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Abstract

Elliptic curve cryptography (ECC) was introduced by Victor Miller and Neal Koblitz
in 1985. ECC proposed as an alternative to established public-key systems such as DSA
and RSA, have recently gained a lot attention in industry and academia. The main rea-
son for the attractiveness of ECC is the fact that there is no sub-exponential algorithm
known to solve the discrete logarithm problem on a properly chosen elliptic curve. This
means that significantly smaller parameters can be used in ECC than in other compet-
itive systems such RSA and DSA, but with equivalent levels of security. Some benefits
of having smaller key sizes include faster computations, and reductions in processing
power, storage space and bandwidth. This makes ECC ideal for constrained environ-
ments such as pagers, PDAs, cellular phones and smart cards. The implementation of
ECC, on the other hand, requires several choices such as the type of the underlying
finite field, algorithms for implementing the finite field arithmetic, the type of ellip-
tic curve, algorithms for implementing the elliptic group operation, and elliptic curve
protocols. Many of these selections may have a major impact on the overall perfor-
mance. In this paper we present a selective overview of the main methods and tech-
niques used for practical implementations of elliptic curve cryptosystems. We also
present a summary of the most recent reported software implementations of ECC.

Key words. Elliptic curve cryptography, finite fields, elliptic scalar multiplication.

1 Introduction

In 1985, Victor Miller [56] and N. Koblitz [36], independently, proposed a public-key cryp-
tosystem analogue of the ElGamal schemes [21] in which the group Zy, is replaced by the
group of points on an elliptic curve defined over a finite field. The main attraction of ellip-
tic curve cryptography (ECC) over competing technologies such as RSA and DSA is that
the best algorithm known for solving the underlying hard mathematical problem in ECC
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(the elliptic curve discrete logarithm problem (ECDLP)) takes fully exponential time. On
the other hand, the best algorithms known for solving the underlying hard mathematical
problems in RSA and DSA (the integer factorization problem, and the discrete logarithm
problem, respectively) take sub-exponential time. This means that significantly smaller
parameters can be used in ECC than in other systems such as RSA and DSA, but with
equivalent levels of security. A typical example of the size in bits of the keys used in different
public-key systems, with a comparable level of security (against known attacks), is that a
160-bit ECC key is equivalent to RSA and DSA with a modulus of 1024 bits.

The lack of a sub-exponential attack on ECC offers potential reductions in processing
power, storage space, bandwidth and electrical power. These advantages are specially im-
portant in applications on constrained devices such as smart cards, pagers, and cellular
phones.

From a practical point of view, the performance of ECC depends mainly on the effi-
ciency of finite field computations and fast algorithms for elliptic scalar multiplications. In
addition to the numerous known algorithms for these computations, the performance of
ECC can be sped up by selecting particular underlying finite fields and/or elliptic curves.
Examples of finite fields are Fym (for hardware and software implementations) and Fp,
where p is a special prime (e.g., a Mersenne prime or a generalized Mersenne prime, see
[79]). Examples of families of curves that offer computational advantages for computing
a scalar multiplication include Koblitz curves over Fom. Thus, a fast implementation of a
security application based on ECC requires several choices, any of which can have a major
impact on the overall performance.

The remainder of this paper is organized as follows. A short introduction to finite field
arithmetic is provided in Section 2. A brief introduction to elliptic curves is presented
in Section 3. A list of the main known attacks on the elliptic curve discrete logarithm
problem (ECDLP) is provided in Section 4. In Section 5, we describe several algorithms
for computing a scalar multiplication which is the central operation of ECC. Finally, some
implementation issues are considered in Section 6.

2 Finite fields

In this section we present the definition of groups and finite fields. These mathematical
structures are fundamental for the construction of an elliptic curve cryptosystem.

A group is an algebraic system consisting of a set G together with a binary operation ¢
defined on G satistying the following axioms:

closure: for all z,y in G we have z oy € G}

associativity: for all z,y and z in G we have (zoy) oz =z (y© 2);
identity: there exists an e in G such that zoe =eox =z for all z in G;
inverse: for all « in G there exists y in G such that roy =yoz =e.

If in addition, the binary operation ¢ satisfies the abelian property:

e abelian: for all z,y in G we have z oy =y oz,
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then we say that the group G is abelian.
A finite field is an algebraic system consisting of a finite set F' together with two binary
operations + and x, defined on F, satisfying the following axioms:

e F'is an abelian group with respect to “+7;
e [\ {0} is an abelian group with respect to “x”;
e distributive: for all 2,y and z in F we have:

X (y+z) = (exy)+(zxz
(x+y)xz = (zx2)+(yx2).

The order of a finite field is the number of elements in the field. A fundamental result on
the theory of finite fields (see [51]), characterizes the existence of finite fields: there exists a
finite field of order ¢ if and only if ¢ is a prime power. In addition, if ¢ is a prime power, then
there is essentially only one finite field of order g; this field is denoted by F, or GF(q). There
are, however, many ways of representing the elements of IF;, and some representations may
lead to more efficient implementations of the field arithmetic in hardware or in software.

If ¢ = p™, where p is a prime and m is a positive integer, then p is called the character-
istic of Fy and m is called the extension degree of F;. Most standards which specify ECC
restrict the order of the underlying finite field to be an odd prime (¢ = p) or a power of 2

(g =2").

2.1 The finite field F,

Let p be a prime number. The finite field IF,, called a prime field, consists of the set of
integers

{0,1,2,...,p—1}
with the following arithmetic operations:

o Addition: If a,b € ), then a +b = r, where r is the remainder of the division of a +b
by p and 0 < r < p — 1. This operation is called addition modulo p.

o Multiplication: If a,b € I, then a - b = s, where s is the remainder of the division of
a-bbypand 0 <s <p— 1. This operation is called multiplication modulo p.

There are certain primes p for which the modular reduction can be computed very
efficiently. For example, let p be the prime 2'9? — 26 — 1. To reduce a positive integer
n < p?, write

5
n=3 Ay 2%
Jj=0

Then
n=T+ 8]+ S2+ S3 (mod p),

where
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T = A2 . 2128 + A1 . 264 + AO
S = Az-20% + Az
Sy = Ay 2128 + Ay 64

Sy = A5-22 4 A5.204 1 A;.

Thus, the integer reduction by p can be replaced by three additions (mod p), which are much
faster. The prime number p is an example of a family of primes called generalized Mersene
numbers, recently introduced by Solinas [79]. For more examples of primes that are well
suited for machine implementation, see [79] and [59]. Several techniques for implementing
the finite field arithmetic in [}, are described in [35, 54, 12, 32, 19, 30].

2.2 The finite field Fyn

The finite field Fom, called a binary finite field, can be viewed as a vector space of dimension
m over Fo. That is, there exists a set of m elements {ag, a1,...,®n—1} in Fom such that
each a € Fom can be written uniquely in the form

m—1
a = Z a;c;, where a; € {0,1}.
i=0
The set {ag,a1,...,@,_1} is called a basis of Fom over Fy. We can then represent a as a
binary vector (ag,a1,...,amn—1). We now introduce two of the most common bases of Fom

over Fo: polynomial bases and normal bases.

Polynomial basis. Let f(x) = ™ + Z?;Ol ;2 (where f; € {0,1}, for i = 0,1...,m — 1)
be an irreducible polynomial of degree m over Fo; f(x) is called the reduction polynomial.
For each reduction polynomial, there exists a polynomial basis representation. In such a
representation, each element of Fam corresponds to a binary polynomial of degree less than
m. That is, for a € Fom there exist m numbers a; € {0,1} such that

a=am12™ -+ az+ ap.

The field element a € Fom is usually denoted by the bit string (a,,—1...a1ap) of length
m. The following operations are defined on the elements of Fom when using a polynomial
representation with reduction polynomial f(z). Assume that @ = (-1 ...a109) and b =
(byy—1 ... b1bp).

e Addition: a +b = ¢ = (¢py—1 ... c1¢9), where ¢; = (a; + b;) mod 2. That is, addition
corresponds to bitwise exclusive-or.

e Multiplication: a-b=c = (¢p—1 - ..c1¢0), Where ¢(z) = Z;Z)l c;z' is the remainder of

the division of the polynomial (37" a;z®) (75" biz) by f(z).

The following procedure is commonly used to choose a reduction polynomial: if an irre-
ducible trinomial ™ + z*¥ 4- 1 exists over Fy, then the reduction polynomial f(z) is chosen
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to be the irreducible trinomial with the lowest-degree middle term z*.' If no irreducible
trinomial exists, then select instead a pentanomial ™ + %3 + z%2 + 2% + 1, such that &
has the minimal value; the value of ko is minimal for the given ki; and ks is minimal for
the given k; and k».

Normal basis. A normal basis of Fam over Fy is a basis of the form {8,/3?,... ,52"171},
where € Fam. It is well known (see [51]) that such a basis always exists. Therefore,
every element a € Fom can be written as a = Z?;Ol a;B3?, where a; € {0,1}. The field
element a is usually denoted by the bit string (agaq...am—1) of length m. A normal
basis representation of Fom has the computational advantage that squaring an element is a
simple cyclic shift of the vector representation, an operation that is efficiently implemented
in hardware. Multiplication of different elements, on the other hand, is in general a more
complicated operation. Fortunately, for the particular class of normal bases called Gaussian
normal bases (GNB), the field arithmetic operations can be implemented very efficiently [31].
The type T of a GNB is a positive integer measuring the complexity of the multiplication
operation with respect to that basis; the smaller the type, the faster the multiplication.

The existence of a Gaussian normal basis has been characterized in [58] and [6]. In
particular, a GNB exists whenever m is not divisible by 8. In addition, if m is divisible by
8 and 7' is a positive integer, then a type T' GNB for Fom exists if and ounly if p = T'm + 1
is prime and ged(T'm/k, m) = 1, where k is the multiplicative order of 2 modulo p.

The finite field operations in Fom, using a Gaussian normal basis of type T, are defined
as follows. Assume that a = (agay ... ap—1) and b = (bgby ... by—1). Then:

e Addition: a+b = c= (cocy ... ¢pm—1), where ¢; = (a;+b;) mod 2. That is, field addition
is performed bitwise.

e Squaring: Since squaring is a linear operation in Fom,

m—1 m—1 m—1
7 i+1 1A
@ =) aip) =) af =D it mod mB* = (Gm-16001 ... am_3).
i=0 i=0 i=0

Hence squaring a finite field element is a simple rotation of the vector representation.

o Multiplication: Let p = T'm + 1 and let u € I, be an element of order T'. Define the
sequence F'(1),F(2),...,F(p—1) by
F2'w/ modp)=ifor0<i<m—1,0<j<T—1.
For each [, 0 <[ < m — 1, define A; and B; by
p—2
A = ZGF(kH)H bF(p—k)+1> and
k=1
m/2
Bi = Y (ki1 bnjairsio + Gmparrait brpio1) + Al
k=1

! Although this selection may affect the speed of the almost inverse algorithm (see [19]), it allows for
faster reduction modulo f(z).
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Then a-b=c=(ccy...cpn-1), where

| Ay if T is even,
9=\ B if Tis odd,

for each [,0 <1 < m — 1, where indices are reduced modulo m.

See [31] for a good survey on finite field algorithms using a normal basis in Fym. Consult Ag-
new, Mullin and Vanstone [2] and Rosing [67] for a hardware and software implementation,
respectively, of a normal basis in Fom.

2.3 Finite field arithmetic in F,» using a polynomial basis

In this section we describe various bit-level algorithms for performing computations in the
finite field Fom using a polynomial basis representation. These algorithms can be easily
modified to obtain word-level algorithms, which are well suited for software implementa-
tions.

Addition. Addition in Fom is the usual addition of vectors over Fo. That is, add the corre-
sponding bits modulo 2.

Algorithm 1: bit-level method for addition in Fom
INPUT: a = (am,1 . alao) € Fom and b = (bm,1 . blbo) € Fom
OUTPUT: c=a+b=(¢p_1...C1¢)
1. for j from 0 to m —1 do
Set ¢; « (a; +b;) mod 2
2. return(c).

Modular reduction. By the definition of multiplication in Fom, the result of a polynomial
multiplication or squaring has to be reduced modulo an irreducible polynomial of degree m.
This reduction operation is particularly efficient when the irreducible polynomial f(z) is a
trinomial or a pentanomial. The following algorithm for computing a(z) mod f(x) works
by reducing the degree of a(x) until it is less than m.

Algorithm 2: bit-level method for modular reduction in Fam

INPUT: a = (agm_g . alag) and f = (fmfm—l . flf())
OUTPUT: ¢ =a mod f

1. for ¢ from 2m —2 to m do
for j from 0 to m—1 do
if fj 7é 0 then Ai—m+j < Qi—m+j + a;
2. return(c < (am—1...a100)) .
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Squaring. This operation can be calculated in an efficient way by observing that the square
of a polynomial a is given by

m—1 m—1
a(x)? = (Z a;z')? = a?z?
i=0 1=0

This equation yields a simple algorithm:

Algorithm 3: bit-level method for squaring in Fom

INPUT: a = (am,1 - alao) and f = (fmfmfl - flfO)
OUTPUT: ¢ = a” mod f

1. Set t+« S, taa®

2. Set ¢+t mod f //Use Algorithm 2

3. return(c).

A known technique for speeding up the computation in step 1 is to use a table lookup (see
Schroeppel et al [70] for details).

Multiplication. The basic method for performing a multiplication in Fom is the “shift-and-
add” method. It is analogous to the binary method for exponentiation, with the square and
multiplication operations being replaced by the multiplication of a field element by « and
field addition operations, respectively. Given a € Fom, the shift-left operation za(x) mod
f(z) can be performed as follows

an_ll aj_le if a1 =0,
za(z) mod f(z) = i j i
( ) f( ) { Zj:ll (ajf]. + fj)xj —+ fo if Am—1 7é 0.

Then the steps of the “shift-and-add” method are given below.

Algorithm 4: “shift-and-add” method

INPUT: a € Fom,b € Fom and f = (fmfmfl . flfg)
OUTPUT: ¢ = ab mod f

1. Set c¢(x) <« 0
2. for j from m—1 to 0 do

Set c¢(z) < zc(x) mod f(z)

if a; #0 then Set c(z) + c¢(x) + b(x)
3. return(c).

This method requires m — 1 shift-left operations and m field additions on average. The
speed of this method can be improved by using programming tricks such as separated name
variables and loop-unrolled code. In [50] we have proposed a fast algorithm for multiplication
that is significantly faster than the “shift-and-add” method, but requires some temporary
storage.
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Inversion. The basic algorithm for computing multiplicative inverses is the extended Eu-
clidean algorithm. A high level description of this method is the following:

Algorithm 5: Extended Euclidean algorithm

INPUT: @ € Fom (a #0) and f = (finfm—1--- f1f0)
OuTPUT: ¢ =a~! mod f

1. Set bi(z) < 1, be(x) <0
Set pi(z) < a(z), pa(z) < f(z)

2. while degree(p;) #0 do

if degree(p;) < degree(pz) then

exchange pi,pe and by, by

Set j «+ degree(p1)—degree(p2) '

Set p1(z) ¢ p1(x) +a/p2(z), bi(z) < bi(z) 4+ 27b2(x)
3. return(c(z) < bi(x)).

An alternative method for computing inverses, called the almost inverse algorithm, was
proposed by Schroeppel et al [70]. This method works quite well when the reduction poly-
nomial is a trinomial of the form ™ + z¥ + 1 with & > w and m — k > w, where w is the
word size of the computer used. The authors suggested a number of implementation tricks
that can be used for improving the speed of this method; many of these tricks also work for
the extended Euclidean algorithm. Note that in the context of elliptic curve computations
over [Fom, most of the inversions required can be avoided by using a projective scheme [47].
In this case, we trade inversions for multiplications and other finite field operations.

3 Elliptic curves over finite fields

In this section we give a short introduction to the theory of elliptic curves defined over finite
fields. Additional information on elliptic curves and its applications to cryptography can
be found in Blake et al [12], Menezes [52], Chapter 6 of Koblitz’s book [38], and [73].

There are several ways of defining equations for elliptic curves, which depend on whether
the field is a prime finite field or a characteristic two finite field. The Weierstrass equations
for both finite fields IF,, and Fam are described in the next two sections.

3.1 Elliptic curves over I,

Let p > 3 be an odd prime and let a,b € F, satisfy 4a® +27b? # 0 (mod p). Then an elliptic
curve E(IF,) over F) defined by the parameters a,b € F,, consists of the set of solutions or
points P = (z,y) for z,y € ), to the equation:

y* =2 +ax+b (1)

together with a special point O called the point at infinity. For a given point P = (xp,yp),
xp is called the z-coordinate of P, and yp is called the y-coordinate of P.
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An addition operation + can be defined on the set E(FF,) such that (E(F,),+) forms
an abelian group with O acting as its identity. It is this algebraic group that is used to
construct elliptic curve cryptosystems. The addition operation in E(F,) is specified as
follows:

. P+O=0+P =P forall Pe E,).

2. If P = (z,y) € E(F,), then (z,y) + (z,—y) = O. (The point (z,—y) € E(F,) is
denoted —P, and is called the negative of P.)

3. Let P = (z1,y1) € E(Fp) and Q = (z2,y2) € E(F,), where P # +@Q. Then P+ Q =
(£U3,y3), where

3=\ —z — 2, y3 = Az —23) —y1, and A = 2701
o — 1
4. Let P = (z1,y1) € E(Fp). Then P + P = 2P = (z3,y3), where
3 2
23 =M\ — 21, y3 = Mz, — 23) —y; and A = 3;21+a‘
Y1

This operation is called the doubling of a point.

Notice that the addition of two different elliptic curve points in E(F,) requires the fol-
lowing arithmetic operations in F,: one inversion, two multiplications, one squaring and
six additions. Similarly, doubling an elliptic curve point in E(F,) requires one inversion,
two multiplications, two squarings and eight additions. Since inversion in [, is, in general,
an expensive operation, an alternative method to compute the sum of two elliptic points
is to use projective coordinates. In this case, the inversion operation is traded for more
multiplications and other less expensive finite field operations. See [16] for several proposed
projective schemes.

The following algorithm implements the addition of two points on F(F,) in terms of
affine coordinates.

Algorithm 6: Addition on E(F),)

INPUT: An elliptic curve E(F,) with parameters a,b € F,, and
points P; = (z1,y1) and Py = (z2,y2).
OutpruT: Q = P, + Ps.

1. if P, =0, then return(Q «+ P)
2. if P, =0, then return(Q < P;)
3. lf 1 = I9 then
if y1 =y» then X« (327 +a)/(2y1) mod p
else return(Q < O) // y1=—y2 //
else A\ < (yo —y1)/(z2 —z1) mod p
4. Set x3+4+ A —z1— 3 mod p
Set y3 <+ )\(.’El — 1U3) —y1 mod p
6. return(Q < (z3,y3)).

ol
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3.2 Elliptic curves over Fayn

A (non-supersingular) elliptic curve E(Fam) over Fom defined by the parameters a,b €
Fom,b # 0, consists of the set of solutions or points P = (z,y) for z,y € Fom to the
equation:

v’ +ay =2 +az? +b (2)

together with a special point O called the point at infinity.
As in the case of elliptic curves over I}, the set of points on E(Fyn) can be equipped
with an abelian group structure. This addition operation is specified as follows:

1. P+O=0+P =P forall P € E(Fam).

2. If P = (z,y) € E(Fam), then (z,y) + (z,—y) = O. (The point (z,—y) € E(Fam) is
denoted —P, and is called the negative of P.)

3. Let P = (z1,y1) € E(Fan) and Q = (z2,y2) € E(Fan), where P # £(@Q. Then
P+ Q = (*T37y3)7 where

Y2 + Y1
To + 1

23 =N+ Atz +22+a, ys = Ao, +23)+ 23+ and A =

4. Let P = (z1,y1) € E(Fom). Then P + P = 2P = (z3,y3), where

A
%‘3:)\2-!—)\—!—&, y3:>\(x1+$3)+$3+y1 and)\:$1+y—l-
1

Notice that the addition of two different elliptic curve points in E(Fym) requires one
inversion, two multiplications, one squaring and eight additions in F». Doubling? a point
in E(Fom) requires one inversion, two multiplications, one squaring and six additions. For
situations® where the computation of an inversion operation is relatively expensive compared
to a multiplication, projective schemes offer computational advantages. Fast algorithms for
the arithmetic of elliptic curves over Fom in projective coordinates are described in [47].

The following algorithm implements the addition of two points on E(Fgm) in terms of
affine coordinates.

?An alternative method for computing 2P is described in [47].
3See [2] for a hardware implementation and [29] for a software implementation of Fom where an inversion
costs about 24 and 10 multiplications, respectively.
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Algorithm 7: Addition on E(Fan)

INPUT: An elliptic curve E(Fam) with parameters a,b € Fom, and
points P, = (z1,y1) and P, = (z2,y2).
OutpruT: Q = P, + Ps.

1. if P, =0, then return(Q <« P)
2. if P, =0, then return(Q + P;)
3. if 1 =29 then
if y; = y» then )\%xl-l-yl/a;l, 3;3%)\2—%)\—!—&
else return(Q < O) // yo=y1+z1 //
else A\« (y2+v1)/(z2 +21), 23 A2+ A+11+72+0a
4. Set yz <+ Az +z3)+x3+11
5. return(Q < (x3,y3)).

3.3 Definitions and basic results

Scalar multiplication. The central operation of cryptographic schemes based on ECC is the
elliptic scalar multiplication (operation analogue of the exponentiation in multiplicative
groups). Given an integer k and a point P € E(F,), the elliptic scalar multiplication kP
is the result of adding P to itself £ times. In Section 5, we will describe some efficient
algorithms for calculating kP.

QOrders. The order of a point P on an elliptic curve is the smallest positive integer r such
that 7P = O. If k and [ are integers, then kP = [P if and only if £ = (mod r).

Curve order. The number of points of F(FF,), denoted by #E(F,), is called the curve order
of the curve. This number can be computed in polynomial time by Schoof’s algorithm
[69]. This algorithm is required for setting up an elliptic curve system based on random
curves. In this case, one selects parameters a and b with the property that the curve order
of the resulting curve be divisible by a large prime (see Section 4 for an explanation of this
condition).

Basic facts. Let E be an elliptic curve over a finite field ;. Then:

e Hasse’s theorem states that #E(IF,) = ¢+1—t, where |t| < 2,/g. That is, the number
of points in F(FF,) is approximately g.

e If ¢ is a power of 2, then #FE(F,) is even. More specifically, #E(F,) = 0 (mod 4) if
Tr(a) =0,* and #E(F,) = 2 (mod 4) if Tr(a) = 1.

e F(F,) is an abelian group of rank 1 or 2. That is, F(FF,) is isomorphic to Z,, x Zp,,
where no divides n; and g — 1.

e If ¢ is a power of two and P = (z,y) € E(F,) is a point of odd order, then the trace of
the z-coordinate of all multiples of P is equal to the trace of the parameter a. That
is, T'r(z(kP)) = Tr(a) for each integer k. This result, due to Seroussi [75], is the basis
of an efficient algorithm for a compact representation of points on elliptic curves over

“The trace Tr(-) is a linear map from Faom to F» defined by T'r(a) = 7! a?.



An Overview of Elliptic Curve Cryptography 12

Fom. Knudsen’s method [34] for computing elliptic scalar multiplications is also based
on this result.

3.4 ECC domain parameters

The operation of public-key cryptographic schemes involves arithmetic operations on an
elliptic curve over a finite field determined by some elliptic curve domain parameters. In
this section, we describe the elliptic curve parameters over the finite fields I, and Fom.
ECC domain parameters over [F, are a septuple:

T = (q7 FR? a? b? G? n7 h)

consisting of a number ¢ specifying a prime power (¢ = p or ¢ = 2™), an indication FR (field
representation) of the method used for representing field elements € [y, two field elements a
and b € I, that specify the equation of the elliptic curve E over F, (i.e., y? =23 +ax+bin
the case p > 3, and y*+zy = 2° +az?+b when p = 2), a base point G = (z¢, y¢) on E(F,),
a prime n which is the order of G, and an integer h which is the cofactor h = #E(IF,;)/n.

Several algorithms for the generation and validation of elliptic curve domain parameters
have been proposed (see for example [59] and [26]). Since the primary security parameter
is n, the ECC key length is thus defined to be the bit-length of n. For example, NIST
curves [59] are described by parameters which avoid all known attacks. The security level
provided by these curves is at least as much as symmetric-key ciphers with key lengths 80
to 256 bits. In Table 1 we compare key sizes of different cryptosystems with a comparable
level of security (against known attacks).

Symmetric cipher Example ECC key length for DSA/RSA key length for

key length algorithm equivalent security equivalent security
80 SKIPJACK 160 1024
112 Triple-DES 224 2048
128 128-bit AES 256 3072
192 192-bit AES 384 7680
256 256-bit AES 512 15360

Table 1: ECC, DSA and RSA key length comparisons.

3.5 Elliptic curve protocols: ECDH, ECDSA, ECAES

In this section, we give a short description of three fundamental protocols based on elliptic
curves: the Elliptic Curve Diffie-Hellman (ECDH), the Elliptic Curve Digital Signature
Algorithm (ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES).
The ECDH is the elliptic version of the well-known Diffie-Hellman key agreement method;
the ECDSA is the elliptic curve analogue of the DSA, proposed by Scott Vanstone [81] in
1992; and the ECAES is a variant of the ElGamal public-key encryption scheme, proposed
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by Abdalla, Bellare and Rogaway [1] in 1999.

Key generation. An entity A’s public and private key pair is associated with a particular
set of elliptic curve domain parameters (q, F R, a,b,G,n,h)®.
To generate a key pair, entity A does the following;:

1. Select a random or pseudo-random integer d in the interval [1,n — 1].
2. Compute QQ = dG.
3. A’s public key is Q; A’s private key is d.

Public key validation. This process ensures that a public key satisfies the arithmetic require-
ments of elliptic curve public key (see [73]). A public key Q = (zq,yq) associated with
a domain parameter (¢, F'R,a,b.G,n,h) is validated using the following procedure (called
explicit validation):

1. Check that @ # O.

2. Check that zg and yg are properly represented elements of I,.
3. Check that @ lies on the elliptic curve defined by a and b.

4. Check that n@ = O.

Public key validation with step 4 omitted is called partial public-key validation.

ECDH. The basic idea of this primitive is to generate a shared secret value from a pri-
vate key owned by one entity A and a public key owned by another entity B so if both
entities execute the primitive simultaneously with corresponding keys as input, they will
recover the same shared secret value. We assume that entity A has domain parameters
D = (q,FR,a,b,G,n,h) and a private key d4. We also suppose that entity B has a public
key @ p associated with D. The public key @) p should at least be partially valid.

Entity A uses the following procedure to calculate a shared secret value with B:

1. Compute P =daQp = (zp,yp).
2. Check that P # O.
3. The shared secret value is z = zp.

If step 1 is computed as P = hdsQp = (zp,yp), then we call this primitive elliptic curve
cofactor Diffie-Hellman. The incorporation of the cofactor h into the calculation of the
secret value is to provide efficient resistance to attacks such as small subgroup attacks (see
[73]).

ECAES. The setup for encryption and decryption is the following. We suppose that receiver
B has domain parameters D = (q, FR,a,b,G,n,h) and public key Q. We also suppose

®This association can be assured cryptographically (i.e., with certificates) or by context (e.g., all entities
use the same domain parameters)
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that sender A has authentic copies of D and ). In the following, MAC denotes a message
authentication code (MAC) algorithm such as HMAC [43], ENC a symmetric encryption
scheme such as Triple-DES, and KDF a key derivation function which derives cryptographic
keys from a shared secret point.

To encrypt a message m for B, A performs:

Select a random integer r from [1,n — 1].

Compute R = rG.

Compute K = hrQp = (K, K,). Check that K # O.
Compute k£ ||/k2 = KDF(K}).

Compute ¢ = ENCy, (m).

Compute t = MACy,(c).

Send (R, c,t) to B.

NSOtk W

To decrypt a ciphertext (R, c,t), B does:

8. Perform a partial key validation on R.

9. Compute K = hdgR = (K, Ky). Check that K # O.
10. Compute ki||ke = KDF(K}).

11. Verify that ¢ = MACj, (¢).

12. Compute m = ENC,;1 (c).

The time consuming operations in encryption and decryption are the scalar multiplica-
tions in steps 3 and 9.

ECDSA. The setup for generating and verifying signatures using the ECDSA is the follow-
ing. We suppose that signer A has domain parameters D = (¢, FR, a,b,G,n,h) and public
key Q4. We also suppose that B has authentic copies of D and @) 4. In the following SHA-1
denotes the 160-bit hash function [60].

To sign a message m, A does the following:

1. Select a random integer k from [1,n — 1].

2. Compute kG = (x1,y1) and r = z1 mod n.
If r = 0 then go to step 1.

3. Compute £~ mod n.

Compute e = SHA-1(m).

5. Compute s =k *{e +d4 - r} mod n.
If s = 0 then go to step 1.

6. A’s signature for the message m is (r, s).

=~

To verify A’s signature (r,s) on m, B performs the following steps:

7. Verify that r and s are integers in [1,n — 1].
8. Compute e = SHA-1(m).
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L mod n.

9. Compute w = s~
10. Compute u; = ew mod n and uy = rw mod n.
11. Compute u1G + u2Q4 = (z1,91).

12. Compute v = z; mod n.

13. Accept the signature if and only if v = r.

The time consuming operations in signature generation and signature verification are the
scalar multiplications in steps 2 and 11.

4 Discrete logarithm problem

The security of ECC is based on the apparent intractability of the following elliptic curve
discrete logarithm problem (ECDLP): given an elliptic curve E(IFy), a point P € E(F,) of
order n, and a point ) € E(F,), determine the integer k, 0 < k < n — 1, such that ) = kP,
provided that such an integer exists.

The Pohlig and Hellman algorithm [61] reduces the computation of / to the problem of
computing [ modulo each of the prime factors of n. Therefore, n should be selected prime
to obtain the maximum level of security. In practice, one must select an elliptic curve E(F,)
such that #E(F;) = h-n where n is a prime and h is a small integer.

The most efficient general algorithm known to date is the Pollard-p method [62], and its
recent modifications by Gallant, Lambert, and Vanstone [24], and Wiener and Zuccherato
[82], which requires about /7 /2 elliptic group operations. Van Oorschot and Wiener [63]
showed that the Pollard-p method can be parallelized, and that the expected running time
of this algorithm, using r processors, is roughly /7n/(2r) groups operations. This runtime
is exponential in n.

Although no general subexponential algorithms to solve the ECDLP are known, there
are fast algorithms for solving the ECDLP on special curves (e.g., curves for which the
number of points has special properties). We list next some of these known attacks and
explain how they can be avoided in practice.

o Supersingular elliptic curves. Menezes, Okamato and Vanstone [55] and Frey and Riick
[22] showed that, under mild assumptions, the ECDLP can be reduced to the tradi-
tional discrete logarithm problem in some extension field Fx, for some integer k.
This reduction algorithm is only practical if k is small. For the class of supersingular®
elliptic curves it is known that £ < 6. Hence, this reduction algorithm gives a sub-
expounential time algorithm for the ECDLP. However, Balasubramanian and Koblitz
[8] have shown that for most randomly generated elliptic curves we have k > log? q.
To avoid this attack in a particular curve, one needs to check that n, the largest prime
factor of the curve order, does not divide ¢¥ — 1 for all small & for which the ordinary
logarithm problem in F . is tractable. In practice this checking is done for all &,
1<k <30.

5An elliptic curve over I, is said to be supersingular if the trace of E, t(E) = q+ 1 — #E(F,), is divisible
by the characteristic of Fy.
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e Prime-field anomalous curves. An elliptic curve E over I, is said to be prime-field-
anomalous if #E(F,) = p. Semaev [74], Smart [76] and Satoh and Araki [68] in-
dependently proposed a polynomial-time algorithm for the ECDLP in E(F,). This
attack does not appear to extend to any other class of elliptic curves. In practice this
attack is avoided by verifying that the curve order does not equal the cardinality of
the underlying finite field.

e Binary composite finite fields. Suppose that E is an elliptic curve defined over the
composite finite field Fym, where m = r - s. Recently, Galbraith and Smart [23],
and Gaundry, Hess and Smart [25] have showed that the complexity of the discrete
logarithm problem on a significant portion of elliptic curves defined over Fqss is smaller
than the Pollard-rho method. The authors concluded that this attack does not appear
to be a threat to elliptic curves defined over Fom, for m prime, but that only curves
that satisfy an additional condition (see [12, pp. 18]), should be used for setting up
an elliptic curve cryptosystem.

Additional information on other attacks for the ECDLP as well for attacks on elliptic curve
protocols can be found in ANSI X9.62 [3], ANSI X9.63 [4], Blake, Seroussi and Smart [12],
Johnson and Menezes [33], Koblitz, Menezes and Vanstone [40], Araki, Satoh and Miura
[5], and Certicom’s ECC challenge [15].

5 Algorithms for elliptic scalar multiplication

The implementation of public key protocols of ECC such as ECDH, ECDSA and ECAES,
requires elliptic scalar multiplications. That is, calculations of the form

Q=kP=P+---+P
N———

k times

where P is a curve point, and & is an integer in the range 1 < k < order(P). Depending on
the protocol, the point P is either a fixed point that generates a large, prime order subgroup
of E(F,), or P is an arbitrary point in such a subgroup.

Many authors have discussed methods for exponentiation in a multiplicative group,
which can, therefore, be extended to computing elliptic scalar multiplication [27, 54, 41, 42].
However, elliptic curve groups have special properties that allow for some extra optimiza-
tions. In this section we will describe some efficient algorithms for computing £P. These
algorithms, depending on the elliptic curve and the characteristic of the finite field, can
be further optimized. Finally, we summarize recent techniques suitable for hardware or
software implementation of ECC.
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5.1 Basic methods

Binary method. The simplest (and oldest) method for computing kP is based on the binary
representation of k. If &k = Zﬁ;é kj2j, where each k; € {0,1}, then kP can be computed as

-1
kP = ZkﬂjP =2(-+-2(2ki_1P 4 kj_oP) + ---) + ko P.
j=0

This method requires [ doublings and wy — 1 additions, where wy, is the weight (the number
of ones) of the binary representation of k.
An improved method for computing kP can be obtained from the following facts:

e Every integer £ has a unique representation of the form k = Z;;lo kj2j, where each
k;j € {—1,0,1}, such that no two consecutive digits are nonzero. This representation,
known as non-adjacent form (NAF), was first described by Reitwiesner [65] (see also
12)).

e The expected weight of a NAF of length [ is 1/3, see [12].

e The computation of the negation of a point P = (z,y) € E(F,) (-P = (z,—y) or
—P = (z,z +vy)) is virtually free, so the cost of addition or subtraction is practically
the same.

There are, however, several algorithms for computing the NAF of k£ from its binary rep-
resentation (see for example [54]). The following method, from Solinas [78], computes the
NAF of an integer k.

Algorithm 8: Computation of NAF(k)

INPUT: An integer k
Ovutput: The non-adjacent form of k, NAF (k)= (uj_1 ... u1uop)

1. Set c+k, [+ 0
2. while ¢>0 do
if ¢ odd then
Set u; 2 — (¢ mod 4)
Set c+—c—uyy
else Set u; + 0
Set c<+¢/2, I+ 1+1
3. return(NAF(k) <« (u;_1...ujup)) .

Addition-Subtraction method. This algorithm, analogue of the binary method, performs an
addition or subtraction depending on the sign of each digit of k, scanned from left to
right.” The details are given in Algorithm 9. This algorithm requires [ doublings and /3
additions on average. This implies, for example, that for elliptic curves over I, using the
projective coordinates given in [31], we obtain an improvement of about 14% over the binary
method.

"This algorithm can be modified to obtain a right-to-left version, which does not need storage for the
NAF(k), see [78] for more details.
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Algorithm 9: Addition-Subtraction method

INPUT: An integer k and a point P = (z,y) € E(F)
OutpuT: The point Q = kP € E(F,)

1. Compute NAF(k) = (uj_1...ujup)

2. Set Q<+ O

3. for j from [ —1 downto 0 do
Set Q <+ 2Q)
if uj =1 then Set Q<+ Q+P
if u; = —1 then Set Q<+ Q- P

4. return(Q).

Window method. Several generalizations of the binary method such as the m-ary method,
sliding method, etc., work by processing simultaneously a block of digits. In these methods,
depending on the size of the blocks (or windows) a number of precomputed points are
required. We describe a typical window method called the width-w window method (see
[78]).

Let w be an integer greater than 1. Then every positive number k has a unique width-w

nonadjacent form k = Zé;% u]-2j where:

e each nonzero u; is odd and less than 2*~1 in absolute value;
e among any w consecutive coefficients, at most one is nonzero.

The width-w NAF is written NAF,, (k) = (u;_1...ujup). A generalization of Algorithm 8
for computing NAF,, (k) is described in Algorithm 10. Given the width-w NAF of an integer
k, and a point P € E(F,), the calculation of kP can be carried out by Algorithm 11.

Algorithm 10: Computation of NAF,, (k)

INPUT: An integer k
Outrput: NAF, (k)= (ui—1 ... ujup)

1. Set c+k, [+0
2. while ¢>0 do
if ¢ odd then
Set wu; < 2 — (¢ mod 2%)
if u; > 2%~ then Set wu; + u; — 2%
Set cc—uy
else Set u; < 0
Set c«+¢/2, [+ 1+1
3. return(NAF, (k) < (w—1...ujup)) .
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Algorithm 11: The width-w window method

INPUT: Integers k and w, and a point P = (z,y) € E(F,)
OuTtpuT: The point Q = kP € E(F,)

// Precomputation:
// Compute uP for u odd and 2 < u < 2¥~!
1. Set Fy+ P, T + 2P
2. for i from 1 to 2¥2—1 do
Set P+ P, 1+T
// Main Computation:
3. Compute NAF, (k) = (uj—1...ujup)
4., Set Q<+ O
5. for j from / —1 downto 0 do
Set Q «+ 2Q)
if u; #0 then
Set i (Juj| —1)/2
if u; >0 then Set Q<+ Q+ P
else Set Q«+ Q —F;
6. return(Q).

19

The number of nonzero digits in the NAF,, (k) is on average [/(w + 1) [80]. Therefore,
Algorithm 11 requires 2¥~2 — 1 additions and one doubling for the precomputation step,
and [ /(w + 1) additions and [ — 1 doublings for the main computation. Note that although
the number of additions can be reduced by selecting an apropriate width w, the number
of doublings is the same as in the previous methods. The total number of finite field op-
erations required for computing kP depends mainly on the algorithms used for the elliptic
operations (affine or projective coordinates), the cost-ratio of inversion to multiplication,

and the width w.

Comb method. This method, developed by Lim and Lee [46], can be used for computing kP
when P is a fixed point, known in advance of the computation. In order to compute kP,
the [-bit integer k is divided into h blocks K, each one of length a« = [I/h]. In addition,
each block K, is subdivided into v blocks of size b = [a/v]. Thus, k can be written as

h—1v—1

k= Z kvbr+bs+tzvbr+bs+t-
r=0s=01¢

e
—

Il
<)

Then, Lim/Lee’s method uses the following expression for computing kP:

b—1 v—1
kP =323 GIsIL),
t=0 s=0

where the precomputation array G[s][u] for 0 < s < v, 0 <u < 2" and u = (up,_1 ..

. uo)g,
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is defined by the following equations:

h—1
GOJ[u] = > u.2""P,

r=0
Gls]lu] = 2°G[0][u],

and the number [, for 0 < s <wv —1and 0 <t < b is defined by

h—1

.
Is,t = § kvbr+bs+t2 .
r=0

A detailed description of Lim/Lee’s method is given in Algorithm 12. This algorithm
requires v(2" —1) elliptic points of storage, and the average number of operations to perform
a scalar multiplication is b—1 doublings and (2" —1)/2"vb—1 additions on average, but vb—1
additions in the worst case. The selection of both parameters A and v presents a trade-off
between precomputation (memory) and online computations (speed). Some improvements
to this algorithm are discussed in [17]. For other algorithms for computing kP when P is a

known point, see [54].

Algorithm 12: Lim/Lee method

INPUT: Integers k, h,v and an array of points G[s][u], with 0 < s <w
and 1 < u < 2",
// The array G is computed as:
for v from 1 to 2" — 1 do
for s from 0towv—1do
Set u (Uh,1 . ulug)g
Set Gls][u] < 250 S0 w200 P,

)

OutpuT: The point Q = kP € E(F,).

// Main Computation:
1. Set Q<+ O
2. for ¢ from b—1 downto 0 do
Set ()« 2Q)
for s from v — 1 downto 0 do
Set Iy < Z?;ol 2 Kbitbs-+t
if I,; #0 then Q <« Q+ G[s][I,4]
3. return(Q).

5.2 Faster methods

In recent years, the study of fast methods for computing a scalar multiplication has been
an active research area. In this section we summarize some of these recent methods.
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e An algorithm for computing repeated doublings (i.e., 2°P), for elliptic curves defined
over Fom was proposed by Lépez and Dahab [47]. This algorithm, an improvement
over the formulas presented by Guajardo and Paar [28], computes 2/ P with only one
inversion, and it is faster than the usual method for computing 2°P (i consecutive
doublings) if the cost-ratio of inversion to multiplication is at least 2.5. This method
can be used to speed up window methods such as the one described in the previous
section.

e Another algorithm for computing repeated doublings, for elliptic curves over Fom,
was proposed by Schroeppel [72]. This algorithm is useful for situations where the
computation of an inverse is relatively fast compared to a multiplication. A slightly
improved version of this method is the following:

Algorithm 13: Repeated doublings on E(Fgm)

INPUT: An integer i and a point P = (z,y) € E(Fam)
OuTpUT: The point Q = 2P
1. Set Az +y/x
2. for j from 1 to i-1 do

Set 29— A2+ \+a

Set Ay + A2

e 2 +a+ A4

Set x < X2, A<+ Ao
3. Set o+ A2+ A+a, ypa?+(A+1) 1z
4. return(Q « (z2,y2)) .

This method is based on the observation that doubling a point using the representation
(z,\)? is faster than using the affine representation (z,y). Thus, we save one field
multiplication in each iteration of Algorithm 13. A further optimization is to use a
fast routine to multiply by the constant b. This method can be used for speeding up
window methods in affine coordinates.

e For elliptic curves over F,, Itoh et al [32] proposed fast formulas for computing re-
peated doublings in projective coordinates, which reduce both the number of field
multiplications and the number of field additions. This technique works in combina-
tion with window methods.

e An optimized version of an algorithm developed by Montgomery [57], was proposed by
Lopez and Dahab [48]. This algorithm works for every elliptic curve defined over Fom,
is faster than the addition-subtraction method, and it is suitable for both hardware
and software implementations. In addition, this algorithm has the property that in
each iteration the same amount of computation (an addition followed by a doubling)
is performed. This may help to prevent timing attacks [39].

e An algorithm for computing elliptic scalar multiplications which replaces the doubling
operation by the halving operation (i.e., the computation of @ such that 2Q = P)

8Every point P = (x,y) € E(Fam),x # 0, can be represented as the pair (z,\), A\ = z + y/z, but (z,\)
is not a point on E(Fam).
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was proposed by Knudsen [34]. This algorithm works for half of the elliptic curves
defined over Fom (i.e., curves whose elliptic curve parameter a satisfies Tr(a) = 1).
The implementation of this method requires fast routines for the following operations
in Fom: the square root of a field element, the trace of a field element, and the
solution of quadratic equations of the form 2% + z = s, for s € Fan. Since these
operations can be carried out very efficiently using a normal basis, this approach is
suitable for hardware implementations. The implementation of Knudsen’s method,
using a polynomial basis, presents a trade off between memory and speed for both
implementations hardware and software.

5.3 Koblitz curves

These curves, also known as binary anomalous curves, were first proposed for cryptographic
use by Koblitz [37]. They are elliptic curves over Fom with coefficients a and b either 0 or
1. Since it is required that b # 0, then the curves must be defined by the equations:

Ey:y>’+zy=a2>+1and By :y? + oy =2° + 22 + 1.

Koblitz curves have the following interesting property: if (z,y) is a point on E,,a = 0 or
a = 1, so is the point (z?,y?). Moreover, every point P = (z,y) € E, satisfies the relation

(I4,y4) +2P = M- (:1727?/2)' (3)

where
p= (-t

By using the Frobenius map over Fy: 7(z,y) = (22,y?), equation (3) can be written as
T7(TP) + 2P = ptP, for all P € E,.

Then the Frobenius map 7P can be regarded as a multiplication by the complex number
T = Lﬁ satisfying 72 + 2 = ur.

Several methods have been proposed to take advantage of the Frobenius map, starting
with the observation of Koblitz [37], that four consecutive doublings of a point P = (z,y) €
FEq can be computed efficiently via the formula

16P = 2P — 7P = (z*,y*) — (', 4'%).

The fastest method known for computing kP on Koblitz curves is due to Solinas [78]. This
method uses an expansion for kP of the form

-1
kP =Y kt'P, ki € {~1,0,1} and I ~ logk.
=0

Then, the calculation of kP can be carried out by a similar method to Algorithm 9 where
the doublings are replaced by evaluations of the Frobenius map. Before we describe Solinas’
method, the following sequences p,(n) and o,(n) are defined:
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® 0a(0) =0, pa(l) =a —1, pa(n+1) = ppa(n) = 2pa(n —1) +a — 2.
e 0,(0) =0, g4(l) =a—1, og(n+1) = pog(n) — 204(n — 1).

Algorithm 14 describe Solinas’ method for computing an elliptic scalar multiplication
on the Koblitz curve E,(Fam).

Algorithm 14: 7- adic NAF method for Koblitz curves

INPUT: An integer k and a point P = (z,y) € E,(Fam).
OutpUT: The point @ = kP € E,(Fam)

// Reduction modulo (7™ —1)/(7 — 1)
1. Set r ¢ |pa(m)-k/2™71], s |oa(m)-k/27]
2. Set t < 2p4u(m)+ pog(m), v ou(m)-s
3. Set c+k—t-r—2v, d< og4(m)-r—2p,(m)-s
// Main computation
4. Set Q<+ O, D+ P
5. while ¢#0 or d #0 do
if ¢ odd then Set u < (¢ —2d (mod 4))
else Set u + 0
Set c+c—u
if u=1 then Set Q<+ Q+ D
if u= -1 then Set Q<+ Q- D
Set D+ 1D
Set e<¢/2, c<d+ pe, d<+ —e
6. return(Q).

This algorithm requires, on average, m/3 elliptic additions and m evaluations of the Frobe-
nius map. For comparison, if we implement Koblitz curves over Fyies, using a normal
basis? with the projective coordinates given in [47], Algorithm 9 takes 972 multiplications,
while Solinas’ algorithm requires 486 multiplications, obtaining a theoretical improvement
of about 50%. Further speedups can be obtained by using window techniques; see Solinas
[78] for the “width-w 7-addic NAF method” analogous to Algorithm 11.

6 Implementation issues

When implementing ECC, there are many factors that may guide the choices required in
the implementation of a particular application. The factors include: security considera-
tions (the ECDLP and security of the protocols), methods for implementing the finite field
arithmetic, methods for computing elliptic scalar multiplications, the application platform
(hardware or software), constraints of the computing environment (processor speed, code
size, power consumption), and constraints of the communication environment (bandwidth,
response time). Since these factors can have a major impact on the overall performance of
the application, it is recommended that they all be taken together for better results.

°For hardware implementations, the squarings are much faster than multiplications.
YRoutine 6 from [78] fails when a = 0 and w = 6. A new version of this routine was given in [80].
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6.1 System setup

Setting up an elliptic curve cryptosystem requires several basic choices including:

e An underlying finite field I,
(eg, g=p, ¢=2"or q=p", p>3)
e A representation of the finite field elements
(e.g., Montgomery residue for F,, polynomial or normal basis for Fam)
Algorithms for implementing the finite field operations
(e.g., Montgomery multiplication in F, and Fym, the extended Euclidean algorithm
and the almost inverse algorithm for computing multiplicative inverses)

e An appropriate elliptic curve over F,

(e.g., the NIST curves)

Algorithms for implementing the elliptic curve operations
(e.g., windows methods in affine or projective coordinates)

Elliptic curve protocols
(e.g., ECDSA, ECDH)

By an appropriate elliptic curve, we mean an elliptic curve defined over the finite field F,
that resists all known attacks on the ECDLP. Specifically:

1. The number of points, #E(F,), is divisible by a prime n that is sufficiently
large to resist the parallelized Pollard p-attack [63] againts general curves, and its
improvements [24, 82] which apply to Koblitz curves.

2. #E(Fy) # q, to resist the following attacks: Semaev [74], Smart [76], and Satoh-Araki
[68].

3. n does not divide ¢* — 1 for all 1 < k < 30, to resist the Weil paring attack [55] and
the Tate paring attack [22].

4. All binary fields Fom chosen have the property that m is prime, to resist recent attacks
[23, 25] on elliptic curves defined over Fam where m is composite.

Examples of appropriate curves to be used in real world cryptosystems are given in [59] and
[26].

6.2 Previous software implementations of ECC

In the last five years, there have been many reported software implementations of elliptic
curves over finite fields. Most of these implementations focus on a single cryptographic
application, such as designing a fast implementation of ECDSA for one particular finite
field. Typical examples of finite fields used in these implementations are Fyis5 [70], Foie7 [13],
Foire [28, 7], Foio1 [19], F, (p a 160-bit prime) [30], F, (p a 192-bit prime) [19], and F(g63_o5)s
[9]. In [49], we have compiled timing results of several reported software implementations
of ECC. In this section, we summarize three examples of software implementations of ECC
on general purpose computers.
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e Schroppel et al. [70] reported an implementation of an elliptic curve analogue of Diffie-
Hellman key exchange algorithm over Fyiss with a trinomial basis representation.
A detailed description of the finite field arithmetic in Fyis5 is provided, including
a fast method for computing reciprocals, called the almost inverse algorithm. An
improved method for doubling an elliptic curve point is also presented. T'wo computer
architectures were used to measure performance, a Sun Sparc-IPC (25 MHz), with 32
bit word size, and a DEC Alpha 3000 (175 MHz), with a 64-bit size word. The
implementation was written in C with several programming tricks. The performance
results are given in Table 2.

‘ Field and Curve Operations over Fyiss H Sparc IPC ‘ Alpha ‘

Squaring 11.9 0.64
Multiplication 116.4 7.59
Inversion 280.1 25.21
ECDH key exchange 137,000 11,500
DH key exchange (512 bits) 2,670,000 | 185,000

Table 2: Timings (in microseconds) for finite field and elliptic curve operations.

e De Win et al. [19] described an implementation of ECDSA, for both F, and Fom,
and made comparisons with other signature algorithms such as RSA and DSA. The
platform used was a Pentium-Pro 200 MHz running Windows N'T 4.0 and using MSVC
4.2 and maximal optimization. The code for RSA and DSA was written in C, using
macros in assembly language. The elliptic curve code was mainly written in C++ and
for I, the same multi-precision routines in C were called as for RSA and DSA. The
modulus for both RSA and DSA was 1024 bits long. For the elliptic curves, the field
sizes for I, and Fom were approximately 191 bits. Table 3 summarizes the results of
their implementation.

\ | ECDSA Fyn | ECDSA F, [ RSA | DSA |

Key generation 11.7 9.5 1 sec. | 22.7
Signature 11.3 6.3 43.3 | 23.6
Verification 60 26 0.65 | 28.3
Scalar multiplication 50 21.1 - -

Table 3: Timing comparison of ECDSA , DSA, and RSA signature operations. All timings
in milliseconds, unless otherwise indicated.

e Bailey and Paar [9] introduced a new type of finite fields which can be used to achieve
a fast software implementation of elliptic curve cryptosystems. This class of finite
fields called Optimal Extension Field (OEF), is of the form F,m, where p is a prime
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6.3

of special form and m a positive integer. The OEF's take advantage of the fast integer
arithmetic found on modern RISC workstation processors. The authors provided a
list of OEF's suitable for processors with 8, 16, 32 and 64 bit word sizes. In [10], the
same authors presented further improved algorithms for the finite field arithmetic,
and timing results of their elliptic curve implementation on several platforms. Two
Alpha workstations DEC 21064 and 21164A, and a 233 MHz Intel Pentium/MMx
PC were used to measure performance. The implementation for the workstations was
written in optimized C, resorting to assembly to perform polynomial multiplications;
the implementation for the PC was written entirely in C. The sizes of chosen finite
fields were approximately 183 bits. Table 4 presents the timings to perform an elliptic
scalar multiplication of an arbitrary point.

Operation || Alpha 21064 | Alpha 21164A | Pentium/MMX
150 MHz 600 MHz 233 MHz

| kP 7.0 \ 1.09 \ 13.1 |

Table 4: Timings (in milliseconds) for an elliptic scalar multiplication.

An example of a software implementation of ECC

In this section we present some details of the ECC software implementation reported in [14].
This paper describes an experience with porting PGP to the Research in Motion (RIM)
two-way pager, and incorporating ECC into PGP.

Finite fields: Fom, m = 163,233, 283.

Representation: A polynomial basis was used for each finite field, with the following
reduction polynomials: 203 4+ 27 + 26 + 23 + 1 for Fyues, 2233 + 27 + 1 for Fyss and
2283 + 212 + 27 + 25 + 1 for Fyoss.

Algorithms for the finite field arithmetic: The squaring operation was sped up by
using a table lookup of 512 bytes. The multiplication operation was carried out by
the algorithm described in [50]. The inverse operation was carried out by the extended
Euclidean algorithm.

Curves: The Koblitz and random curves over Fqie3, Fy23s and Fy2ss were selected from
the list of NIST recommended curves [59].

Algorithms for the elliptic curve group: For random curves, the method given in [48]
was implemented for computing scalar multiplications when P is an arbitrary point.
Lim/Lee’s method [54], with 16 points of precomputation, was implemented using
the projective coordinates given in [47] for computing scalar multiplications when P
is a known point (e.g., for signing). For a Koblitz curve, Solinas’ methods [78] were
implememented using projective coordinates, with width w = 5 for random points,
and w = 6 for a known point (in this case, 16 points of precomputation are required).
EC protocols: The protocols implemented were: ECDSA and ECAES.
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e Multi-precision library: The library be from OpenSSL [64], written entirely in C,
was used to perform the modular arithmetic operations required in the elliptic curve
protocols as well in Solinas’ methods.

Platforms: A Pentium II 400 MHz and a RIM pager 10 MHz.

Language: The implementation was written entirely in C.

RSA: The RSA code, written entirely in C, was taken from the OpenSSL library.
Timings: The performance results provided are only for the case m = 163 (see [14]
for more timings). Table 5 shows the timings for finite field operations in Fyies.

Operations Pentium II | RIM pager
in ]F2163 400 MHz 10 MHz
Squaring 0.41 100
Multiplication 2.97 1,515
Inversion 31.23 12,500

Table 5: Timings (in microseconds) for finite field operations in Fyies.

The performance results for the ECC operations using Koblitz and random curves
over Fy163 are summarize in Table 6. Timings for RSA operations, with a modulus of
1024 bits, are given in Table 7.

Koblitz curve over Fyies || Random curve over Faie3

RIM pager | PII RIM pager | PII
Key Generation 751 1.47 1,085 2.12
ECAES encrypt 1,759 4.37 3,132 6.67
ECAES decrypt 1,065 2.85 2,114 4.69
ECDSA signing 1,011 2.11 1,335 2.64
ECDSA verifying 1,826 4.09 3,243 6.46

Table 6: Timings (in milliseconds) for ECC operations overFyies.

e (Conclusions: Since the two systems RSA-1024 and ECC-163 have a comparable level
of security, the following conclusions can be drawn from the timings:

— RSA public-key operations (encryption and signature) are faster than ECC public-
key operations.
— ECC private key operations (decryption and signature generation) are faster than

RSA private-key operations.
— Koblitz curves perform better than random curves, especially for encrypting and

verifying.
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1024-bit modulus
RIM Pager | Pentium II
| RSA key generation | 580,405 | 2,740.87

RSA encrypt (e = 3) 533 2.70
RSA encrypt (e = 26 4+ 1) 1,241 5.34
RSA decrypt 15,901 67.32
RSA signing 15,889 66.56
RSA verifying (e = 3) 301 1.23
RSA verifying (e = 26 4+ 1) 1,008 3.86

Table 7: Timings (in milliseconds) for 1024-bit RSA operations.

— With respect to the the PGP operations Signing-and-encrypting and Verifying-
and-decryting, the performance of ECC (Koblitz curves) is about five times the
performance of RSA on the RIM pager.

7 Conclusions

In this paper, we have presented an overview of the main ideas behind the public-key tech-
nology based on elliptic curves. We have focused on algorithms for software implementation
of elliptic curves defined over the binary field Fon. We have also presented a summary of
the fastest software implementations of ECC reported on general purpose computers.
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