 16, 32 and 64 bit word sizes. In [10℄, thesame authors presented further improved algorithms for the �nite �eld arithmeti
,and timing results of their ellipti
 
urve implementation on several platforms. TwoAlpha workstations DEC 21064 and 21164A, and a 233 MHz Intel Pentium/MMxPC were used to measure performan
e. The implementation for the workstations waswritten in optimized C, resorting to assembly to perform polynomial multipli
ations;the implementation for the PC was written entirely in C. The sizes of 
hosen �nite�elds were approximately 183 bits. Table 4 presents the timings to perform an ellipti
s
alar multipli
ation of an arbitrary point.Operation Alpha 21064 Alpha 21164A Pentium/MMX150 MHz 600 MHz 233 MHzkP 7.0 1.09 13.1Table 4: Timings (in millise
onds) for an ellipti
 s
alar multipli
ation.6.3 An example of a software implementation of ECCIn this se
tion we present some details of the ECC software implementation reported in [14℄.This paper des
ribes an experien
e with porting PGP to the Resear
h in Motion (RIM)two-way pager, and in
orporating ECC into PGP.� Finite �elds: F 2m , m = 163; 233; 283.� Representation: A polynomial basis was used for ea
h �nite �eld, with the followingredu
tion polynomials: x163 + x7 + x6 + x3 + 1 for F2163 , x233 + x74 + 1 for F 2233 andx283 + x12 + x7 + x6 + 1 for F 2283 .� Algorithms for the �nite �eld arithmeti
: The squaring operation was sped up byusing a table lookup of 512 bytes. The multipli
ation operation was 
arried out bythe algorithm des
ribed in [50℄. The inverse operation was 
arried out by the extendedEu
lidean algorithm.� Curves: The Koblitz and random 
urves over F2163 ; F 2233 and F2283 were sele
ted fromthe list of NIST re
ommended 
urves [59℄.� Algorithms for the ellipti
 
urve group: For random 
urves, the method given in [48℄was implemented for 
omputing s
alar multipli
ations when P is an arbitrary point.Lim/Lee's method [54℄, with 16 points of pre
omputation, was implemented usingthe proje
tive 
oordinates given in [47℄ for 
omputing s
alar multipli
ations when Pis a known point (e.g., for signing). For a Koblitz 
urve, Solinas' methods [78℄ wereimplememented using proje
tive 
oordinates, with width w = 5 for random points,and w = 6 for a known point (in this 
ase, 16 points of pre
omputation are required).� EC proto
ols: The proto
ols implemented were: ECDSA and ECAES.
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ision library: The library b
 from OpenSSL [64℄, written entirely in C,was used to perform the modular arithmeti
 operations required in the ellipti
 
urveproto
ols as well in Solinas' methods.� Platforms: A Pentium II 400 MHz and a RIM pager 10 MHz.� Language: The implementation was written entirely in C.� RSA: The RSA 
ode, written entirely in C, was taken from the OpenSSL library.� Timings: The performan
e results provided are only for the 
ase m = 163 (see [14℄for more timings). Table 5 shows the timings for �nite �eld operations in F2163 .Operations Pentium II RIM pagerin F2163 400 MHz 10 MHzSquaring 0.41 100Multipli
ation 2.97 1,515Inversion 31.23 12,500Table 5: Timings (in mi
rose
onds) for �nite �eld operations in F2163 .The performan
e results for the ECC operations using Koblitz and random 
urvesover F2163 are summarize in Table 6. Timings for RSA operations, with a modulus of1024 bits, are given in Table 7.Koblitz 
urve over F2163 Random 
urve over F 2163RIM pager P II RIM pager P IIKey Generation 751 1.47 1,085 2.12ECAES en
rypt 1,759 4.37 3,132 6.67ECAES de
rypt 1,065 2.85 2,114 4.69ECDSA signing 1,011 2.11 1,335 2.64ECDSA verifying 1,826 4.09 3,243 6.46Table 6: Timings (in millise
onds) for ECC operations overF 2163 .� Con
lusions: Sin
e the two systems RSA-1024 and ECC-163 have a 
omparable levelof se
urity, the following 
on
lusions 
an be drawn from the timings:{ RSA publi
-key operations (en
ryption and signature) are faster than ECC publi
-key operations.{ ECC private key operations (de
ryption and signature generation) are faster thanRSA private-key operations.{ Koblitz 
urves perform better than random 
urves, espe
ially for en
rypting andverifying.
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 Curve Cryptography 281024-bit modulusRIM Pager Pentium IIRSA key generation 580,405 2,740.87RSA en
rypt (e = 3) 533 2.70RSA en
rypt (e = 216 + 1) 1,241 5.34RSA de
rypt 15,901 67.32RSA signing 15,889 66.56RSA verifying (e = 3) 301 1.23RSA verifying (e = 216 + 1) 1,008 3.86Table 7: Timings (in millise
onds) for 1024-bit RSA operations.{ With respe
t to the the PGP operations Signing-and-en
rypting and Verifying-and-de
ryting, the performan
e of ECC (Koblitz 
urves) is about �ve times theperforman
e of RSA on the RIM pager.7 Con
lusionsIn this paper, we have presented an overview of the main ideas behind the publi
-key te
h-nology based on ellipti
 
urves. We have fo
used on algorithms for software implementationof ellipti
 
urves de�ned over the binary �eld F 2m . We have also presented a summary ofthe fastest software implementations of ECC reported on general purpose 
omputers.8 A
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