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An Overview of Ellipti Curve CryptographyJulio L�opez� Riardo DahabyInstitute of ComputingState University of CampinasCampinas, 13081-970 S~ao Paulo, Brazilfjulioher,rdahabg�d.uniamp.brMay 22, 2000AbstratEllipti urve ryptography (ECC) was introdued by Vitor Miller and Neal Koblitzin 1985. ECC proposed as an alternative to established publi-key systems suh as DSAand RSA, have reently gained a lot attention in industry and aademia. The main rea-son for the attrativeness of ECC is the fat that there is no sub-exponential algorithmknown to solve the disrete logarithm problem on a properly hosen ellipti urve. Thismeans that signi�antly smaller parameters an be used in ECC than in other ompet-itive systems suh RSA and DSA, but with equivalent levels of seurity. Some bene�tsof having smaller key sizes inlude faster omputations, and redutions in proessingpower, storage spae and bandwidth. This makes ECC ideal for onstrained environ-ments suh as pagers, PDAs, ellular phones and smart ards. The implementation ofECC, on the other hand, requires several hoies suh as the type of the underlying�nite �eld, algorithms for implementing the �nite �eld arithmeti, the type of ellip-ti urve, algorithms for implementing the ellipti group operation, and ellipti urveprotools. Many of these seletions may have a major impat on the overall perfor-mane. In this paper we present a seletive overview of the main methods and teh-niques used for pratial implementations of ellipti urve ryptosystems. We alsopresent a summary of the most reent reported software implementations of ECC.Key words. Ellipti urve ryptography, �nite �elds, ellipti salar multipliation.1 IntrodutionIn 1985, Vitor Miller [56℄ and N. Koblitz [36℄, independently, proposed a publi-key ryp-tosystem analogue of the ElGamal shemes [21℄ in whih the group Z�p is replaed by thegroup of points on an ellipti urve de�ned over a �nite �eld. The main attration of ellip-ti urve ryptography (ECC) over ompeting tehnologies suh as RSA and DSA is thatthe best algorithm known for solving the underlying hard mathematial problem in ECC�Institute of Computing, State University of Campinas, 13081-970 Campinas, SP, Brazil, and Dept. ofComputer Siene, University of Valle, Cali, Colombia.yInstitute of Computing, State University of Campinas, 13081-970 Campinas, SP, Brazil. Researhpartially supported by a Pronex-Finep grant 107/97.1



An Overview of Ellipti Curve Cryptography 2(the ellipti urve disrete logarithm problem (ECDLP)) takes fully exponential time. Onthe other hand, the best algorithms known for solving the underlying hard mathematialproblems in RSA and DSA (the integer fatorization problem, and the disrete logarithmproblem, respetively) take sub-exponential time. This means that signi�antly smallerparameters an be used in ECC than in other systems suh as RSA and DSA, but withequivalent levels of seurity. A typial example of the size in bits of the keys used in di�erentpubli-key systems, with a omparable level of seurity (against known attaks), is that a160-bit ECC key is equivalent to RSA and DSA with a modulus of 1024 bits.The lak of a sub-exponential attak on ECC o�ers potential redutions in proessingpower, storage spae, bandwidth and eletrial power. These advantages are speially im-portant in appliations on onstrained devies suh as smart ards, pagers, and ellularphones.From a pratial point of view, the performane of ECC depends mainly on the eÆ-ieny of �nite �eld omputations and fast algorithms for ellipti salar multipliations. Inaddition to the numerous known algorithms for these omputations, the performane ofECC an be sped up by seleting partiular underlying �nite �elds and/or ellipti urves.Examples of �nite �elds are F 2m (for hardware and software implementations) and Fp,where p is a speial prime (e.g., a Mersenne prime or a generalized Mersenne prime, see[79℄). Examples of families of urves that o�er omputational advantages for omputinga salar multipliation inlude Koblitz urves over F2m . Thus, a fast implementation of aseurity appliation based on ECC requires several hoies, any of whih an have a majorimpat on the overall performane.The remainder of this paper is organized as follows. A short introdution to �nite �eldarithmeti is provided in Setion 2. A brief introdution to ellipti urves is presentedin Setion 3. A list of the main known attaks on the ellipti urve disrete logarithmproblem (ECDLP) is provided in Setion 4. In Setion 5, we desribe several algorithmsfor omputing a salar multipliation whih is the entral operation of ECC. Finally, someimplementation issues are onsidered in Setion 6.2 Finite �eldsIn this setion we present the de�nition of groups and �nite �elds. These mathematialstrutures are fundamental for the onstrution of an ellipti urve ryptosystem.A group is an algebrai system onsisting of a set G together with a binary operation �de�ned on G satisfying the following axioms:� losure: for all x; y in G we have x � y 2 G;� assoiativity: for all x; y and z in G we have (x � y) � z = x � (y � z);� identity: there exists an e in G suh that x � e = e � x = x for all x in G;� inverse: for all x in G there exists y in G suh that x � y = y � x = e:If in addition, the binary operation � satis�es the abelian property:� abelian: for all x; y in G we have x � y = y � x;



An Overview of Ellipti Curve Cryptography 3then we say that the group G is abelian.A �nite �eld is an algebrai system onsisting of a �nite set F together with two binaryoperations + and �, de�ned on F , satisfying the following axioms:� F is an abelian group with respet to \+";� F n f0g is an abelian group with respet to \�";� distributive: for all x; y and z in F we have:x� (y + z) = (x� y) + (x� z)(x+ y)� z = (x� z) + (y � z):The order of a �nite �eld is the number of elements in the �eld. A fundamental result onthe theory of �nite �elds (see [51℄), haraterizes the existene of �nite �elds: there exists a�nite �eld of order q if and only if q is a prime power. In addition, if q is a prime power, thenthere is essentially only one �nite �eld of order q; this �eld is denoted by F q or GF (q). Thereare, however, many ways of representing the elements of F q, and some representations maylead to more eÆient implementations of the �eld arithmeti in hardware or in software.If q = pm, where p is a prime and m is a positive integer, then p is alled the harater-isti of F q and m is alled the extension degree of F q. Most standards whih speify ECCrestrit the order of the underlying �nite �eld to be an odd prime (q = p) or a power of 2(q = 2m).2.1 The �nite �eld F pLet p be a prime number. The �nite �eld F p, alled a prime �eld, onsists of the set ofintegers f0; 1; 2; : : : ; p� 1gwith the following arithmeti operations:� Addition: If a; b 2 F p, then a+ b = r, where r is the remainder of the division of a+ bby p and 0 � r � p� 1. This operation is alled addition modulo p.� Multipliation: If a; b 2 F p, then a � b = s, where s is the remainder of the division ofa � b by p and 0 � s � p� 1. This operation is alled multipliation modulo p.There are ertain primes p for whih the modular redution an be omputed veryeÆiently. For example, let p be the prime 2192 � 264 � 1. To redue a positive integern < p2, write n = 5Xj=0Aj � 264j :Then n � T + S1 + S2 + S3 (mod p);where



An Overview of Ellipti Curve Cryptography 4T = A2 � 2128 + A1 � 264 + A0S1 = A3 � 264 + A3S2 = A4 � 2128 + A4 � 264S3 = A5 � 2128 + A5 � 264 + A5.Thus, the integer redution by p an be replaed by three additions (mod p), whih are muhfaster. The prime number p is an example of a family of primes alled generalized Mersenenumbers, reently introdued by Solinas [79℄. For more examples of primes that are wellsuited for mahine implementation, see [79℄ and [59℄. Several tehniques for implementingthe �nite �eld arithmeti in Fp are desribed in [35, 54, 12, 32, 19, 30℄.2.2 The �nite �eld F 2mThe �nite �eld F 2m , alled a binary �nite �eld, an be viewed as a vetor spae of dimensionm over F 2. That is, there exists a set of m elements f�0; �1; : : : ; �m�1g in F2m suh thateah a 2 F2m an be written uniquely in the forma = m�1Xi=0 ai�i; where ai 2 f0; 1g:The set f�0; �1; : : : ; �m�1g is alled a basis of F 2m over F2. We an then represent a as abinary vetor (a0; a1; : : : ; am�1). We now introdue two of the most ommon bases of F 2mover F2: polynomial bases and normal bases.Polynomial basis. Let f(x) = xm +Pm�1i=0 fixi (where fi 2 f0; 1g; for i = 0; 1 : : : ;m � 1)be an irreduible polynomial of degree m over F 2; f(x) is alled the redution polynomial.For eah redution polynomial, there exists a polynomial basis representation. In suh arepresentation, eah element of F 2m orresponds to a binary polynomial of degree less thanm. That is, for a 2 F2m there exist m numbers ai 2 f0; 1g suh thata = am�1xm�1 + � � �+ a1x+ a0:The �eld element a 2 F 2m is usually denoted by the bit string (am�1 : : : a1a0) of lengthm. The following operations are de�ned on the elements of F2m when using a polynomialrepresentation with redution polynomial f(x): Assume that a = (am�1 : : : a1a0) and b =(bm�1 : : : b1b0).� Addition: a + b =  = (m�1 : : : 10), where i = (ai + bi) mod 2. That is, additionorresponds to bitwise exlusive-or.� Multipliation: a � b =  = (m�1 : : : 10), where (x) =Pm�1i=0 ixi is the remainder ofthe division of the polynomial (Pm�1i=0 aixi)(Pm�1i=0 bixi) by f(x).The following proedure is ommonly used to hoose a redution polynomial: if an irre-duible trinomial xm + xk + 1 exists over F 2, then the redution polynomial f(x) is hosen



An Overview of Ellipti Curve Cryptography 5to be the irreduible trinomial with the lowest-degree middle term xk.1 If no irreduibletrinomial exists, then selet instead a pentanomial xm + xk3 + xk2 + xk1 + 1, suh that k1has the minimal value; the value of k2 is minimal for the given k1; and k3 is minimal forthe given k1 and k2.Normal basis. A normal basis of F2m over F2 is a basis of the form f�; �2; : : : ; �2m�1g,where � 2 F2m . It is well known (see [51℄) that suh a basis always exists. Therefore,every element a 2 F 2m an be written as a = Pm�1i=0 ai�2i , where ai 2 f0; 1g. The �eldelement a is usually denoted by the bit string (a0a1 : : : am�1) of length m. A normalbasis representation of F 2m has the omputational advantage that squaring an element is asimple yli shift of the vetor representation, an operation that is eÆiently implementedin hardware. Multipliation of di�erent elements, on the other hand, is in general a moreompliated operation. Fortunately, for the partiular lass of normal bases alled Gaussiannormal bases (GNB), the �eld arithmeti operations an be implemented very eÆiently [31℄.The type T of a GNB is a positive integer measuring the omplexity of the multipliationoperation with respet to that basis; the smaller the type, the faster the multipliation.The existene of a Gaussian normal basis has been haraterized in [58℄ and [6℄. Inpartiular, a GNB exists whenever m is not divisible by 8. In addition, if m is divisible by8 and T is a positive integer, then a type T GNB for F 2m exists if and only if p = Tm+ 1is prime and gd(Tm=k;m) = 1, where k is the multipliative order of 2 modulo p.The �nite �eld operations in F2m , using a Gaussian normal basis of type T , are de�nedas follows. Assume that a = (a0a1 : : : am�1) and b = (b0b1 : : : bm�1). Then:� Addition: a+b =  = (01 : : : m�1), where i = (ai+bi) mod 2. That is, �eld additionis performed bitwise.� Squaring: Sine squaring is a linear operation in F2m ,a2 = (m�1Xi=0 ai�2i)2 = m�1Xi=0 ai�2i+1 = m�1Xi=0 ai�1 mod m�2i = (am�1a0a1 : : : am�2):Hene squaring a �nite �eld element is a simple rotation of the vetor representation.� Multipliation: Let p = Tm+ 1 and let u 2 F p be an element of order T . De�ne thesequene F (1); F (2); : : : ; F (p� 1) byF (2iuj mod p) = i for 0 � i � m� 1; 0 � j � T � 1:For eah l, 0 � l � m� 1, de�ne Al and Bl byAl = p�2Xk=1 aF (k+1)+l bF (p�k)+l; andBl = m=2Xk=1(ak+l�1 bm=2+k+l�1 + am=2+k+l�1 bk+l�1) +Al:1Although this seletion may a�et the speed of the almost inverse algorithm (see [19℄), it allows forfaster redution modulo f(x).



An Overview of Ellipti Curve Cryptography 6Then a � b =  = (01 : : : m�1), wherel = � Al if T is even;Bl if T is odd;for eah l; 0 � l � m� 1, where indies are redued modulo m.See [31℄ for a good survey on �nite �eld algorithms using a normal basis in F 2m . Consult Ag-new, Mullin and Vanstone [2℄ and Rosing [67℄ for a hardware and software implementation,respetively, of a normal basis in F 2m .2.3 Finite �eld arithmeti in F 2m using a polynomial basisIn this setion we desribe various bit-level algorithms for performing omputations in the�nite �eld F 2m using a polynomial basis representation. These algorithms an be easilymodi�ed to obtain word-level algorithms, whih are well suited for software implementa-tions.Addition. Addition in F 2m is the usual addition of vetors over F2. That is, add the orre-sponding bits modulo 2.Algorithm 1: bit-level method for addition in F 2mInput: a = (am�1 : : : a1a0) 2 F2m and b = (bm�1 : : : b1b0) 2 F 2mOutput:  = a+ b = (m�1 : : : 10)1. for j from 0 to m� 1 doSet j  (aj + bj) mod 22. return().Modular redution. By the de�nition of multipliation in F2m , the result of a polynomialmultipliation or squaring has to be redued modulo an irreduible polynomial of degree m.This redution operation is partiularly eÆient when the irreduible polynomial f(x) is atrinomial or a pentanomial. The following algorithm for omputing a(x) mod f(x) worksby reduing the degree of a(x) until it is less than m.Algorithm 2: bit-level method for modular redution in F 2mInput: a = (a2m�2 : : : a1a0) and f = (fmfm�1 : : : f1f0)Output:  = a mod f1. for i from 2m� 2 to m dofor j from 0 to m� 1 doif fj 6= 0 then ai�m+j  ai�m+j + ai2. return( (am�1 : : : a1a0)).



An Overview of Ellipti Curve Cryptography 7Squaring. This operation an be alulated in an eÆient way by observing that the squareof a polynomial a is given bya(x)2 = (m�1Xi=0 aixi)2 = m�1Xi=0 a2i x2i:This equation yields a simple algorithm:Algorithm 3: bit-level method for squaring in F2mInput: a = (am�1 : : : a1a0) and f = (fmfm�1 : : : f1f0)Output:  = a2 mod f1. Set t Pm�1i=0 a2i x2i2. Set  t mod f //Use Algorithm 23. return().A known tehnique for speeding up the omputation in step 1 is to use a table lookup (seeShroeppel et al [70℄ for details).Multipliation. The basi method for performing a multipliation in F 2m is the \shift-and-add" method. It is analogous to the binary method for exponentiation, with the square andmultipliation operations being replaed by the multipliation of a �eld element by x and�eld addition operations, respetively. Given a 2 F 2m , the shift-left operation xa(x) modf(x) an be performed as followsxa(x) mod f(x) = ( Pm�1j=1 aj�1xj if am�1 = 0;Pm�1j=1 (aj�1 + fj)xj + f0 if am�1 6= 0:Then the steps of the \shift-and-add" method are given below.Algorithm 4: \shift-and-add" methodInput: a 2 F 2m ; b 2 F2m and f = (fmfm�1 : : : f1f0)Output:  = ab mod f1. Set (x) 02. for j from m� 1 to 0 doSet (x) x(x) mod f(x)if aj 6= 0 then Set (x) (x) + b(x)3. return().This method requires m � 1 shift-left operations and m �eld additions on average. Thespeed of this method an be improved by using programming triks suh as separated namevariables and loop-unrolled ode. In [50℄ we have proposed a fast algorithm for multipliationthat is signi�antly faster than the \shift-and-add" method, but requires some temporarystorage.



An Overview of Ellipti Curve Cryptography 8Inversion. The basi algorithm for omputing multipliative inverses is the extended Eu-lidean algorithm. A high level desription of this method is the following:Algorithm 5: Extended Eulidean algorithmInput: a 2 F 2m (a 6= 0) and f = (fmfm�1 : : : f1f0)Output:  = a�1 mod f1. Set b1(x) 1; b2(x) 0Set p1(x) a(x); p2(x) f(x)2. while degree(p1) 6= 0 doif degree(p1) < degree(p2) thenexhange p1; p2 and b1; b2Set j  degree(p1)-degree(p2)Set p1(x) p1(x) + xjp2(x); b1(x) b1(x) + xjb2(x)3. return((x) b1(x)).An alternative method for omputing inverses, alled the almost inverse algorithm, wasproposed by Shroeppel et al [70℄. This method works quite well when the redution poly-nomial is a trinomial of the form xm + xk + 1 with k > w and m� k > w, where w is theword size of the omputer used. The authors suggested a number of implementation triksthat an be used for improving the speed of this method; many of these triks also work forthe extended Eulidean algorithm. Note that in the ontext of ellipti urve omputationsover F 2m , most of the inversions required an be avoided by using a projetive sheme [47℄.In this ase, we trade inversions for multipliations and other �nite �eld operations.3 Ellipti urves over �nite �eldsIn this setion we give a short introdution to the theory of ellipti urves de�ned over �nite�elds. Additional information on ellipti urves and its appliations to ryptography anbe found in Blake et al [12℄, Menezes [52℄, Chapter 6 of Koblitz's book [38℄, and [73℄.There are several ways of de�ning equations for ellipti urves, whih depend on whetherthe �eld is a prime �nite �eld or a harateristi two �nite �eld. The Weierstrass equationsfor both �nite �elds Fp and F 2m are desribed in the next two setions.3.1 Ellipti urves over F pLet p > 3 be an odd prime and let a; b 2 F p satisfy 4a3+27b2 6= 0 (mod p). Then an elliptiurve E(F p) over F p de�ned by the parameters a; b 2 F p onsists of the set of solutions orpoints P = (x; y) for x; y 2 F p to the equation:y2 = x3 + ax+ b (1)together with a speial point O alled the point at in�nity. For a given point P = (xP ; yP ),xP is alled the x-oordinate of P , and yP is alled the y-oordinate of P .



An Overview of Ellipti Curve Cryptography 9An addition operation + an be de�ned on the set E(F p) suh that (E(F p);+) formsan abelian group with O ating as its identity. It is this algebrai group that is used toonstrut ellipti urve ryptosystems. The addition operation in E(F p) is spei�ed asfollows:1. P +O = O + P = P for all P 2 E(F p).2. If P = (x; y) 2 E(F p), then (x; y) + (x;�y) = O. (The point (x;�y) 2 E(F p) isdenoted �P , and is alled the negative of P .)3. Let P = (x1; y1) 2 E(F p) and Q = (x2; y2) 2 E(F p), where P 6= �Q. Then P +Q =(x3; y3), wherex3 = �2 � x1 � x2; y3 = �(x1 � x3)� y1; and � = y2 � y1x2 � x1 :4. Let P = (x1; y1) 2 E(F p). Then P + P = 2P = (x3; y3), wherex3 = �2 � 2x1; y3 = �(x1 � x3)� y1 and � = 3x21 + a2y1 :This operation is alled the doubling of a point.Notie that the addition of two di�erent ellipti urve points in E(F p) requires the fol-lowing arithmeti operations in F p: one inversion, two multipliations, one squaring andsix additions. Similarly, doubling an ellipti urve point in E(F p) requires one inversion,two multipliations, two squarings and eight additions. Sine inversion in F p is, in general,an expensive operation, an alternative method to ompute the sum of two ellipti pointsis to use projetive oordinates. In this ase, the inversion operation is traded for moremultipliations and other less expensive �nite �eld operations. See [16℄ for several proposedprojetive shemes.The following algorithm implements the addition of two points on E(F p) in terms ofaÆne oordinates.Algorithm 6: Addition on E(F p)Input: An ellipti urve E(F p) with parameters a; b 2 Fp, andpoints P1 = (x1; y1) and P2 = (x2; y2).Output: Q = P1 + P2:1. if P1 = O, then return(Q P2)2. if P2 = O, then return(Q P1)3. if x1 = x2 thenif y1 = y2 then � (3x21 + a)=(2y1) mod pelse return(Q O) // y1 = �y2 //else � (y2 � y1)=(x2 � x1) mod p4. Set x3  �2 � x1 � x2 mod p5. Set y3  �(x1 � x3)� y1 mod p6. return(Q (x3; y3)).



An Overview of Ellipti Curve Cryptography 103.2 Ellipti urves over F 2mA (non-supersingular) ellipti urve E(F 2m) over F 2m de�ned by the parameters a; b 2F 2m ; b 6= 0, onsists of the set of solutions or points P = (x; y) for x; y 2 F 2m to theequation: y2 + xy = x3 + ax2 + b (2)together with a speial point O alled the point at in�nity.As in the ase of ellipti urves over F p, the set of points on E(F 2m) an be equippedwith an abelian group struture. This addition operation is spei�ed as follows:1. P +O = O + P = P for all P 2 E(F 2m).2. If P = (x; y) 2 E(F 2m), then (x; y) + (x;�y) = O. (The point (x;�y) 2 E(F 2m) isdenoted �P , and is alled the negative of P .)3. Let P = (x1; y1) 2 E(F 2m) and Q = (x2; y2) 2 E(F 2m), where P 6= �Q. ThenP +Q = (x3; y3), wherex3 = �2 + �+ x1 + x2 + a; y3 = �(x1 + x3) + x3 + y1 and � = y2 + y1x2 + x1 :4. Let P = (x1; y1) 2 E(F 2m). Then P + P = 2P = (x3; y3), wherex3 = �2 + �+ a; y3 = �(x1 + x3) + x3 + y1 and � = x1 + x1y1 :Notie that the addition of two di�erent ellipti urve points in E(F 2m) requires oneinversion, two multipliations, one squaring and eight additions in F 2m . Doubling2 a pointin E(F 2m) requires one inversion, two multipliations, one squaring and six additions. Forsituations3 where the omputation of an inversion operation is relatively expensive omparedto a multipliation, projetive shemes o�er omputational advantages. Fast algorithms forthe arithmeti of ellipti urves over F 2m in projetive oordinates are desribed in [47℄.The following algorithm implements the addition of two points on E(F 2m) in terms ofaÆne oordinates.2An alternative method for omputing 2P is desribed in [47℄.3See [2℄ for a hardware implementation and [29℄ for a software implementation of F2m where an inversionosts about 24 and 10 multipliations, respetively.



An Overview of Ellipti Curve Cryptography 11Algorithm 7: Addition on E(F 2m)Input: An ellipti urve E(F 2m) with parameters a; b 2 F 2m , andpoints P1 = (x1; y1) and P2 = (x2; y2).Output: Q = P1 + P2:1. if P1 = O, then return(Q P2)2. if P2 = O, then return(Q P1)3. if x1 = x2 thenif y1 = y2 then � x1 + y1=x1; x3  �2 + �+ aelse return(Q O) // y2 = y1 + x1 //else � (y2 + y1)=(x2 + x1); x3  �2 + �+ x1 + x2 + a4. Set y3  �(x1 + x3) + x3 + y15. return(Q (x3; y3)).3.3 De�nitions and basi resultsSalar multipliation. The entral operation of ryptographi shemes based on ECC is theellipti salar multipliation (operation analogue of the exponentiation in multipliativegroups). Given an integer k and a point P 2 E(F q), the ellipti salar multipliation kPis the result of adding P to itself k times. In Setion 5, we will desribe some eÆientalgorithms for alulating kP .Orders. The order of a point P on an ellipti urve is the smallest positive integer r suhthat rP = O. If k and l are integers, then kP = lP if and only if k � l (mod r).Curve order. The number of points of E(F q), denoted by #E(F q), is alled the urve orderof the urve. This number an be omputed in polynomial time by Shoof's algorithm[69℄. This algorithm is required for setting up an ellipti urve system based on randomurves. In this ase, one selets parameters a and b with the property that the urve orderof the resulting urve be divisible by a large prime (see Setion 4 for an explanation of thisondition).Basi fats. Let E be an ellipti urve over a �nite �eld F q. Then:� Hasse's theorem states that #E(F q) = q+1� t, where jtj � 2pq. That is, the numberof points in E(F q) is approximately q.� If q is a power of 2, then #E(F q) is even. More spei�ally, #E(F q) = 0 (mod 4) ifTr(a) = 0,4 and #E(F q) = 2 (mod 4) if Tr(a) = 1:� E(F q) is an abelian group of rank 1 or 2. That is, E(F q) is isomorphi to Zn1 � Zn2 ,where n2 divides n1 and q � 1.� If q is a power of two and P = (x; y) 2 E(F q) is a point of odd order, then the trae ofthe x-oordinate of all multiples of P is equal to the trae of the parameter a. Thatis, Tr(x(kP )) = Tr(a) for eah integer k. This result, due to Seroussi [75℄, is the basisof an eÆient algorithm for a ompat representation of points on ellipti urves over4The trae Tr(�) is a linear map from F2m to F2 de�ned by Tr(a) =Pm�1i=0 a2i .



An Overview of Ellipti Curve Cryptography 12F 2m . Knudsen's method [34℄ for omputing ellipti salar multipliations is also basedon this result.3.4 ECC domain parametersThe operation of publi-key ryptographi shemes involves arithmeti operations on anellipti urve over a �nite �eld determined by some ellipti urve domain parameters. Inthis setion, we desribe the ellipti urve parameters over the �nite �elds F p and F 2m .ECC domain parameters over F q are a septuple:T = (q; FR; a; b;G; n; h)onsisting of a number q speifying a prime power (q = p or q = 2m), an indiation FR (�eldrepresentation) of the method used for representing �eld elements 2 F q, two �eld elements aand b 2 F q that speify the equation of the ellipti urve E over F q (i.e., y2 = x3+ax+ b inthe ase p > 3, and y2+xy = x3+ax2+b when p = 2), a base point G = (xG; yG) on E(F q),a prime n whih is the order of G, and an integer h whih is the ofator h = #E(F q)=n.Several algorithms for the generation and validation of ellipti urve domain parametershave been proposed (see for example [59℄ and [26℄). Sine the primary seurity parameteris n, the ECC key length is thus de�ned to be the bit-length of n. For example, NISTurves [59℄ are desribed by parameters whih avoid all known attaks. The seurity levelprovided by these urves is at least as muh as symmetri-key iphers with key lengths 80to 256 bits. In Table 1 we ompare key sizes of di�erent ryptosystems with a omparablelevel of seurity (against known attaks).Symmetri ipher Example ECC key length for DSA/RSA key length forkey length algorithm equivalent seurity equivalent seurity80 SKIPJACK 160 1024112 Triple-DES 224 2048128 128-bit AES 256 3072192 192-bit AES 384 7680256 256-bit AES 512 15360Table 1: ECC, DSA and RSA key length omparisons.3.5 Ellipti urve protools: ECDH, ECDSA, ECAESIn this setion, we give a short desription of three fundamental protools based on elliptiurves: the Ellipti Curve DiÆe-Hellman (ECDH), the Ellipti Curve Digital SignatureAlgorithm (ECDSA) and the Ellipti Curve Authentiated Enryption Sheme (ECAES).The ECDH is the ellipti version of the well-known DiÆe-Hellman key agreement method;the ECDSA is the ellipti urve analogue of the DSA, proposed by Sott Vanstone [81℄ in1992; and the ECAES is a variant of the ElGamal publi-key enryption sheme, proposed



An Overview of Ellipti Curve Cryptography 13by Abdalla, Bellare and Rogaway [1℄ in 1999.Key generation. An entity A's publi and private key pair is assoiated with a partiularset of ellipti urve domain parameters (q; FR; a; b;G; n; h)5 .To generate a key pair, entity A does the following:1. Selet a random or pseudo-random integer d in the interval [1,n� 1℄.2. Compute Q = dG.3. A's publi key is Q; A's private key is d.Publi key validation. This proess ensures that a publi key satis�es the arithmeti require-ments of ellipti urve publi key (see [73℄). A publi key Q = (xQ; yQ) assoiated witha domain parameter (q; FR; a; b:G; n; h) is validated using the following proedure (alledexpliit validation):1. Chek that Q 6= O:2. Chek that xQ and yQ are properly represented elements of F q:3. Chek that Q lies on the ellipti urve de�ned by a and b:4. Chek that nQ = O:Publi key validation with step 4 omitted is alled partial publi-key validation.ECDH. The basi idea of this primitive is to generate a shared seret value from a pri-vate key owned by one entity A and a publi key owned by another entity B so if bothentities exeute the primitive simultaneously with orresponding keys as input, they willreover the same shared seret value. We assume that entity A has domain parametersD = (q; FR; a; b;G; n; h) and a private key dA. We also suppose that entity B has a publikey QB assoiated with D. The publi key QB should at least be partially valid.Entity A uses the following proedure to alulate a shared seret value with B:1. Compute P = dAQB = (xP ; yP ).2. Chek that P 6= O.3. The shared seret value is z = xP .If step 1 is omputed as P = hdAQB = (xP ; yP ), then we all this primitive ellipti urveofator DiÆe-Hellman. The inorporation of the ofator h into the alulation of theseret value is to provide eÆient resistane to attaks suh as small subgroup attaks (see[73℄).ECAES. The setup for enryption and deryption is the following. We suppose that reeiverB has domain parameters D = (q; FR; a; b;G; n; h) and publi key QB . We also suppose5This assoiation an be assured ryptographially (i.e., with erti�ates) or by ontext (e.g., all entitiesuse the same domain parameters)



An Overview of Ellipti Curve Cryptography 14that sender A has authenti opies of D and QB . In the following, MAC denotes a messageauthentiation ode (MAC) algorithm suh as HMAC [43℄, ENC a symmetri enryptionsheme suh as Triple-DES, and KDF a key derivation funtion whih derives ryptographikeys from a shared seret point.To enrypt a message m for B, A performs:1. Selet a random integer r from [1,n� 1℄.2. Compute R = rG.3. Compute K = hrQB = (Kx;Ky). Chek that K 6= O:4. Compute k1jjk2 = KDF(Kx).5. Compute  = ENCk1(m).6. Compute t = MACk2().7. Send (R; ; t) to B.To derypt a iphertext (R; ; t), B does:8. Perform a partial key validation on R.9. Compute K = hdBR = (Kx;Ky). Chek that K 6= O.10. Compute k1jjk2 = KDF(Kx).11. Verify that t = MACk2().12. Compute m = ENC�1k1 ().The time onsuming operations in enryption and deryption are the salar multiplia-tions in steps 3 and 9.ECDSA. The setup for generating and verifying signatures using the ECDSA is the follow-ing. We suppose that signer A has domain parameters D = (q; FR; a; b;G; n; h) and publikey QA. We also suppose that B has authenti opies of D and QA. In the following SHA-1denotes the 160-bit hash funtion [60℄.To sign a message m, A does the following:1. Selet a random integer k from [1,n� 1℄.2. Compute kG = (x1; y1) and r = x1 mod n.If r = 0 then go to step 1.3. Compute k�1 mod n.4. Compute e = SHA-1(m).5. Compute s = k�1fe+ dA � rg mod n.If s = 0 then go to step 1.6. A's signature for the message m is (r; s).To verify A's signature (r; s) on m, B performs the following steps:7. Verify that r and s are integers in [1,n� 1℄.8. Compute e = SHA-1(m).



An Overview of Ellipti Curve Cryptography 159. Compute w = s�1 mod n.10. Compute u1 = ew mod n and u2 = rw mod n.11. Compute u1G+ u2QA = (x1; y1).12. Compute v = x1 mod n.13. Aept the signature if and only if v = r.The time onsuming operations in signature generation and signature veri�ation are thesalar multipliations in steps 2 and 11.4 Disrete logarithm problemThe seurity of ECC is based on the apparent intratability of the following ellipti urvedisrete logarithm problem (ECDLP): given an ellipti urve E(F q), a point P 2 E(F q) oforder n, and a point Q 2 E(F q), determine the integer k, 0 � k � n� 1, suh that Q = kP ,provided that suh an integer exists.The Pohlig and Hellman algorithm [61℄ redues the omputation of l to the problem ofomputing l modulo eah of the prime fators of n. Therefore, n should be seleted primeto obtain the maximum level of seurity. In pratie, one must selet an ellipti urve E(F q)suh that #E(F q) = h � n where n is a prime and h is a small integer.The most eÆient general algorithm known to date is the Pollard-� method [62℄, and itsreent modi�ations by Gallant, Lambert, and Vanstone [24℄, and Wiener and Zuherato[82℄, whih requires about p�n=2 ellipti group operations. Van Oorshot and Wiener [63℄showed that the Pollard-� method an be parallelized, and that the expeted running timeof this algorithm, using r proessors, is roughly p�n=(2r) groups operations. This runtimeis exponential in n.Although no general subexponential algorithms to solve the ECDLP are known, thereare fast algorithms for solving the ECDLP on speial urves (e.g., urves for whih thenumber of points has speial properties). We list next some of these known attaks andexplain how they an be avoided in pratie.� Supersingular ellipti urves.Menezes, Okamato and Vanstone [55℄ and Frey and R�uk[22℄ showed that, under mild assumptions, the ECDLP an be redued to the tradi-tional disrete logarithm problem in some extension �eld Fqk , for some integer k.This redution algorithm is only pratial if k is small. For the lass of supersingular6ellipti urves it is known that k � 6. Hene, this redution algorithm gives a sub-exponential time algorithm for the ECDLP. However, Balasubramanian and Koblitz[8℄ have shown that for most randomly generated ellipti urves we have k > log2 q.To avoid this attak in a partiular urve, one needs to hek that n, the largest primefator of the urve order, does not divide qk� 1 for all small k for whih the ordinarylogarithm problem in F qk is tratable. In pratie this heking is done for all k,1 � k � 30.6An ellipti urve over Fq is said to be supersingular if the trae of E, t(E) = q+1�#E(Fq), is divisibleby the harateristi of Fq .



An Overview of Ellipti Curve Cryptography 16� Prime-�eld anomalous urves. An ellipti urve E over F p is said to be prime-�eld-anomalous if #E(F p) = p. Semaev [74℄, Smart [76℄ and Satoh and Araki [68℄ in-dependently proposed a polynomial-time algorithm for the ECDLP in E(F p). Thisattak does not appear to extend to any other lass of ellipti urves. In pratie thisattak is avoided by verifying that the urve order does not equal the ardinality ofthe underlying �nite �eld.� Binary omposite �nite �elds. Suppose that E is an ellipti urve de�ned over theomposite �nite �eld F 2m , where m = r � s. Reently, Galbraith and Smart [23℄,and Gaundry, Hess and Smart [25℄ have showed that the omplexity of the disretelogarithm problem on a signi�ant portion of ellipti urves de�ned over F24s is smallerthan the Pollard-rho method. The authors onluded that this attak does not appearto be a threat to ellipti urves de�ned over F2m , for m prime, but that only urvesthat satisfy an additional ondition (see [12, pp. 18℄), should be used for setting upan ellipti urve ryptosystem.Additional information on other attaks for the ECDLP as well for attaks on ellipti urveprotools an be found in ANSI X9.62 [3℄, ANSI X9.63 [4℄, Blake, Seroussi and Smart [12℄,Johnson and Menezes [33℄, Koblitz, Menezes and Vanstone [40℄, Araki, Satoh and Miura[5℄, and Certiom's ECC hallenge [15℄.5 Algorithms for ellipti salar multipliationThe implementation of publi key protools of ECC suh as ECDH, ECDSA and ECAES,requires ellipti salar multipliations. That is, alulations of the formQ = kP = P + � � �+ P| {z }k timeswhere P is a urve point, and k is an integer in the range 1 � k � order(P ). Depending onthe protool, the point P is either a �xed point that generates a large, prime order subgroupof E(F q), or P is an arbitrary point in suh a subgroup.Many authors have disussed methods for exponentiation in a multipliative group,whih an, therefore, be extended to omputing ellipti salar multipliation [27, 54, 41, 42℄.However, ellipti urve groups have speial properties that allow for some extra optimiza-tions. In this setion we will desribe some eÆient algorithms for omputing kP . Thesealgorithms, depending on the ellipti urve and the harateristi of the �nite �eld, anbe further optimized. Finally, we summarize reent tehniques suitable for hardware orsoftware implementation of ECC.



An Overview of Ellipti Curve Cryptography 175.1 Basi methodsBinary method. The simplest (and oldest) method for omputing kP is based on the binaryrepresentation of k. If k =Pl�1i=0 kj2j , where eah kj 2 f0; 1g, then kP an be omputed askP = l�1Xj=0 kj2jP = 2(� � � 2(2kl�1P + kl�2P ) + � � �) + k0P:This method requires l doublings and wk�1 additions, where wk is the weight (the numberof ones) of the binary representation of k.An improved method for omputing kP an be obtained from the following fats:� Every integer k has a unique representation of the form k = Pl�1j=0 kj2j , where eahkj 2 f�1; 0; 1g, suh that no two onseutive digits are nonzero. This representation,known as non-adjaent form (NAF), was �rst desribed by Reitwiesner [65℄ (see also[12℄).� The expeted weight of a NAF of length l is l=3, see [12℄.� The omputation of the negation of a point P = (x; y) 2 E(F q) (�P = (x;�y) or�P = (x; x+ y)) is virtually free, so the ost of addition or subtration is pratiallythe same.There are, however, several algorithms for omputing the NAF of k from its binary rep-resentation (see for example [54℄). The following method, from Solinas [78℄, omputes theNAF of an integer k.Algorithm 8: Computation of NAF(k)Input: An integer kOutput: The non-adjaent form of k, NAF(k)= (ul�1 : : : u1u0)1. Set  k, l  02. while  > 0 doif  odd thenSet ul  2� ( mod 4)Set  � ulelse Set ul  0Set  =2; l l + 13. return(NAF(k)  (ul�1 : : : u1u0)).Addition-Subtration method. This algorithm, analogue of the binary method, performs anaddition or subtration depending on the sign of eah digit of k, sanned from left toright.7 The details are given in Algorithm 9. This algorithm requires l doublings and l=3additions on average. This implies, for example, that for ellipti urves over Fp, using theprojetive oordinates given in [31℄, we obtain an improvement of about 14% over the binarymethod.7This algorithm an be modi�ed to obtain a right-to-left version, whih does not need storage for theNAF(k), see [78℄ for more details.



An Overview of Ellipti Curve Cryptography 18Algorithm 9: Addition-Subtration methodInput: An integer k and a point P = (x; y) 2 E(F q)Output: The point Q = kP 2 E(F q)1. Compute NAF(k) = (ul�1 : : : u1u0)2. Set Q O3. for j from l � 1 downto 0 doSet Q 2Qif uj = 1 then Set Q Q+ Pif uj = �1 then Set Q Q� P4. return(Q).Window method. Several generalizations of the binary method suh as the m-ary method,sliding method, et., work by proessing simultaneously a blok of digits. In these methods,depending on the size of the bloks (or windows) a number of preomputed points arerequired. We desribe a typial window method alled the width-w window method (see[78℄).Let w be an integer greater than 1. Then every positive number k has a unique width-wnonadjaent form k =Pl�1j=0 uj2j where:� eah nonzero uj is odd and less than 2w�1 in absolute value;� among any w onseutive oeÆients, at most one is nonzero.The width-w NAF is written NAFw(k) = (ul�1 : : : u1u0). A generalization of Algorithm 8for omputing NAFw(k) is desribed in Algorithm 10. Given the width-w NAF of an integerk, and a point P 2 E(F q), the alulation of kP an be arried out by Algorithm 11.Algorithm 10: Computation of NAFw(k)Input: An integer kOutput: NAFw(k)= (ul�1 : : : u1u0)1. Set  k, l  02. while  > 0 doif  odd thenSet ul  2� ( mod 2w)if ul > 2w�1 then Set ul  ul � 2wSet  � ulelse Set ul  0Set  =2; l l + 13. return(NAFw(k) (ul�1 : : : u1u0)).



An Overview of Ellipti Curve Cryptography 19Algorithm 11: The width-w window methodInput: Integers k and w, and a point P = (x; y) 2 E(F q)Output: The point Q = kP 2 E(F q)// Preomputation:// Compute uP for u odd and 2 < u < 2w�11. Set P0  P; T  2P2. for i from 1 to 2w�2 � 1 doSet Pi  Pi�1 + T// Main Computation:3. Compute NAFw(k) = (ul�1 : : : u1u0)4. Set Q O5. for j from l � 1 downto 0 doSet Q 2Qif uj 6= 0 thenSet i (juj j � 1)=2if uj > 0 then Set Q Q+ Pielse Set Q Q� Pi6. return(Q).The number of nonzero digits in the NAFw(k) is on average l=(w + 1) [80℄. Therefore,Algorithm 11 requires 2w�2 � 1 additions and one doubling for the preomputation step,and l=(w+1) additions and l� 1 doublings for the main omputation. Note that althoughthe number of additions an be redued by seleting an apropriate width w, the numberof doublings is the same as in the previous methods. The total number of �nite �eld op-erations required for omputing kP depends mainly on the algorithms used for the elliptioperations (aÆne or projetive oordinates), the ost-ratio of inversion to multipliation,and the width w.Comb method. This method, developed by Lim and Lee [46℄, an be used for omputing kPwhen P is a �xed point, known in advane of the omputation. In order to ompute kP ,the l-bit integer k is divided into h bloks Kr, eah one of length a = dl=he. In addition,eah blok Kr is subdivided into v bloks of size b = da=ve. Thus, k an be written ask = h�1Xr=0 v�1Xs=0 b�1Xt=0 kvbr+bs+t2vbr+bs+t:Then, Lim/Lee's method uses the following expression for omputing kP :kP = b�1Xt=0 2t(v�1Xs=0G[s℄[Is;t℄);where the preomputation array G[s℄[u℄ for 0 � s < v, 0 � u < 2h, and u = (uh�1 : : : u0)2,



An Overview of Ellipti Curve Cryptography 20is de�ned by the following equations:G[0℄[u℄ = h�1Xr=0 ur2rvbP;G[s℄[u℄ = 2sbG[0℄[u℄;and the number Is;t, for 0 � s < v � 1 and 0 � t < b is de�ned byIs;t = h�1Xr=0 kvbr+bs+t2r:A detailed desription of Lim/Lee's method is given in Algorithm 12. This algorithmrequires v(2h�1) ellipti points of storage, and the average number of operations to performa salar multipliation is b�1 doublings and (2h�1)=2hvb�1 additions on average, but vb�1additions in the worst ase. The seletion of both parameters h and v presents a trade-o�between preomputation (memory) and online omputations (speed). Some improvementsto this algorithm are disussed in [17℄. For other algorithms for omputing kP when P is aknown point, see [54℄.Algorithm 12: Lim/Lee methodInput: Integers k; h; v and an array of points G[s℄[u℄, with 0 � s < vand 1 � u < 2h.// The array G is omputed as:for u from 1 to 2h � 1 dofor s from 0 to v � 1 doSet u (uh�1 : : : u1u0)2Set G[s℄[u℄ 2sbPh�1i=0 ui2vbiP:Output: The point Q = kP 2 E(F q).// Main Computation:1. Set Q O2. for t from b� 1 downto 0 doSet Q 2Qfor s from v � 1 downto 0 doSet Is;t  Ph�1i=0 2ikvbi+bs+tif Is;t 6= 0 then Q Q+G[s℄[Is;t℄3. return(Q).5.2 Faster methodsIn reent years, the study of fast methods for omputing a salar multipliation has beenan ative researh area. In this setion we summarize some of these reent methods.



An Overview of Ellipti Curve Cryptography 21� An algorithm for omputing repeated doublings (i.e., 2iP ), for ellipti urves de�nedover F 2m was proposed by L�opez and Dahab [47℄. This algorithm, an improvementover the formulas presented by Guajardo and Paar [28℄, omputes 2iP with only oneinversion, and it is faster than the usual method for omputing 2iP (i onseutivedoublings) if the ost-ratio of inversion to multipliation is at least 2.5. This methodan be used to speed up window methods suh as the one desribed in the previoussetion.� Another algorithm for omputing repeated doublings, for ellipti urves over F 2m ,was proposed by Shroeppel [72℄. This algorithm is useful for situations where theomputation of an inverse is relatively fast ompared to a multipliation. A slightlyimproved version of this method is the following:Algorithm 13: Repeated doublings on E(F 2m)Input: An integer i and a point P = (x; y) 2 E(F 2m)Output: The point Q = 2iP1. Set � x+ y=x2. for j from 1 to i-1 doSet x2  �2 + �+ aSet �2  �2 + a+ bx4 + bSet x x2; � �23. Set x2  �2 + �+ a; y2  x2 + (�+ 1) � x24. return(Q (x2; y2)).This method is based on the observation that doubling a point using the representation(x; �)8 is faster than using the aÆne representation (x; y). Thus, we save one �eldmultipliation in eah iteration of Algorithm 13. A further optimization is to use afast routine to multiply by the onstant b. This method an be used for speeding upwindow methods in aÆne oordinates.� For ellipti urves over F p, Itoh et al [32℄ proposed fast formulas for omputing re-peated doublings in projetive oordinates, whih redue both the number of �eldmultipliations and the number of �eld additions. This tehnique works in ombina-tion with window methods.� An optimized version of an algorithm developed by Montgomery [57℄, was proposed byLopez and Dahab [48℄. This algorithm works for every ellipti urve de�ned over F 2m ,is faster than the addition-subtration method, and it is suitable for both hardwareand software implementations. In addition, this algorithm has the property that ineah iteration the same amount of omputation (an addition followed by a doubling)is performed. This may help to prevent timing attaks [39℄.� An algorithm for omputing ellipti salar multipliations whih replaes the doublingoperation by the halving operation (i.e., the omputation of Q suh that 2Q = P )8Every point P = (x; y) 2 E(F2m); x 6= 0, an be represented as the pair (x; �); � = x+ y=x, but (x; �)is not a point on E(F2m).



An Overview of Ellipti Curve Cryptography 22was proposed by Knudsen [34℄. This algorithm works for half of the ellipti urvesde�ned over F2m (i.e., urves whose ellipti urve parameter a satis�es Tr(a) = 1).The implementation of this method requires fast routines for the following operationsin F2m : the square root of a �eld element, the trae of a �eld element, and thesolution of quadrati equations of the form x2 + x = s, for s 2 F 2m . Sine theseoperations an be arried out very eÆiently using a normal basis, this approah issuitable for hardware implementations. The implementation of Knudsen's method,using a polynomial basis, presents a trade o� between memory and speed for bothimplementations hardware and software.5.3 Koblitz urvesThese urves, also known as binary anomalous urves, were �rst proposed for ryptographiuse by Koblitz [37℄. They are ellipti urves over F2m with oeÆients a and b either 0 or1. Sine it is required that b 6= 0, then the urves must be de�ned by the equations:E0 : y2 + xy = x3 + 1 and E1 : y2 + xy = x3 + x2 + 1:Koblitz urves have the following interesting property: if (x; y) is a point on Ea; a = 0 ora = 1, so is the point (x2; y2). Moreover, every point P = (x; y) 2 Ea satis�es the relation(x4; y4) + 2P = � � (x2; y2): (3)where � = (�1)1�a:By using the Frobenius map over F2: �(x; y) = (x2; y2), equation (3) an be written as�(�P ) + 2P = ��P; for all P 2 Ea:Then the Frobenius map �P an be regarded as a multipliation by the omplex number� = �+p�72 satisfying �2 + 2 = ��:Several methods have been proposed to take advantage of the Frobenius map, startingwith the observation of Koblitz [37℄, that four onseutive doublings of a point P = (x; y) 2E1 an be omputed eÆiently via the formula16P = �2P � �4P = (x4; y4)� (x16; y16):The fastest method known for omputing kP on Koblitz urves is due to Solinas [78℄. Thismethod uses an expansion for kP of the formkP = l�1Xi=0 ki� iP; ki 2 f�1; 0; 1g and l � log k:Then, the alulation of kP an be arried out by a similar method to Algorithm 9 wherethe doublings are replaed by evaluations of the Frobenius map. Before we desribe Solinas'method, the following sequenes �a(n) and �a(n) are de�ned:



An Overview of Ellipti Curve Cryptography 23� �a(0) = 0; �a(1) = a� 1; �a(n+ 1) = ��a(n)� 2�a(n� 1) + a� 2:� �a(0) = 0; �a(1) = a� 1; �a(n+ 1) = ��a(n)� 2�a(n� 1):Algorithm 14 desribe Solinas' method for omputing an ellipti salar multipliationon the Koblitz urve Ea(F 2m).Algorithm 14: � - adi NAF method for Koblitz urvesInput: An integer k and a point P = (x; y) 2 Ea(F 2m).Output: The point Q = kP 2 Ea(F 2m)// Redution modulo (�m � 1)=(� � 1)1. Set r  b�a(m) � k=2m�1, s b�a(m) � k=2m2. Set t 2�a(m) + ��a(m), v  �a(m) � s3. Set  k � t � r � 2v; d �a(m) � r � 2�a(m) � s// Main omputation4. Set Q O; D  P5. while  6= 0 or d 6= 0 doif  odd then Set u (� 2d (mod 4))else Set u 0Set  � uif u = 1 then Set Q Q+Dif u = �1 then Set Q Q�DSet D  �DSet e =2;  d+ �e; d �e6. return(Q).This algorithm requires, on average, m=3 ellipti additions and m evaluations of the Frobe-nius map. For omparison, if we implement Koblitz urves over F2163 , using a normalbasis9 with the projetive oordinates given in [47℄, Algorithm 9 takes 972 multipliations,while Solinas' algorithm requires 486 multipliations, obtaining a theoretial improvementof about 50%. Further speedups an be obtained by using window tehniques; see Solinas[78℄10 for the \width-w � -addi NAF method" analogous to Algorithm 11.6 Implementation issuesWhen implementing ECC, there are many fators that may guide the hoies required inthe implementation of a partiular appliation. The fators inlude: seurity onsidera-tions (the ECDLP and seurity of the protools), methods for implementing the �nite �eldarithmeti, methods for omputing ellipti salar multipliations, the appliation platform(hardware or software), onstraints of the omputing environment (proessor speed, odesize, power onsumption), and onstraints of the ommuniation environment (bandwidth,response time). Sine these fators an have a major impat on the overall performane ofthe appliation, it is reommended that they all be taken together for better results.9For hardware implementations, the squarings are muh faster than multipliations.10Routine 6 from [78℄ fails when a = 0 and w = 6. A new version of this routine was given in [80℄.



An Overview of Ellipti Curve Cryptography 246.1 System setupSetting up an ellipti urve ryptosystem requires several basi hoies inluding:� An underlying �nite �eld F q(e.g., q = p; q = 2m or q = pm; p > 3)� A representation of the �nite �eld elements(e.g., Montgomery residue for Fp, polynomial or normal basis for F 2m)� Algorithms for implementing the �nite �eld operations(e.g., Montgomery multipliation in Fp and F 2m , the extended Eulidean algorithmand the almost inverse algorithm for omputing multipliative inverses)� An appropriate ellipti urve over F q(e.g., the NIST urves)� Algorithms for implementing the ellipti urve operations(e.g., windows methods in aÆne or projetive oordinates)� Ellipti urve protools(e.g., ECDSA, ECDH)By an appropriate ellipti urve, we mean an ellipti urve de�ned over the �nite �eld F qthat resists all known attaks on the ECDLP. Spei�ally:1. The number of points, #E(F q), is divisible by a prime n that is suÆientlylarge to resist the parallelized Pollard �-attak [63℄ againts general urves, and itsimprovements [24, 82℄ whih apply to Koblitz urves.2. #E(F q) 6= q, to resist the following attaks: Semaev [74℄, Smart [76℄, and Satoh-Araki[68℄.3. n does not divide qk � 1 for all 1 � k � 30, to resist the Weil paring attak [55℄ andthe Tate paring attak [22℄.4. All binary �elds F2m hosen have the property that m is prime, to resist reent attaks[23, 25℄ on ellipti urves de�ned over F 2m where m is omposite.Examples of appropriate urves to be used in real world ryptosystems are given in [59℄ and[26℄.6.2 Previous software implementations of ECCIn the last �ve years, there have been many reported software implementations of elliptiurves over �nite �elds. Most of these implementations fous on a single ryptographiappliation, suh as designing a fast implementation of ECDSA for one partiular �nite�eld. Typial examples of �nite �elds used in these implementations are F2155 [70℄, F 2167 [13℄,F 2176 [28, 7℄, F2191 [19℄, F p (p a 160-bit prime) [30℄, Fp (p a 192-bit prime) [19℄, and F (263�25)3[9℄. In [49℄, we have ompiled timing results of several reported software implementationsof ECC. In this setion, we summarize three examples of software implementations of ECCon general purpose omputers.



An Overview of Ellipti Curve Cryptography 25� Shroppel et al. [70℄ reported an implementation of an ellipti urve analogue of DiÆe-Hellman key exhange algorithm over F 2155 with a trinomial basis representation.A detailed desription of the �nite �eld arithmeti in F2155 is provided, inludinga fast method for omputing reiproals, alled the almost inverse algorithm. Animproved method for doubling an ellipti urve point is also presented. Two omputerarhitetures were used to measure performane, a Sun Spar-IPC (25 MHz), with 32bit word size, and a DEC Alpha 3000 (175 MHz), with a 64-bit size word. Theimplementation was written in C with several programming triks. The performaneresults are given in Table 2.Field and Curve Operations over F 2155 Spar IPC AlphaSquaring 11.9 0.64Multipliation 116.4 7.59Inversion 280.1 25.21ECDH key exhange 137,000 11,500DH key exhange (512 bits) 2,670,000 185,000Table 2: Timings (in miroseonds) for �nite �eld and ellipti urve operations.� De Win et al. [19℄ desribed an implementation of ECDSA, for both F p and F 2m ,and made omparisons with other signature algorithms suh as RSA and DSA. Theplatform used was a Pentium-Pro 200 MHz runningWindows NT 4.0 and using MSVC4.2 and maximal optimization. The ode for RSA and DSA was written in C, usingmaros in assembly language. The ellipti urve ode was mainly written in C++ andfor F p the same multi-preision routines in C were alled as for RSA and DSA. Themodulus for both RSA and DSA was 1024 bits long. For the ellipti urves, the �eldsizes for F p and F2m were approximately 191 bits. Table 3 summarizes the results oftheir implementation. ECDSA F 2m ECDSA Fp RSA DSAKey generation 11.7 5.5 1 se. 22.7Signature 11.3 6.3 43.3 23.6Veri�ation 60 26 0.65 28.3Salar multipliation 50 21.1 - -Table 3: Timing omparison of ECDSA , DSA, and RSA signature operations. All timingsin milliseonds, unless otherwise indiated.� Bailey and Paar [9℄ introdued a new type of �nite �elds whih an be used to ahievea fast software implementation of ellipti urve ryptosystems. This lass of �nite�elds alled Optimal Extension Field (OEF), is of the form Fpm , where p is a prime



An Overview of Ellipti Curve Cryptography 26of speial form and m a positive integer. The OEFs take advantage of the fast integerarithmeti found on modern RISC workstation proessors. The authors provided alist of OEFs suitable for proessors with 8, 16, 32 and 64 bit word sizes. In [10℄, thesame authors presented further improved algorithms for the �nite �eld arithmeti,and timing results of their ellipti urve implementation on several platforms. TwoAlpha workstations DEC 21064 and 21164A, and a 233 MHz Intel Pentium/MMxPC were used to measure performane. The implementation for the workstations waswritten in optimized C, resorting to assembly to perform polynomial multipliations;the implementation for the PC was written entirely in C. The sizes of hosen �nite�elds were approximately 183 bits. Table 4 presents the timings to perform an elliptisalar multipliation of an arbitrary point.Operation Alpha 21064 Alpha 21164A Pentium/MMX150 MHz 600 MHz 233 MHzkP 7.0 1.09 13.1Table 4: Timings (in milliseonds) for an ellipti salar multipliation.6.3 An example of a software implementation of ECCIn this setion we present some details of the ECC software implementation reported in [14℄.This paper desribes an experiene with porting PGP to the Researh in Motion (RIM)two-way pager, and inorporating ECC into PGP.� Finite �elds: F 2m , m = 163; 233; 283.� Representation: A polynomial basis was used for eah �nite �eld, with the followingredution polynomials: x163 + x7 + x6 + x3 + 1 for F2163 , x233 + x74 + 1 for F 2233 andx283 + x12 + x7 + x6 + 1 for F 2283 .� Algorithms for the �nite �eld arithmeti: The squaring operation was sped up byusing a table lookup of 512 bytes. The multipliation operation was arried out bythe algorithm desribed in [50℄. The inverse operation was arried out by the extendedEulidean algorithm.� Curves: The Koblitz and random urves over F2163 ; F 2233 and F2283 were seleted fromthe list of NIST reommended urves [59℄.� Algorithms for the ellipti urve group: For random urves, the method given in [48℄was implemented for omputing salar multipliations when P is an arbitrary point.Lim/Lee's method [54℄, with 16 points of preomputation, was implemented usingthe projetive oordinates given in [47℄ for omputing salar multipliations when Pis a known point (e.g., for signing). For a Koblitz urve, Solinas' methods [78℄ wereimplememented using projetive oordinates, with width w = 5 for random points,and w = 6 for a known point (in this ase, 16 points of preomputation are required).� EC protools: The protools implemented were: ECDSA and ECAES.



An Overview of Ellipti Curve Cryptography 27� Multi-preision library: The library b from OpenSSL [64℄, written entirely in C,was used to perform the modular arithmeti operations required in the ellipti urveprotools as well in Solinas' methods.� Platforms: A Pentium II 400 MHz and a RIM pager 10 MHz.� Language: The implementation was written entirely in C.� RSA: The RSA ode, written entirely in C, was taken from the OpenSSL library.� Timings: The performane results provided are only for the ase m = 163 (see [14℄for more timings). Table 5 shows the timings for �nite �eld operations in F2163 .Operations Pentium II RIM pagerin F2163 400 MHz 10 MHzSquaring 0.41 100Multipliation 2.97 1,515Inversion 31.23 12,500Table 5: Timings (in miroseonds) for �nite �eld operations in F2163 .The performane results for the ECC operations using Koblitz and random urvesover F2163 are summarize in Table 6. Timings for RSA operations, with a modulus of1024 bits, are given in Table 7.Koblitz urve over F2163 Random urve over F 2163RIM pager P II RIM pager P IIKey Generation 751 1.47 1,085 2.12ECAES enrypt 1,759 4.37 3,132 6.67ECAES derypt 1,065 2.85 2,114 4.69ECDSA signing 1,011 2.11 1,335 2.64ECDSA verifying 1,826 4.09 3,243 6.46Table 6: Timings (in milliseonds) for ECC operations overF 2163 .� Conlusions: Sine the two systems RSA-1024 and ECC-163 have a omparable levelof seurity, the following onlusions an be drawn from the timings:{ RSA publi-key operations (enryption and signature) are faster than ECC publi-key operations.{ ECC private key operations (deryption and signature generation) are faster thanRSA private-key operations.{ Koblitz urves perform better than random urves, espeially for enrypting andverifying.



An Overview of Ellipti Curve Cryptography 281024-bit modulusRIM Pager Pentium IIRSA key generation 580,405 2,740.87RSA enrypt (e = 3) 533 2.70RSA enrypt (e = 216 + 1) 1,241 5.34RSA derypt 15,901 67.32RSA signing 15,889 66.56RSA verifying (e = 3) 301 1.23RSA verifying (e = 216 + 1) 1,008 3.86Table 7: Timings (in milliseonds) for 1024-bit RSA operations.{ With respet to the the PGP operations Signing-and-enrypting and Verifying-and-deryting, the performane of ECC (Koblitz urves) is about �ve times theperformane of RSA on the RIM pager.7 ConlusionsIn this paper, we have presented an overview of the main ideas behind the publi-key teh-nology based on ellipti urves. We have foused on algorithms for software implementationof ellipti urves de�ned over the binary �eld F 2m . We have also presented a summary ofthe fastest software implementations of ECC reported on general purpose omputers.8 AknowledgmentsThe authors wish to thank Guido Ara�ujo, Cl�audio Luhesi, Alfred Menezes, Daniel Panarioand Routo Terada for many helpful omments and suggestions.Referenes[1℄ M. Abdalla, M. Bellare and P. Rogaway. \DHAES: An enryption sheme on the DiÆe-Hellman problem", preprint 1999. http://www-se.usd.edu/users/mihir/[2℄ G. B. Agnew, R. C. Mullin and S. A. Vanstone, \An implementation of ellipti urveryptosystems over F 2155", IEEE journal on seleted areas in ommuniations, Vol 11,No. 5, pp. 804-813, 1993.[3℄ ANSI X9.62, \The ellipti urve digital signature algorithm (ECDSA)", AmerianBankers Assoiation, 1999.[4℄ ANSI X9.63, \Ellipti urve key agreement and key transport protools", AmerianBankers Assoiation, working draft, August 1999.
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