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Abstract

This article describes the crew rostering problem stemming from the operation of a
Brazilian bus company that serves a major urban area in the city of Belo Horizonte.
The problem is solved by means of Integer Programming (IP) and Constraint Logic
Programming (CLP) approaches, whose models are discussed in detail. Lower bounds
obtained with a Linear Programming relaxation of the problem are used in order to
evaluate the quality of the solutions found. We also present a hybrid column generation
approach for the problem, combining IP and CLP over a set partitioning formulation.
Experiments are conducted upon real data sets and computational results are evaluated,
comparing the performance of these three solution methods.

1 Introduction

The overall crew management problem concerns the allocation of trips to crews within a
certain planning horizon. In addition, it is necessary to respect a specific set of operational
constraints and minimize a certain objective function. Being a fairly complicated problem
as a whole, it is usually divided in two smaller subproblems: crew scheduling and crew
rostering [4]. In the crew scheduling subproblem, the aim is to partition the initial set of
trips into a minimal set of feasible duties. Each such duty is an ordered sequence of trips
which is to be performed by the same crew and that satisfies a subset of the original problem
constraints: those related to the sequencing of trips during a workday. The crew rostering
subproblem takes as input the duties output by the crew scheduling phase and builds a
roster spanning a longer period, e.g. months or years.

This article describes the crew rostering problem stemming from the operation of a
Brazilian bus company that serves a major urban area in the city of Belo Horizonte. The
problem is solved by means of Integer Programming (IP) and Constraint Logic Programming
(CLP) approaches, whose models are discussed in detail. Lower bounds obtained with a
Linear Programming relaxation of the problem are used in order to evaluate the quality of
the solutions found. We also present a hybrid column generation approach for the problem,
combining IP and CLP. Experiments are conducted upon real data sets and computational
results are evaluated, comparing the performance of these three solution methods.
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fSupported by FINEP (ProNEx 107/97), and CNPq (300883/94-3).
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Some quite specific union regulations and operational constraints make this problem
fairly distinct from some other known crew rostering problems found in the literature [3, 5].
In general, it is sufficient to construct one initial roster consisting of a feasible sequencing
of the duties that spans the least possible number of days. The complete roster is then
built by just assigning shifted versions of that sequence of duties to each crew so as to
have every duty performed in each day in the planning horizon. In other common cases,
the main concern is to balance the workload among the crews involved [2, 6, 7]. Although
we also look for a roster with relatively balanced workloads, these approaches will not in
general find the best solution for our purposes. We are not interested in minimizing the
number of days needed to execute the roster, since the length of the planning horizon is
fixed in advance. Our objective is to use the minimum number of crews when constructing
the roster for the given period. Another difficulty comes from the fact that some constraints
behave differently for each crew, depending on the amount of work assigned to it in the
previous month. Moreover, different crews have different needs for days off, imposed by
personal requirements.

The text is organized as follows. Section 2 gives a detailed description of the crew
rostering problem under consideration. Section 3 explains the format of the input data sets
used in our experiments. In Sect. 4, we present an Integer Programming formulation of the
problem, together with some computational results. A pure Constraint Logic Programming
model for the problem is described in Sect. 5, where some experiments are also conducted
to evaluate its performance. As one additional attempt to solve the problem, the results
achieved with a hybrid column generation approach appear in Sect. 6. All computation
times presented in Sects. 4 to 6 are given in CPU seconds of a Pentium II 350 MHz.
Finally, we draw the main conclusions in Sect. 7.

2 The Crew Rostering Problem

The duties obtained as output from the solution of the crew scheduling phase! must be
assigned to crews day after day, throughout an entire planning horizon. This sequencing
has to obey a set of constraints that differs from the constraints which are relevant to the
crew scheduling problem. This set includes, for example, the need for days off, with a
certain periodicity, and a minimum rest time between consecutive workdays.

2.1 Input Data

The set of duties to be performed on weekdays is different from the set of duties to be
performed on weekends or holidays, due to fluctuations on customer demand. Therefore,
the crew scheduling problem gives as input for the rostering problem a number of distinct
sets of duties.

The planning horizon we are interested in spans one complete month. It is important to
take into account as input data many features of the month under consideration, such as:
the total number of days, which days are holidays and which day of the week is the first day

'For more specific information on the scheduling subproblem for this case, see (8]
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of the month (the remaining weekdays can be easily figured out from this information). The
differences in the number of working days from one month to the next one lead to variations
on the number of crews actually working in each month. Consequently, some rules must
be observed in order to select the crews that are going to be effectively used. If, say, in
month m 40 crews were needed, and in month m + 1 only 38 will be necessary, how to select
the 2 crews that are going to be left out? Furthermore, suppose that, after eliminating
those crews that cannot work on the current month for some reason, the company has 50
crews available. Even if the number of crews remains the same, e.g. 40, from one month
to the next one, it is important to evenly distribute the work among them. This balance
can be obtained considering the number of days each crew has worked since the beginning
of the year, for example, or with the aid of another kind of ranking function for the crews.
Finally, since some constraints refer to a time window that spans more than one month
(see Sect. 2.2) some attributes, for each crew, have to be carried over between successive
months.
The input data needed to build the roster for month m is the following:

e The sets of duties Dyy, Dga, Dsy and Dy, which have to be performed on weekdays,
Saturdays, Sundays and on holidays, respectively;

e The number of days, d, in month m;
e The occurrence of holidays in month m;
e The day of the week corresponding to the first day in month m;
e The whole set of crews, C', employed by the company;
e For each crew ¢ € C:
— The set of days, OFF}, in which i is off duty (e.g. vacations, sickness), excluding

its ordinary weekly rests;

— The number of days between the last Sunday ¢ was off duty and the first day of
month m (Is;);

— A binary flag, wr;, that is equal to 1 if and only if 2 had a weekly rest in the last
week of month m — 1;

— A binary flag, sl;, that is equal to 1 if and only if ¢ performed a split-shift duty
during the last week of month m — 1;

— The difference, in minutes, between the last minute ¢ was working in month m —1
and the first minute of the first day of month m (lw;);
e For each duty k € Dy U Dgy U Dgy U Dyt
— The start and end times of k (¢s; and teg, respectively), given in minutes after
midnight;
— A binary flag, ssi, that equals 1 if and only if k£ is a split-shift duty;
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Table 1: Description of the instances for the experiments

# Duties
Name #Crews #Days Week Sat Sun Holy
string c d (h) ‘ SSwk/ttwk  SSsa/tlsa  SSsu/tlsu  SSho/ttho

e A list of all crews in C sorted according to a certain ranking function. This ordering
will be used to assign priorities to the crews when identifying the subset of C' that is
going to work in month m.

2.2 Problem Constraints
The constraints associated to the sequencing of the duties are:
(a) The minimum rest time between consecutive workdays is 11 hours;

(b) Every employee must have at least one day off per week. Moreover, for every time
window spanning 7 weeks, at least one of these days off must be on a Sunday;

(¢) When an employee performs one or more split-shift duties during a week, his day off
in that week must be on Sunday;

(d) In every 24-hour period starting at midnight, within the whole planning horizon, each
crew can start to work on at most one duty.

2.3 Objectives

For each month, we are looking for the cheapest solution in terms of the number of crews
needed to perform all the duties requested. Additionally, it is desirable to have balanced
workloads among all the crews involved, but the models we present in this article are not
concerned with this issue yet.

3 The Input Data Sets

Before describing the IP and CLP models for the rostering problem, it is important to
understand the format of the instances used in the computational experiments. These in-
stances correspond to actual schedules constructed by a crew scheduling algorithm executed
over real world data from the same bus company mentioned in Sect. 1 [8]. Using the duties
built during the crew scheduling phase, we have constructed a set of instances ranging from
small ones up to large-sized ones, typically encountered by the management personnel in
the bus company. The main features of these instances appear in Table 1.

The Name is just a string identifying the instance. The number of crews available for the
roster, ¢, appears under the heading #Crews. The column #Days shows the number of
days in the planning horizon in the format d (h), where d is the total number of days and h
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indicates how many of those d days are holidays. The next four columns show the number
of duties that must be performed in each kind of the possible working days: weekdays,
Saturdays, Sundays and holidays, respectively. The format used is ss/tt, where ¢t is the
total number of duties and ss represents how many of the ¢f duties are split-shift duties. To
begin with, we set the following parameters, for every crew i: OFF; = 0, Is; = 1, wr; = 1,
sl; = 0 and lw; = 660. This is the same as ignoring any information from the previous
month when constructing the roster for the current month.

4 An Integer Programming Approach

Let n be the total number of crews available and let d be the number of days in the
current month m. Moreover, let p, ¢, r and s be the numbers of duties to be performed
on weekdays, Saturdays, Sundays and holidays, respectively (i.e. |Dyk| = p, |Dsal = ¢,
|Dgy| = r and |Dpo| = s).

The IP formulation of the rostering problem is based on z;j; binary variables which are
equal to 1 if and only if crew ¢ performs duty k£ on day j. If j is a weekday, k& belongs
to {0,1,...,p}. Analogously, if j is a Saturday, Sunday or holiday, k ranges over {0,p +
L....,p+q}, {0,p+q+1,... ,p+q+r}or{0,p+q+r+1,... ,p+q+r+s}, respectively.
The duty numbered 0 is a special duty indicating idleness. Thus, if x;j0 = 1 it means that
crew ¢ is not working on day j. For modeling purposes, we set tsp = 400, teg = 0 and
ssg = 0.

Given a day j in m, K; represents its set of duty indexes, except for the duty 0. For
instance, if j is a Saturday then K; ={p+1,... ,p+¢}.

4.1 The Model

The main objective is to minimize the number of crews working during the present month.
This is equivalent to maximizing the number of crews which are idle during the whole
month. Let us define new variables y; € RT, for all 7 € {1,... ,n}, which are equal to 1 if
zijo = 1, for all j € {1,... ,d}, and are equal to 0 otherwise. To achieve this behavior for
the y; variables, it is necessary to relate them to the x;;p variables through the following
constraints

vi < xijo, Vi, Vj . (1)

The objective function can then be written as max ) . ; y;. Equations (1) combined with
the objective function force a y; variable to be equal to 1 if and only if crew ¢ is idle during
the entire month.

The occurrence of days on which the crews are known to be off duty (e.g. previously
assigned holiday periods) is satisfied by setting

Tijo = 1, Vi, Vj € OFF; . (2)

The subsequent formulas take care of the feasibility of the roster (see Sect. 2.2).
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Constraints (a) are dealt with in two steps. Equation (3) takes care of the assignment
of duties for the first day in month m. For the other days, assume that a crew ¢ does duty k
on day j — 1. The set K ]’ [k] of other duties that cannot be taken by the same crew i on day
Jj because of the 660-minute minimum rest time is given by {k' € K; | tsp — (tey, — 1440) <
660}. Therefore, (4) guarantees the minimum rest time between successive days in month
m.

ziig = 0, Vi,Vk€K1|tSk+lwi<660, (3)

Ti(j—1)k + Z Tijkr < 1, Vi, Vj€ {2,... ,d}, Vke Kj,1 . (4)
k'€ K [k]

Let us define a complete week as seven consecutive days, inside month m, ranging from
Monday to Sunday. For every complete week, W, in m, we impose the mandatory day off
as

d wmge>1, Vi (5)

JEW

If month m does not start with a complete week, let W' be the set of days in the first week
of m up to Sunday. Each crew 7 with wr; = 0 needs to rest in W’ and this is achieved with

inﬂ)Zl, Vi|lwr;=0 . (6)
JjeEwW!

The constraint stating that for each period of time spanning 7 weeks each crew must have
at least one day off on Sunday can be described as follows. For each crew i such that
ls; +d > 49, we construct the set T; containing the Sundays in the first (49 — Is;) days of
m. Then, we impose

> mijo>1, Vi|lsi+d>49 (7)
JET;

Together, (5) to (7) represent constraints (b).
Suppose that the first day of month m is not Monday and let 5* be the first Sunday in
m. To satisfy constraint (c) for each crew ¢ such that sl; = 1, we must state that

Tijx0 = 1. (8)

Let S, be the set of Sundays in m after its 6" day and let Pj be the set of split-shift
duties on day j. For these Sundays, we respect constraint (¢) with

Tijo > Y TiGopyks Vi, VjE Sp, Vr€{l,... 6} . (9)
kePj

Equation (10) guarantees that each crew is assigned exactly one duty in each day, thus
satisfying constraints (d). Additionally, (11) represents the implicit constraint that every
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Table 2: Computational experiments with the IP model

# Duties
Name #Crews #Days Week  Sat Sun  Holy LB Sol Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 6 0.62
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 7 1.50
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 6 2.00
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 6 4.33
s05 10 30 (2) 00/04 00/01 00/01 00/01 4 8 2091
s06 10 30 (2) 01/04 00/01 00/01 00/01 4 6 9.06
s07 10 30 (2) 02/04 00/01 00/01 00/01 4 6 10.61
s08 10 30 (2) 03/04 00/01 00/01 00/01 4 7 6.81
s09 10 30 (2) 04/04 00/01 00/01 00/01 4 8 9.21
s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 5.05
sll 10 30 (2) 04/04 01/01 00/01 01/01 4 8 8.35
s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 8.90
duty must be performed in each day, except for the special duty 0.
Tgo+ > wgr = 1, Vi, Vi, (10)
keK;
n
Zacijk = 1, Vy, VkGKj . (11)
i=1

4.2 Computational Results

The computational results obtained with the IP model are shown in Table 2. The figures
under the heading LB come from lower bounds on the value of the optimal solution returned
by the linear programming relaxation of the IP model. Notice however that the objective
function described in Sect. 4.1 asks for the maximization of the number of idle crews, which
is equivalent to minimizing the number of crews needed to compose the roster. For the
purpose of comparison with the CLP model, the values in the LB and Sol columns of
Table 2 represent the number of crews actually working, i.e. the total number of crews
available minus the value of the objective function. Finding the optimal solution of the
instances in Table 2 turned out to be a very difficult task, despite their relatively small size.
Hence, the solution value in column Sol corresponds to the first integer solution found by
the model, for each instance. The linear relaxations and the integer programs were solved
with the CPLEX? Solver, version 6.5.

Although the computation times are quite small, the gap between the values of the lower
bounds and the feasible solutions is noticeable. Further, these values are still not a good

2CPLEX is a registered trademark of ILOG Inc.
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indication of the quality of the model, since we are dealing with very small instances.
Yet, when trying to find integer solutions for instances with tens of duties in a workday,
this model performed very poorly and no answer could be found within 30 minutes of
computation time. Therefore, we decided to experiment with a pure Constraint Logic
Programming formulation of the problem.

5 A Constraint Logic Programming Approach

Having found difficulties when solving the crew rostering problem with a pure IP model,
as described in Sect. 4, we decided to try a constraint-based formulation. We used the
ECL!PS® 2 finite domain constraint solver, version 4.2, to construct and solve the model.

5.1 The Model

Let n, d, p, q, r and s be defined as in Sect. 4. The main idea of the CLP model for the
rostering problem is to represent the final roster as a bidimensional matrix, X, where each
cell X;; (i €{1,...,n},j€{l,...,d}) contains the duty performed by crew i on day j.

The X;;’s are finite domain variables whose domains depend on the value of j. As in
Sect. 4, the duties obtained from the crew scheduling phase are numbered according to their
classification as duties for weekdays, Saturdays, Sundays or holidays. In this model, we will
not have the concept of a special duty for idleness, as the duty numbered 0 in the IP model.
In fact, we will have, for each day, a set of dummy duties which tell that a certain crew is
off duty.

It is easy to see that the number of crews needed to construct a roster must be at least
the maximum number of duties that may be present in any given day of the current month.
Thus, we can state that n > max{p,q,r,s}. Consequently, as the number of X variables
for each day j is equal to n, if the domains of these variables were restricted to be the set
of duties for day j, some of them would have the same value in the final solution. As we
will see later, modeling can be simplified if we avoid this situation and here comes the need
for the dummy duties. Let K, be defined as in Sect. 4. Moreover, let the total number
of duties be calculated as tnd = p + ¢+ r + s. The domains of the X;; variables are then
defined as

Xij 2 Kju{tnd+1,tnd+2,... ,tnd+ (n—|Kj|)} Vi, Vj . (12)

If X;; is assigned a duty whose number is greater than ¢nd, it means that crew ¢ is idle on
day j.

Three other sets of variables have to be defined in order to facilitate the representation of
the constraints. Let T'S, TE and SS be lists of integers defined as follows, V k£ € {1,... , tnd}:
TS[k] = tsg, TE[k] = tep — 1440, SS[k] = ssi. The values of ts, te and ss for the dummy
duties are +oo, 0 and 0, respectively. The new variables are called Start;;, End;; and Split;;

3http://www.icparc.ic.ac.uk/eclipse.
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and relate to the X;; variables through element constraints:

element (X;;, T'S, Start;;)
element (Xija TE, Endij) ,
element (X;;, 55, Split;;) .

Now we can state the constraints (a) through (d) in the ECL!PS® notation.
Equations (13) and (14) assure that the minimum rest time between consecutive duties
is 11 hours. Note the special case for the first day of month m.

Start;1 + lw;
Sta?”tij - Endl(]_l)

660, Vi , (13)

>
> 660, Vi, Vje{2,....,d} . (14)

Similarly to what was defined in Sect. 4.1, we use the concept of a complete week, W;,
for each crew i, as a list of variables [Xit, Xj41),--- , Xj46)], where ¢ is any Monday and
t + 6 is its subsequent Sunday, both in month m. The need for at least one day off during
each week is represented by (15), for complete weeks. Notice that this constraint must be
repeated for each complete week W; associated with every crew ¢. If wr; = 0 and the first
day of m is not Monday, we also need to impose (16), for each crew ¢ and initial week W/.

atmost less(6, W;,tnd+ 1) , (15)
atmost_less(|W)| — 1, W/, tnd+ 1) . (16)

In Equation (16), |W]/| denotes the number of elements in list W/. We use the predicate
atmost_less (N, L,V) to state that at most N elements of list L can be smaller than V.
This behavior is achieved with the definitions below

f_less([],_,[1) :- !.
f_less([X]|Y],Val,[BIR]) :- #<(X,Val,B), f_less(Y,Val,R).
atmost_less(N,L,Val) :- f_less(L,Val,BF), atmost(N,BF,1).

To satisfy constraints (b), there is one condition missing, besides (15) and (16), which
assumes at least one day off on Sunday, every seven weeks, for every crew. For each crew 7,
if ls; +d > 49, then

atmost_less(|L;| — 1, L;, tnd + 1) (17)

where L; is a list containing the Xj;;’s associated with the Sundays present in the first
(49 — Is;) days of m.

Constraints (c) also make use of the concept of complete weeks, but do not include Sun-
days. We denote the reduced complete week W* as the list [Split;, Splitiq1ys - - - Spliti(t+5)].
Notice that we now consider the Split variables instead of the X variables, as when repre-
senting constraints (b).

Splltlt + M + Sph't’t(t-l—5) #> 0 #=> Xi(t+6) #> tnd, V 'L', V W’L* ) (18)
Xpe #  tnd, Vi . (19)
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By (18), if one of the Splity, ... , Splity;,5) variables equals 1, then crew 7 must rest on the
next Sunday, which corresponds to X;;y6). The special case of the first week of m, when
the month does not start on Monday and si; = 1, is dealt with by (19). Here, k stands for
the first Sunday of month m.

Our choice of variables already guarantees that each crew starts only one duty per day.
But we must also make sure that every duty is assigned to one crew on each day. Because
of the dummy duties, this condition can be met easily just by forcing the X;; variables to
be pairwise distinct, for each day j:

alldifferent ([Xyj,... , X)), Vj . (20)
Finally, we need to preassign the rest days which are known in advance
Xi; #> tnd, Vi, Vj€ OFF; . (21)

Labeling is done over the Xj; variables using the first-fail principle.

5.2 Computational Results

When compared to the IP model of Sect. 4, this model performed much better both in
terms of solution quality and computation time. As can be seen in Table 3, it was possible
to find feasible solutions for fairly large instances in a few seconds. Again, no minimization
predicate was used and the solutions presented here are the first feasible rosters encountered
by the model.

Some special cases deserve further consideration. When providing 15 crews to build the
rosters for instances s16 and s17, the model could not find a feasible solution even after
10 hours of search. Then, after raising the number of available crews in these instances to
16 (sl6a) and 18 (s17a), respectively, two solutions were easily found. Another interesting
observation arises from instance s19. This instance comes from the solution of a complete
real world crew scheduling problem. In this problem, the optimal solution for weekdays
contains 25 duties, 22 of which are split shifts. As we did not have access to the input
data sets for the other workdays, the sets of duties for Saturdays, Sundays and holidays
are subsets of the solution given by the scheduling algorithm for a weekday. Instance s19a
is made up of the same duties, except that all of them are artificially considered non-split
shifts. Notice that the value of the first solution found is significantly smaller for instance
s19a than it is for instance s19. This is an indication of how severe is the influence of the
constraints (c) introduced in Sect. 2.2. Moreover, we can see from Table 3 that the values
of the solutions grow quickly as the number of split-shift duties increases. With this point
in mind, we generated two other solutions for the same crew scheduling problem where the
total number of duties used was increased in favor of a smaller number of split shifts. These
are s20 and s21. Despite the larger number of duties in the input, the final roster for these
instances uses less crews than it did for instance s19. This strengthens the remark made by
Caprara et al. [4] that, ideally, the scheduling and rostering phases should work cyclicly,
with some feedback between them.
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Table 3: Computational experiments with the CLP model

# Duties
Name #Crews #Days Week  Sat Sun  Holy LB Sol Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 4 5 0.08
s02 10 15 (2) 00/04 00/01 00/01 00/01 4 5 0.18
s03 10 20 (2) 00/04 00/01 00/01 00/01 4 5 0.23
s04 10 25 (2) 00/04 00/01 00/01 00/01 4 5 0.36
s05 10 30 (2) 00/04 00/01 00/01 00/01 4 5 0.48
s06 10 30 (2) 01/04 00/01 00/01 00/01 4 5 0.52
s07 10 30 (2) 02/04 00/01 00/01 00/01 4 5 0.50
s08 10 30 (2) 03/04 00/01 00/01 00/01 4 6 0.52
s09 10 30 (2) 04/04 00/01 00/01 00/01 4 7 0.52
s10 10 30 (2) 04/04 01/01 00/01 00/01 4 7 0.52
sll 10 30 (2) 04/04 01/01 00/01 01/01 4 7 0.53
s12 15 30 (2) 00/04 00/01 00/01 00/01 4 5 0.90
s13 15 30 (2) 00/10 00/06 00/05 00/05 10 13 1.22
sl4 15 30 (2) 03/10 01/06 00/05 01/05 10 13 1.35
s15 15 30 (2) 03/10 03/06 00/05 03/05 10 13 1.36
s16 15 30 (2) 05/10 03/06 00/05 03/05 10 7 >10h
sl6a 16 30 (2) 05/10 03/06 00/05 03/05 10 16 1.49
s17 15 30 (2) 07/10 03/06 00/05 03/05 10 7 >10h
sl7a 18 30 (2) 07/10 03/06 00/05 03/05 10 18 1.78
s18 30 30 (2) 00/20 00/10 00/10 00/10 20 25 4.96
s19 50 30 (2) 22/25 12/15 12/15 12/15 25 47 14.46
s19a, 40 30 (2) 00/25 00/15 00/15 00/15 25 33 9.36
s20 40 30 (2) 06/26 02/15 02/15 02/15 26 34 10.50
s21 40 30 (2) 00/31 00/20 00/20 00/20 31 36 8.30

6 Proving Optimality

In Sects. 4 and 5, we showed that finding provably optimal solutions for this rostering
problem is a difficult task. Moreover, it is possible to see from Table 3 that the lower
bound provided by the Linear Programming relaxation of the problem is always equal to
the largest number of duties that must be performed on a workday. This is clearly a trivial
lower bound and probably not a very good one. We decided then to try another formulation
for the problem, so as to find better feasible solutions or, at least, better lower bounds.

6.1 A Hybrid Model

Another possible mathematical model for the rostering problem turns out to be a typical
set partitioning formulation:
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n
min E Z;
J=1

n

subject to Zaijivj =1, Vie{l,... e}
J=1
zj € {0,1}, Vje{l,... ,n} .

All numbers a;; in the coeflicient matrix A are 0 or 1 and its columns are constructed as
shown in Fig. 1. Each column is composed of d sequences of numbers, where d is the number
of days in the planning horizon. For each k£ € {1,... ,d}, the k-th sequence, I, contains
hi numbers, where hy is the number of duties that must be performed on day k. Also, at
most one number inside each sequence is equal to 1. The number of lines e, in A, equals

2221 hk-

hl hz hd
(0---010---070---010---0 ---0---010---0 )T

Figure 1: A column in the coefficient matrix of the set partitioning formulation

Besides having the previous characteristics, a column in A must represent a feasible
roster for one crew. More precisely, let ¢ = (u1,u2,... ,uq) be a feasible roster for a crew,
where ug, k € {1,... ,d}, is the number of the duty performed on day k. Remember from
Sect. 4.1 that uy € Dy U {0}, where Dy may be equal to {1,... ,p}, {p+1,...,p+q},
{p+qg+1,...,p+qg+r}or{p+q+r+1,...,p+q+r+s}, depending on whether k is
a weekday, a Saturday, a Sunday or a holiday, respectively. For every such feasible roster
t, A will have a column where, in each sequence [, the i-th number will be equal to 1
(1 € {1,... ,hg}) if and only if uy is the i-th duty of Dy. In case uy = 0, all numbers in
sequence [ are set to 0.

With this representation, the objective is to find a subset of the columns of A, with
minimum size, such that each line is covered exactly once. This is equivalent to finding
a number of feasible rosters which execute the all the duties in each day of the planning
horizon.

It is not difficult to see that the number of columns in the coefficient matrix is enormous
and it is hopeless to try to generate them all in advance. Hence, we decided to implement
a Branch-and-Price algorithm [1] to solve this problem, generating columns as they are
needed. This approach is considered hybrid because the column generation subproblem is
solved by a Constraint Logic Programming model. In our case, this model is a variation of
the CLP model of Sect. 5. Now, instead of looking for a complete solution for the rostering
problem, we are only interested in finding, at each time, a feasible roster corresponding to a
column in A with negative reduced cost. The whole algorithm follows the same basic ideas
described in [8].
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Table 4: Computational experiments with the hybrid model

# Duties
Name #Crews #Days Week  Sat Sun  Holy Opt  Time
s01 10 10 (1) 00/04 00/01 00/01 00/01 5 0.95
s02 10 15 (2) 00/04 00/01 00/01 00/01 5 2.19
s03 10 20 (2) 00/04 00/01 00/01 00/01 5 10.57
s04 10 25 (2) 00/04 00/01 00/01 00/01 5 639.75
s05 10 30 (2) 00/04 00/01 00/01 00/01 5 38.12
s06 10 30 (2) 01/04 00/01 00/01 00/01 5 30.60
s07 10 30 (2) 02/04 00/01 00/01 00/01 ? >1h

6.2 Computational Results

The best results for the hybrid model were achieved when setting the initial columns of
matrix A as the columns corresponding to the first solution found by the CLP model of
Sect. 5. Also, the ordinary labeling mechanism worked better than labeling according to
the first-fail principle.

With this model, we could find provably optimal solutions for small instances of the
rostering problem, as shown in Table 4, where column Opt gives the optimal value. This is
a noticeable improvement over the pure IP model of Sect. 4, which was not able to find any
optimal solution, even for the smallest instances. Besides, when comparing Tables 3 and 4,
we can see that the first solutions found by the pure CLP model for instances s01 to s06
are indeed optimal.

This hybrid approach is still under development and there is a lot of work to be done.
Nevertheless, we believe that the main reason for the behavior of this model resides on the
fact that this formulation leads to a highly degenerate problem. When trying to solve larger
instances, the pricing subroutine keeps generating columns indefinitely, with no improve-
ments on the value of the objective function. This is because there are many basic variables
with value zero which are replaced by other columns that enter the basis with value zero
as well. As a consequence, the linear relaxation of the first node of the Branch-and-Price
enumeration tree could not be completely solved in the medium and large-sized instances.
Thus, in order to obtain better linear programming lower bounds, we need to address those
degeneracy problems more closely.

7 Conclusions and Future Work

We have given a detailed description of an urban transit crew rostering problem that is
part of the overall crew management process in a medium-sized Brazilian bus company.
This problem is rather different from some other bus crew rostering problems found in the
literature.

Three main approaches have been applied in order to solve this problem. Initially, a
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pure Integer Programming (IP) model was developed, enabling us to find feasible rosters for
very small instances. We achieved better results with a pure Constraint Logic Programming
(CLP) model, which managed to construct feasible solutions for typical real world instances
in a few seconds.

Obtaining better lower bounds on the value of the optimal solution could be helpful in
estimating more precisely the quality of the solutions obtained with the pure CLP model.
Therefore, following our experience with good quality lower bounds provided by linear
relaxations of set partitioning formulations [8], we devised a third approach. The rostering
problem was then formulated as a set partitioning problem with a huge number of columns
in the coefficient matrix. This integer program was fed into a hybrid column generation
algorithm which followed the same ideas presented in [8]. With this attempt, we could find
optimal solutions for small instances of the problem. Finding provably optimal solutions
for the largest instances is still a difficult task, apparently due to degeneracy problems.
We believe that the performance of this third model can be significantly improved if these
issues are investigated in more detail. Besides, it may also be possible to improve the
labeling strategy with problem specific heuristics, and extract a better performance from
the constraint-based column generator.
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