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Abstract

This paper presents a technique to implement control of com-
plex user interface dialogues. It is based on event-driven control
flow specifications described by a deterministic statechart dialect.
With the aid of this technique the dialogue control is expressed
in terms of a statechart. This statechart is then converted into
tables handled by a run-time commented in greater detail. The
execution of the run-time driven by those tables is equivalent to
the behaviour specified by the underlying statechart. The resulting
system calls specific application functions in response to user in-
teractions mapped to events by the presentation component. The
application is seen as a set of subroutines which can be invoked
during the interaction with the user. The use of the proposed
technique frees the programmer from the implementation of com-
plex control aspects. The way of how to construct these statechart
dependent tables, their use by the run-time, and the way semantic
actions are attached are illustrated by a small example of a reative
system which highlights mainly dialogue control aspects.

1 Introduction

The behaviour of interactive programs is often event-driven and cannot
be conveniently described in terms of a function which maps input into
output data. The behaviour is better captured by an internal state which
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Figure 1: Seeheim model [Gre85].

is affected by asynchronous events.! Interactive programs have to fire
appropriate actions according to generated events. Under some circum-
stances there might be many event sources and no specific sequence of
event occurrences may bhe assumed. A same event may affect the state
of a program in distinct ways or even have no effect at all depending on
the context in which it is eventually handled. From this perspective, the
specification of programs of this kind is difficult and the implementation
is error-prone. Highly interactive systems based on a direct manipula-
tion interaction style associated with multi-thread dialogues are a good
example of hardly tractable specification problems.?

Different models and notations have been used to describe the inter-
action between an user and a computer [Mye89]. State transition dia-
grams and one of their extensions, namely statecharts, shall be discussed
next.

The proposal of this paper is based on the Seeheim’s logical user
interface model depicted in Figure 1. The Seeheim model divides a
user interface into three layers. The presentation layer is responsible for
the external presentation of the user interface. This layer defines how

!Events are commonly generated by user actions upon input devices like a mouse
or a keyboard.

?Despite of the apparent chaotic picture, this style of interaction is highly modal
[Jac86] and suitable to be described by means of state diagrams.
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an interactive system appears and is felt by the end user. It performs
low-level input/output processing (lexical aspects). The dialogue control
layer receives tokens from surrouding layers and determines how the con-
versation evolves based on those tokens. This layer defines as well which
sequences of such tokens are to be considered or not (syntactic aspects).
The dialogue layer has to keep the current state of the user interface and
has to have control over this state since the dialogue evolution depends
on it. It accepts inputs from the lexical layer and assembles them into
commands and data on the one hand, and receives tokens from appli-
cation requiring data and supplying responses to user requests on the
other hand. The last layer represents the functionality (semantics) of an
interactive application.

In this paper we propose a technique to derive a control structure
underlying a dialogue layer which is described in terms of a statechart.
State transition diagrams are very often used to represent this compo-
nent. These diagrams are commented in more detail later on and their
drawbacks in relation to statecharts are pointed out. These shortcomings
let the application of statecharts become very interesting in this context.
The technique consists of an invariant control run-time which imple-
ments the behaviour of a statechart dialect described in Section 4 and
of the transformation of statecharts specifications into comprehensible
information to the run-time described in Section 5. The implementation
of the run-time is discussed in more detail and its code supplied in order
to enable readers to implement their own applications. In Section 3 a
little more is said about dialogue specification. In the following section a
small illustrative example is presented informally. This example is used
throughout this paper.

2 The Stopwatch Example

Figure 2 shows the statechart specification of a hypothetical stopwatch.
The statechart Stopwatch corresponds to the operation of this toy stop-
watch example whose display is either switched on (Alive) or off (Dead).
Alive is the default substate of Stopwatch indicated by a special arrow,
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i.e, whenever Stopwatch is activated Alive becomes activated as well.
The default substate of Alive is the state Reset. When this state is
reached the stopwatch counter value becomes zero and the display blinks
for three seconds, for instance. The semantic actions related to states
and transitions are particular of the application being modelled. If the
event e/ takes place, then the state is left and revisited and the same
related semantic actions are performed once more. If the event €2 occurs
while Reset is active, a transition to the state Operation is fired.

The activation of the state Operation implies the activation of both
Timer and Display, since they represent a concurrent decomposition of
Operation. If Operation is activated for the first time, then the default
substates of Timer and Display become activated. On the contrary the
most recently substates are reactivated because of the in-depth history
attribute of the state Alive.

If the state On becomes activated the timer starts to tick away from
the current value of the stopwatch counter. This process is interrupted
if event e2 takes place and fires the transition from On to Off. A sub-
sequent occurrence of e2 causes the return to state On.

The substates of Display represent the presentation mode of the
stopwatch counter. If Normal is active, the value of the stopwatch
counter is displayed in terms of minutes and seconds. If, on the other
hand, InSec is active the display shows the time interval represented by
the stopwatch counter solely in seconds. In two cases the Alive and all
of its active substates are deactivated and Dead becomes active: if event
ey occurs independently of the configuration of the substates of Alive or
if the state Off is active and the event ¢4 occurs. In former case, if On
is active just before the event firing takes place, then the counter keeps
ticking away and the counter cannot be stopped while the state Dead
is active.

The state Dead is left under four circumstances: if either the event
el, €2, e5 or the event Fxit occurs. In the first case Alive is activated
since it represents the default substate of Stopwatch. In the second case
it becomes active because it is the ancestor of the destination state of the
fired transition. In the third case Dead is deactivated and reactivated
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and in the last case the animation of Stopwatch ceases. Whenever
Alive or Operation is revisited the activation of their substates com-
plies the history enforcements. The Stopwatch ceases all its activities,
in whatever configuration it might be, if the event Fzit takes place. In
this case a controlled deactivation is performed and the system comes to
a halt.

3 Dialogue Specification

Two alternatives of how to specify and to structure a dialogue shall
now be presented. The first one is based on conventional state transition
diagrams. These diagrams are widely used [Was85, Jac86, HH89] despite
of their drawbacks pointed out in [Har87]. The second one is based on the
statechart notation where the control process is more sophisticated, but
it avoids some problems of the former. Both specification alternatives are
graphical. This feature represents an advantage over textual descriptions
employed by other specification languages. Further information about
techniques employed to describe dialogues can be found in [Mye89]. the
transition network model class according to [Gre86]. event model is used
in textual languages like ALGAE [FFB87]

3.1 State Transition Diagrams

One way of representing an event-driven control process is based on
state transition diagrams. Specifically in the context of MS-Windows
programming, Bertrand and Welch [BW91] have adopted a similar ap-
proach referred to as state tables.

This kind of diagrams consists of nodes, which represent particular
states of a system, and of directed labelled edges between pairs of nodes
which indicate transitions between states fired by the occurrence of an
event enrolled in the corresponding transition label. During the execu-
tion of a state transition diagram, one particular state is considered to
be the current state (at the beginning of an activation process the initial
state becomes the current state) and, at each new event occurrence, the
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labels of its outgoing transition edges are swept across in an attempt
to identify a transition sensible to the current event. If such an edge is
identified, then the corresponding transition is fired. The simplicity of
the control process is however outweighed by a number of well known
disadvantages. These can be inherent [Har87] or specific to dialogue
control specifications [BC91, Mye89].

The framework of state transition diagrams is essentially “flat.” The
lack of means to incrementally define contexts hampers a better structur-
ing of a system specification, i.e., no hierarchical framework is provided.
These flat diagrams present another nasty feature. If a new diagram is
to be composed of two already existing diagrams, then the states of the
new diagram are represented by the cartesian product of the state sets of
the two underlying state transition diagrams.® This explosive nature can
be a great handicap when non-trivial systems have to be specified since
those diagrams become very complex and their comprehension difficult.
Multi-thread dialogue interfaces belong to this class of systems. Another
disadvantage is the lack to explicitly represent concurrency since exactly
one state represents the current state of the system. Concurrency has
to be hidden and cannot be shown explicitly by the event-driven control
flow represented by a state transition diagram.

Some of the specific shortcomings of state transition diagrams to
describe dialogue control aspects are as well present in statecharts (e.g.,
all states must have explicit transitions for all possible erroneous input
and commands, if they are to be handled properly). A more heavy use
of statecharts in the human-computer interface context, however, is not
well documented in the academic literature.

3.2 Statecharts

Harel [Har87] extended state transition diagrams eliminating some short-
comings and named them statecharts. The statechart notation produces
more concise specifications. It is also richer in terms of expressiveness

*Thus, if one diagram has m and the other n states the resulting diagram is com-
posed of m x n states!
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and supports incremental context definitions related to hierarchical de-
compositions, control flow based on history and explicit concurrency
specifications. The brief description below is not meant to be a tutorial.

Statecharts have been proposed originally as a specification formalism
for hardware devices [DH89]. At a later stage the notation has been used
to specify software systems [HLNT90] or even user interfaces [Wel89,
vZMO91]. A subset of the statechart notation and not necessarily the
same terminology proposed by Harel has been adopted in this paper.

Statecharts are described in terms of nested contexts represented
graphically by non-overlapping rectangles with rounded corners called
blobs or states. The nesting reflects successive decompositions. Blobs
can be of two kinds: mutually exclusive and concurrent blobs. The for-
mer is indicated by a solid and the latter by a dashed contour.* Figure
2 depicts one example. If a context is decomposed in terms of mutually
exclusive blobs (as state Stopwatch in Figure 2), one of those (Dead, or
Alive in the particular case) must be active at a given instance whenever
their direct ancestor is active. On the other hand, if a context is decom-
posed into concurrent blobs, whenever this context becomes active, all
of its concurrent blobs become active as well. For example, whenever
the state Operation is active, all of its direct descendants (Timer and
Display) are active too.

If a given blob is decomposed into mutually exclusive blobs, then
one of the subordinated blobs has to be declared as its default descen-
dant which is indicated by a special transition edge. It is the case of
the substate Alive of the state Stopwatch in Figure 2. This default
state becomes active whenever its direct ancestor (Stopwatch) becomes
active and if the activation of no other of its siblings is being enforced
by the activation process due to a history condition. The set of active
states of a statechart in a stable situation (i.e., at an instance where no
transition takes place) is referred to as its configuration.

A transition is represented by a directed edge between two mutually
exclusive blobs and, if fired, causes a context swapping. A transition

*The use of dashed contours to depict concurrent blobs does not exist in pure
statecharts. It makes the blob identification labelling homogeneous.
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edge is labelled with an event identifier and is possibly associated with a
guarding condition. A transition is fired whenever the origin blob of the
corresponding edge is active, the event referred by its label has occurred
and its guarding condition (if it exists) is satisfied. For example, the
label e4[in_blob(Off )] of the transition from Alive to Dead (Figure 2)
will enable this transition whenever the state Alive is active, the event
e4 occurs, and if at this instant the guarding condition is (is state Off
active?) is true.

It is necessary to provide mechanisms other than only control in order
to make statecharts useful. We do not only expect from a statechart the
parsing of valid event sequences. It is necessary to have a mechanism
to produce some output. This mechanism is implemented in terms of
function calls in the current proposal. Functions are attached to states
and/or transition edges of a statechart. These functions are invoked
each time a particular state is entered (activated), left (deactivated) or
a specific edge is traversed.

A function associated to a transition is called after the deactivation of
the origin blob and before the activation of destination blob. Each blob
might as well be associated with two functions: one is executed whenever
the state is activated and another when it is deactivated. These outputs
are analogous with the outputs of Mealy and Moore machines of the finite
automata theory. In Moore machines, however, output is produced only
when one state is reached. A statechart output may also be produced
upon leaving a state.

4 Run-time Implementation

This section presents more detailed information about a particular im-
plementation of the complex statechart semantics and often refers to
code of the listings at the end of this paper. A reference to specific
lines of code is made as follows: [<file identifier>, <first line of relevant
code>-<last line of relevant code>,...].

The transformation of the control underlying a statechart specifica-
tion into an executable code can be eased if the control structure of the
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resulting program is kept as close as possible to the control process which
describes the behaviour of a statechart. This control structure is referred
to as the statechart run-time control (or the run-time for short) or even
as the statechart engine. The run-time has been implemented in ANSI
C.

The run-time represents the invariant code of a system developed
according to the proposed technique. It performs, in essence, event sen-
sitivity checks and controls the state activation and deactivation process.
In order to get down to details about its implementation, a data struc-
ture holding information about a particular statechart topology and its
transition lattice shall be described next. The information held by these
data structures must be supplied and must reflect the topology and the
attributes of the system’s statechart specification.

Tables are not the best way to hand over information to the run-time,
because their construction process is error-prone. The run-time does not
perform any automatic checking. The construction of those tables is
better done by a compiler of statechart specifications into the required
data structures. An proper environment of this kind is described in
[F'L.93]. The way of how to construct the two tables manually according
to a given statechart shall now be described.

It is important to point out that the code presented here implements
only a subset of the statechart semantics originally defined by Harel.
This subset is illustrated by means of an example given in Section 2.
Anything else not mentioned has not been contemplated. The code of
the run-time is listed as the contents of the files engine.h (Section 8.1)
and engine.c (Section 8.2).

The data related to a statechart topology is kept in a tree structure
which reflects the hierarchy defined by its topology. The correspondence
between blobs and nodes of the tree is an one-to-one relation. Figure 3
shows one tree which is equivalent to the hierarchical structure of the
statechart described in Figure 2. This tree is a binary tree by chance.
No restriction is imposed on the arity of nodes of this kind of trees.

Nodes are identified internally by values in the range of 1 to n, where
n represents the total number of blobs a particular statechart is com-
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Figure 3: Internal numerical identifiers determined by StartStEng()

posed of. The internal blob identification corresponds to the node enu-
meration of the related tree in an inorder traversal. These values index
an array whose elements keep information related to the corresponding
blobs and relevant to the tree traversals demanded by the context swap-
ping procedure due to transition firings. The designer is not obliged to
relate blob identifiers to numerical values in accordance to the enumera-
tion rule of internal identifiers. The numerical identifiers defined by the
designer (“external” identifiers) are converted automatically into “inter-
nal” identifiers which adhere to the required ordering relation [engine.c,
007-011, 042-090, 117-123]. A closer look at the data structure holding
statechart-dependent information shall be given next.

4.1 Data Structure for Statechart Topologies

The definition of an element of the array which describes the topology
of a statechart specification is given in Figure 4. The content of this
Figure is a transcription of [engine.h, 043-050]. It stores the following
information for each state: its identifier (state), a reference to its default
direct descendant (primogen), a reference to its next sibling (sibling -
the sibling list is circular), a reference to its direct ancestor (ancestor),
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typedef struct {

numBlob state, /* Numerical Id of the blob given by the designer */
primogen, /* Direct descendant */
sibling, /* Next sibling in a circular list of siblings */
ancestor; /* Direct ancestor */
bStatus status; /* Concurrent/exclusive blob, history, etc. */
ptrFunc OnEntry, OnExit; /* Executed whenever a state is entered or left */

} BHODE;

Figure 4: Data structure to hold information about a blob

status information (status) and two pointers to functions to be called
whenever the corresponding blob is entered (OnEntry) or left (OnExit)
respectively, i.e., whenever it is activated or deactivated. A similar field
(action) exists in BTRANS (Figure 5) which specifies a function to be
called whenever the corresponding transition is fired.

The status information consists of a sequence of bits which indicates
the existence or not of a shallow history condition defined at the corre-
sponding blob, an in-depth history, a history condition cancellation, and
tells if the blob in question is a concurrent or a mutually exclusive blob.
Their values correspond to those defined at [engine.h, 012-024].

4.2 Data Structure for Transitions

The array of type BTRANS holds information about the sensitivity of blobs
to specific events (see Figure 5, which corresponds to [engine.h, 035-
041]). One element of this array keeps for each transition the identifiers
of the origin (from) and the destination blob (to), one pointer to a
function which returns a boolean value indicating if the transition can
take place (cond) and to a function which represents a semantic action
(action).

One element of this type asserts that if state fromis active and event
occurs, then the function cond is called and its result tested. If it is true,
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typedef struct {

numBlob from; /* Origin blob */

numEvent event; /* Event wich triggers the transition */

numBlob to; /* Destination blob */

int (*cond) (void); /* Condition that guards the transition */

ptrFunc action; /* Action executed whenever the transition takes place */
} BTRANS;

Figure 5: Data structure to hold information about a transition

the transition to state to takes place. After the deactivation process due
to the transition in progress has been concluded and just before the
start of the subsequent activation process, the function action is called
[engine.c, 283-295].

Events are as well associated to numerical values, but their enumera-
tion is not critical since it does not affect the operation of the run-time.

4.3 Run-time Interface

A statechart represented by the data structures described above can
be exercised by means of four functions. Two of them initialize and
deactivate the run-time:

¢ int StartStEng(BNODE*,numBlob,BTRANS#*,numEvent)
This function [engine.c, 108-127] receives the tables described
above as well as their particular dimensions.

e void StopStEng()
It [engine.c, 129-133] informs the run-time that its execution
should cease.

The remaining functions are:

¢ int stEng(numEvent)
It [engine.c, 354-366] signals an event occurrence.
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e int in Blob(numBlob)
It [engine.c, 308-313] verifies if a given blob is active or not. It is
usually invoked by transition guards.

4.4 Run-time Execution

StartStEng() [engine.c, 108-127] receives the address and the dimen-
sions of the tables which describe the topology and transitions of a par-
ticular statechart specification and are used by the run-time in order to
make it behave according to this specification. This framework makes
it possible to change the behaviour without the need to recompile any
code. Internal blob identifiers are generated and the tables are updated
accordingly. In order to improve the look-up of the transition table, this
table is sorted in increasing order of the internal origin blob identifier
[engine.c, 095-105].

The array structure enables random access to the information related
to a specific blob. The way how blobs are identified internally turn the
search for a nearest common ancestor very simple. The ancestor links are
followed from the destination or the origin blob, whichever is represented
by the greatest internal identifier, until a blob is reached with an internal
identifier less than or equal to the identifier of the other blob of the pair
of blobs passed as parameters [engine.c, 149-163].

The control structure, which guides context swappings, is indepen-
dent of the topology of a specific statechart and is referred to as the
statechart run-time control, or simply the run-time, as stated before.
The main function (stEng(event) [engine.c, 354-366]) describing the
functionality of the run-time receives as its argument an event identi-
fier. This function traverses the list that holds the identifiers of active
blobs (this list is referred to as the configuration or as the global state
of a statechart and is kept by the status field of the elements of the
bInfo[] array) and verifies the sensitivity of those blobs to the current
event.

A context swapping due to a transition firing is carried out in two
steps. At first all blobs from the atomic blob reachable from the origin
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blob, up to the nearest common ancestor of the origin and the destination
blob (excluding the latter), have to be deactivated as well as all concur-
rent siblings and their descendants along this path. Next the blobs of
the path between the destination blob and the nearest common ancestor
mentioned above (excluding the latter) are activated in reverse order.
From this point the activation process is kept up until an atomic blob
is eventually reached. All concurrent siblings of activated blobs at this
second stage of the context swapping process are activated as well.

The transition firing function (fromBlobToBlob() [engine.c, 282-
294]) identifies an active atomic blob reachable from the origin blob
(activeAtomFrom() [engine.c, 138-147]), it finds out the nearest com-
mon ancestor (nearestCommonAncestor() [engine.c, 149-163]) of the
origin and the destination blob, it deactivates all blobs along the path
from the active atomic blob found previously up to the nearest com-
mon ancestor (excluding the latter) as well as all concurrent components
along this path [engine.c, 166-195]. It then calls the function represent-
ing the semantic action related to the transition (if specified), and starts
the activation process (activatePath() [engine.c, 264-280]).

The first step of the activation process consists of a search of pos-
sible history enforcements at the nearest common ancestor and levels
above and a demarcation of the path from the destination blob up to
the nearest common ancestor (vhDesc of the WrkMemory is used for this
purpose). This path is then followed from the nearest common ancestor
down to the destination blob and all blobs along this path (except for the
former) are activated. Concurrent siblings are activated according to the
history mode being enforced. Once the destination blob is reached, the
activation process is sustained, but now complying with history enforce-
ments, until an atomic blob is eventually reached. Concurrent siblings
are activated in the same manner at this second stage of the activation
process.

Since no activation path is predetermined for the second part of the
activation process or for concurrent siblings come across along this pro-
cess, the activation in those cases is performed according to one of the
following manners: if a history condition is being enforced, then the most
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recently visited blob is reactivated; if no such blob exists or no history
condition is being enforced, then the default direct descendant is acti-
vated. A history condition can be an in-depth (the history condition
applies to all lower level contexts of the context where it has been de-
fined unless overridden or cancelled at lower levels) or a shallow history
(the history condition applies only to the next lower level context). At
the start of the statechart engine, the non-predetermined-path activation
process is applied to the outermost blob.

As a result of the deactivation process, the deactivated blobs are
removed from the current configuration and, in consequence of the sub-
sequent activation process, the just activated blobs are added at a second
stage. In other words, the activated subtree of the nearest common an-
cestor is replaced by a new one.

The active variable is used by the function _steng() [engine.c,
321-352] to determine the next blob of the original configuration to be
submitted to a sensitivity test. Once all blobs of a configuration have
been swept across, the function in question can be called again to handle
a new event, but now in the context of the resultant configuration from
the handling of the prior event.

Since the order for the sensitivity tests is determined by the in-
creasing order of the internal blob identifiers computed by the function
StartStEng() [engine.c, 108-127], the firing of transitions is performed
in a deterministic way. Thus, alternative orderings may produce distinct
behaviours. It is important to point out that if a given event is found
on the event list of two transitions which have as their origin a direct or
indirect ancestor and its descendant respectively, then the event has no
effect on the latter since the descendant becomes deactivated during the
firing of the transition which has its origin at the former.

As already indicated above the algorithm to find the nearest common
ancestor is as well heavily dependent on the correct enumeration of blobs.
The concept of the nearest common ancestor is degenerated in two cases:
if the destination blob is a direct or indirect descendant of the origin blob
(e.g., the transition labelled €5 in Figure 2) and the second by the re-
verse (e.g., the transition labelled ef from state Dead to Stopwatch).
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If however the origin and the destination blob of a transition edge hap-
pen to be the same, then the direct ancestor is taken as their nearest
common ancestor. This means that the blob in question is activated and
immediately afterwards reactivated. This is the case of the transition
labelled e/ at Reset. The degenerated cases cause the exclusion of the
indirect nearest common ancestor of the deactivation/activation process,
i.e., it is kept active all along.

5 Implementing the Stopwatch Behaviour

This section describes the implementation of a small statechart specifi-
cation with a deterministic behaviour presented in Section 2. The imple-
mentation is carried out in the Microsoft Windows environment, but this
is not the sole environment which could have been used as the develop-
ment platform. The main purpose is to show how a complex behaviour
can be specified and implemented and not to show how realistic this
example can be. It is better taken as a template of the development of
complex behaviour, particularly of event-driven interactive applications.

The next two subsections define respectively how transitions and the
topology of the given statechart specification (Figure 2) are represented
in the tables required by the run-time. The simple example shown before
is used for this purpose. The relevant information can be found in two
small files: st.c (Section 8.4) and st.h (Section 8.3).

5.1 Specifying Transitions

Transitions are labelled and usually establish a relation between two
blobs, with exception of default transitions. The label of a transition
carries an event which might fire the transition and possibly a guarding
condition and/or a reference to a function representing a semantic action
to be carried out during the transition as described earlier on. The type
BTRANS in [engine.h, 035-041] describes the relevant information.

The enumeration of events [st.h, 018-023] is irrelevant to the im-
plemented algorithm of the run-time. An abstract event used within a
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BTRANS bTrans[] =

{/* state, event,state, condition, action functions */

{o, 0, O, 0,0 ,
{ Stopwatch, e5, Dead, 0, 0 T,
{ Reset, e2, Operation, 0, 0 T,
{ Reset, ed, Reset, 0, trans },
{ Operation, e4, Reset, 0, 0 T,
{ Normal, e3, InSec, 0, 0 T,
{ InSec, e3, Normal, 0, 0 T,
{ off, e2, On, 0, 0 ¥,
{ On, e2, Off, 0, 0 ¥,
{ Alive, ed, Dead, cond, O T,
{ Dead, el, Stopwatch, 0, 0 T,
{ Dead, e2, Operation, 0, 0 ¥

Figure 6: Transition description of the statechart in Figure 2

statechart might correspond to a single physical event or a sequence of
physical events as in the case of a menu item selection. The event el, for
instance, could represent an WM_LBUTTONDOWN message sent by the Win-
dows kernel to the application. The responsibility of binding abstract
to physical events is of the presentation component discussed earlier. In
order to simplify the given example a simple and direct binding is used
where each event ey is generated by pressing the key k.

The table bTrans in [st.c, 013-027] shown in Figure 6 describes
the transitions of Figure 2. It is important to point out that default
transitions are a special case and are described implicitly within the
bInfo table which shall be commented next.
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5.2 Specifying Topology

In this section the representation of a statechart topology is commented.
In order to describe a particular topology: one entry for each blob in the
table bInfo (see Figure 7 and [st.c, 029-043]) is used. For each state,
its relationships with other states and action functions are listed. The
hierarchy of the statechart in Figure 2 is shown in terms of a tree in
Figure 3. In this particular case, the tree turned out to be a binary tree.
Nodes of this kind of trees, however, can be of any arity, since siblings
are kept in a circular list which is reached from the direct ancestor by
its default descendant pointer.

For the state Stopwatch, for instance, its entry in the table iden-
tifies Reset as its default descendant. Stopwatch has no history at-
tribute nor is it a concurrent component and thus its status is _noHist.
Whenever Stopwatch is entered and left the function Show() is called.
This function [stopwatc.c, 023-032] is only used to trace the blob ac-
tivation /deactivation paths. For simplicity reasons, none of the specific
functionality suggested in Section 2 has been implemented.

6 A Windows-based Application

The architecture of programs for MS-Windows differs from the one of
traditional programs. It is briefly commented below since it is used in
the implementation of the example and, in general, is similar to how
programs are implemented on others Windows Systems.

A Windows program aggregates in general different independent over-
lapping display areas called windows: one of these represents the main
window and each of the remaining windows has to be declared as a subor-
dinated window (referred to as a child window) of some other one. One
event handling function is always associated with each window. The
Windows kernel captures events and sends them to a queue where from
they are successively consumed and passed to the event handling func-
tion of the window associated with the particular event. Thus, one part
of the presentation layer is encapsulated by the Windows kernel.
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BNODE bInfol[] = {

/*state, primogen, sibling,ancestor, status, entry,exit */
{o, 0, 0, 0, 0, 0, 0 3,
{ Dead, 0, Alive, Stopwatch,_noHist, Show,Show},
{ Stopwatch, Alive, Stopwatch, O, _noHist, Show,Show},
{ Alive, Reset, Dead, Stopwatch,_starHist,Show,Show},
{ Reset, 0, Operation, Alive, _noHist, Show,Show},
{ Operation, Timer, Reset, Alive, _noHist, Show,Show},
{ Timer, On, Display, Operation,_concurr, Show,Show},
{ Display, Normal,Timer, Operation,_concurr, Show,Show},
{ On, 0, 0ff, Timer, _noHist, Show,Show},
{ Normal, 0, InSec, Display, _noHist, Show,Show},
{ off, 0, On, Timer, _noHist, Show,Show},
{ InSec, 0, Normal, Display, _noHist, Show,Show}
};

Figure 7: Topology description of the statechart in Figure 2
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The attributes of a window and of visible symbols shown to the user
within the bounds of that particular window are defined all over a Win-
dows program. The code of a program based on Windows and a state-
chart specification consists of:

i. a function WinMain() which in general creates an instance of the
main window, retrieves events from the event list of the Windows
kernel and dispatches them to the appropriate event handling func-
tion of the target window;

ii. event handling functions associated to windows defined within the
program. These functions are notified of event occurrences when-
ever the targets of those events are represented by the correspond-
ing windows. They receive the control after the notification of an
event occurrence, the event is converted to a logical event and the
logical events is passed to the dialogue control layer. This layer, in
response, triggers tasks related to changes of the internal state of
the interface due to event occurrences. It includes the handling of
presentation aspects and function invocations related to the func-
tionality of the application; and finally

iii. functions which represent operations of the application proper.

Most of the facilities provided by the Windows environment are of
a very low abstraction level and correspond basically to the facilities of
a presentation layer. One extra layer is often provided by libraries with
a procedure-oriented or object-oriented interface on top of the Windows
API. These tools (generally referred to as toolboxes and toolkits, respec-
tively) provide some facilities to support simple interaction operations
(e.g., scrolling) and provide a higher degree of abstraction to the pro-
gram developer. Little support is given to the designer to structure the
dialogue evolution of a system. In this paper the presented technique is
used for this purpose.
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7 Concluding Remarks

Statecharts are an extension of conventional state transition diagrams.
Due to the hierarchical nature of the specification notation, distinct con-
texts can be defined incrementally at different levels of a hierarchy. These
contexts come into existence and are destroyed in a controlled manner
by firing events. Designs based on this technique turn out to be better
structured in general. The task of the designer becomes lighter since
greater efforts can now be put on what has to be performed in specific
contexts without having to pay greater attention on what is happening in
terms of context swappings. This focus concentration makes the design
task easier.

The way how a complex specification in terms of a statechart could
be implemented using a run-time in the Microsoft Windows environ-
ment has been described. The present work reflects an evolution from a
previous proposal [BW91]. There are some restrictions of the run-time
which inhibit the implementation of the whole statechart functionality.
Nevertheless the restricted behaviour implementation is believed to be
useful to implement interface dialogues, and new version with additional
funcitonality are planned.

Care must be taken since the tables for the run-time are built man-
ually. A proper environment [FL93], however, may solve this difficulty.

It is easy to see, by means of the presented example, that the un-
derlying control of a complex behaviour can be trivially implemented by
adopting the proposed technique. Complexity does not simply disap-
pear, but it is transferred to the run-time. Changes of behaviour require
changes in only two tables and can even be made at run time. If the
programmer makes use of the proposed technique, the existence of so-
phisticated control mechanisms can be taken for granted and only lexical
and semantic aspects have to be taken into consideration. The program-
mer is released from the error-prone task of developing a complicated
code segment which exist in all interactive system: the dialogue control
component.
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Figure 8: Relationship among files

8 Listings
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Figure 8 illustrates the relations between the files which implement the
adopted example. The first module stands for the tables holding the
relevant data of a given statechart. The second module represents the

invariant code (named run-time or statechart engine) which controls ba-
sically the transition firings and the state activation and deactivation

process. The last module contains semantic actions (i.e., the applica-

tion proper in terms of a set of functions) and some code responsible for

the presentation of information to the end-user. The complete relevant

listings follow.

8.1 engine.h — run-time header

001 /* engine.h -- The Statechart Engine (HEADER) */

002

003 #ifndef ENGINEH

004 #define ENGINEH

005

006 typedef unsigned short numBlob; /* engine data types */
007 typedef unsigned short numEvent;

008 typedef char bStatus;
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009 typedef char history;
010 typedef void (*ptrFunc)(int,int);
011

012 /* status information operations

013 bit 6: 0(blob) 1(concurrent component)
014 bit 5: activated

015 bit 4: mark blob visited

016 bit 2: cancel history enforcement

017 bit 1: star history (* history)

018 bit 0: standard history (h history) */
019

020 #define _noHist 0x00 /* masks */

021 #define _hHist 0x01

022 #define _starHist 0x02
023 #define _cancelHist 0x04

024 #define _concurr 0x08

025

026 #define _hist 0x07 /* masks of internal use */
027 #define _activ 0x20

028 #define _visited 0x10

029

030 #define ERR_NBLOBS 2 /* Error codes */

031 #define RECURSIONNOTALLOWED 3

032 #define FINISHED 4
033 #define OUTOFMEMORY 5
034

035 typedef struct {

036 numBlob from; /* Origin blob */
037 numEvent event; /* Event wich triggers the transition */
038 numBlob to; /* Destination blob */
039 int (#cond)(void);/* Condition that guards the transition */
040 ptrFunc action; /* Action executed whenever transition takes place */

041 } BTRANS;
042
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043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

8.2

001
002
003
004
005
006
007
008
009
010
011

typedef struct {

numBlob state, /* Humerical Id of the blob given by the designer */

primogen, /* Direct default descendant

sibling, /* Next

sibling in a circular list of siblings

ancestor; /* Direct ancestor

bStatus status; /* Concurrent, history, etc.

ptrFunc OnEntry, OnExit;/* Callbacks called when entry/left a state

} BIODE;

/* Interface to the run-time */

extern int stEng(numEvent);

extern int in_Blob(numBlob)

/* Activate and deactivate t

/* Pass event to the run-time */

; /* Return true if blob is active */

he statechart run-time */

extern int StartStEng(BNODE*,numBlob,BTRANS* ,numEvent) ;

extern void StopStEng(void);

#endif

engine.c — run-time implementation

/* engine.c -— The Statechart Engine */

#include <stdlib.h>
#include <string.h>

#include "engine.h"

typedef struct WorkMemory {
numBlob vhDesc; /*
numBlob start, last; /*
numBlob blobId, backId;/*
} WrkMem; /*

It keeps track of paths in the tree

*/
*/
*/
*/
*/

Holds the range (btrans) relevant to a blob

25

*/
*/

backId(k) = user id equivalent to run-time id */

k. blobId(k) = run-time id to k user id.

*/
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012

013 static WrkMem *ctlMem;

014 static numBlob active;

015 static numBlob nBlob;

016 static numEvent nTran;

017 static BNODE *bInfo;

018 static BTRANS *bTrans;

019 static numBlob k; /* General purpose */
020 static char finished = 0;/* Mark for the end of execution of the run-time */
021

022 /* declarations to legibility */

023 #define _vhDesc(x) ctlMem[(x)] .vhDesc
024 #define _start(x) ctlMem[(x)] .start
025 #define _last(x) ctlMem[(x)] .last
026 #define _blobId(x) ctlMem[(x)] .blobId
027 #define _backId(x) ctlMem[(x)] .backId

028 #define _concurrent(x) (bInfo[(x)].status & _concurr)

029 #define _history(x) (history) (bInfo[(x)].status & _hist)
030 #define _active(x) (bInfo[(x)].status & _activ)

031 #define _activate(x) (bInfo[(x)].status |= _activ)

032 #define _deactivate(x) (bInfo[(x)].status &= ("_activ))
033 #define _ancestor(x) (bInfo[(x)].ancestor)

034 #define _sibling(x) (bInfol[(x)].sibling)

035 #define _primogen(x) (bInfo[(x)].primogen)

036 #define _exit(x) bInfo[(x)].0nExit

037 #define _entry(x) bInfo[(x)].OnEntry
038 #define _state(x) bTrans[(x)].to

039 #define _status(x) bInfo[(x)].status

040 #define _event(x) bTrans[(x)].event

041

042 /* Functions to compare elements of arrays passed to quicksort */
043 int CompBlobs(const void *ell, const void #*el2)

044

045 return (((BNODE*)ell)->state - ((BNODE*)el2)->state);
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046 }

047

048 int CompTrans(const void *ell, const void #*el2)

049 {

050 return (((BTRANS#*)ell)->from - ((BTRANS#*)el?2)->from);
051 }

052

053 /* Get internal identifiers to blobs.

054 The relation between internal and external identifiers is hold in
055 blobId and backId elements of the structure WrkMem

056 */

057 void _intBlobId(numBlob root)

058 {

059 _blobId(root) = ++k;

060 _backId((numBlob)k) = root;

061 if (_primogen(root))

062 _intBlobId(_primogen(root));

063 if (_sibling(root) && !_blobId(_sibling(root)))
064 _intBlobId(_sibling(root));

065 }

066

067 /* Number appropriately each node of the tree (root) starting

068 from a given initial value (idInit).

069 */

070 void intBlobId(numBlob root, numBlob idInit)
o071 {

072 k = (numBlob)(idInit - 1);

073 _intBlobId(root);

074 for (k=1; k<=nBlob; k++) { /* Adjust tables to new values */
075 bInfo[k].state = _blobId(k);

076 _primogen(k) = _blobId(_primogen(k));

077 _sibling(k) = _blobId(_sibling(k));

078 _ancestor(k) = _blobId(_ancestor(k));

079 ¥
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080 for (k=1; k<=nTran; k++) {

081 bTrans[k] .from = _blobId(bTrans[k].from);
082 bTrans[k].to = _blobId(bTrans[k].to);
083 }

084 %}

085

086 numBlob Dutermost(void) /#* Get outermost blob */
087 {

088 k=1; while (k<=nBlob && _ancestor(k)) k++;

089 return (k);

090 %}

091

092 /* Sort transitions by origin state and get the range of relevant
093 transitions to each state.

094 */

095 void handleTransitions(void)

096 {

097 numBlob lastState = O;

098 gsort(bTrans,nTran+l,sizeof (BTRANS) ,CompTrans) ;
099 for (k=1;k<=nTran;k++)

100 if (lastState !'= bTrans[k].from) {

101 _last(lastState) = (numBlob)(k - 1);
102 _start(lastState = bTrans[k].from) = k;
103 }

104 _last(bTrans[k-1] .from) = (numBlob)(k - 1);
105 ¥

106

107 extern void inflate(numBlob,history);
108 int StartStEng(BNODE *blnd,numBlob qtBlobs,BTRANS *trn,numEvent qtTrans)
109 {

110 nTran = qtTrans;

111 nBlob qtBlobs;

112 bInfo

blnd;
113 bTrans = trn;
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114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

ctlMem = (WrkMem*)malloc((nBlob+1)*sizeof (WrkMem)) ;
if (!'ctlMem) return (OUTOFMEMORY);
memset (ct1lMem,0,sizeof (WrkMem)* (nBlob+1)); /* clear */
gsort(bInfo,nBlob+1,sizeof (BNODE) ,CompBlobs);
/* Sort binfo by user’s identifiers of blobs. This is necessary
when changing to new values. A generic entry 1 of the table has de
value 1, then we can set internal id with a simple atribution state
*/
intBlobId(Outermost(),1);
gsort(bInfo,nBlob+1,sizeof (BNODE) ,CompBlobs);
handleTransitions();
inflate(1l,_noHist); /* Activate the outermost blob without history */

return (0); /* returns OK! */

void StopStEng(void) /* Cease the execution of the run-time */

{

if (ctlMem) free((char*)ctlMem);

finished++; /* Inhibit the execution of any further action */

/* Identify leaf of tree whose ancestors are all active.

*/

This leaf is used by the deactivation process.

numBlob activeAtomFrom(numBlob blob)

{

numBlob blobO;
do {
blob = _primogen(blobO = blob);
if (blob)
while (!_active(blob)) blob = _sibling(blob);
} while (blob);
return(blob0);

29
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149
150
151
152
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155
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157
158
159
160
161
162
163
164
165
166
167
168
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/* Due to the node numeration the following property is always true:
if n1 and n2 are two identifiers of nodes in one tree, if we go up in
the tree from the higher number (say n2), the first ancestor whose
id is less or equal to min(nl,n2) represents the '"nearest"

*/

numBlob nearestCommonAncestor(numBlob blobl,numBlob blob2)

{

if (blobl > blob2) {
numBlob blobO = blob2;
blob2 = blobl;
blobl = blobO;
}
do { blob2 = _ancestor(blob2); } while (blob2 > blobl);
return(blob2);

extern void collapse(numBlob);
void deactivate(numBlob prior,numBlob blob)
{
_deactivate(blob);
if (_exit(blob)) (_exit(blob))(_backId(blob),0);
_vhDesc(blob) = prior;
/* deactivate concurrent blobs if exist */

if (_concurrent(blob)) collapse(_sibling(blob));

void deactivatePath(numBlob blobFrom,numBlob blobTo,int inclusive)
{
numBlob prior = 0;
while (blobFrom '= blobTo) {
deactivate(prior,blobFrom);

blobFrom = _ancestor(prior = blobFrom);
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182 if (inclusive) deactivate(prior,blobFrom);
183 ¥

184

185 /# Deactivate concurrent blobs */

186 void collapse(numBlob concurrBlob)

187 {

188 numBlob liveAtom;

189 while (_active(concurrBlob)) {

190 liveAtom = activeAtomFrom(concurrBlob);

191 deactivatePath(liveAtom,concurrBlob,1/*TRUE*/) ;
192 concurrBlob = _sibling(concurrBlob);

193 }

194 ¥

195

196 numBlob stepDown(numBlob blobFrom,history hist)

197 {

198 if (hist == _noHist) return(_primogen(blobFrom));

199 if ((hist == _hHist) || (hist == _starHist))

200 return (numBlob) (_vhDesc(blobFrom)?_vhDesc(blobFrom) :_primogen(blobFrom));

201 return(0);

202 }

203

204 void activate(numBlob blob,history hist,history* histl)
2056 {

206 _activate(blob);

207 if (_entry(blob)) (_entry(blob)) (_backId(blob),1);
208 *histl = _history(blob);

209 if (*histl == _cancelHist) *histl = _noHist;

210 else

211 if ((*histl == _noHist) && (hist == _starHist))
212 *histl = _starHist;

213}

214

215 void inflate(numBlob blobFrom,history hist)
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history histl = hist;
numBlob blob = blobFrom;

if (!_active(blobFrom)) { /* FALSE - all concurrent siblings activated */

do {
blobFrom = blob;
hist = histi;
activate(blobFrom,hist ,&hist1);
blob = stepDown(blobFrom,histl);
if (_concurrent(blobFrom)) {
inflate(blob,hist1);
inflate(_sibling(blobFrom) ,hist);
blob = 0;
¥
} while (blob);

if (active < blobFrom) active = blobFrom;

void activPath(numBlob blobFrom,numBlob blobTo,history hist)
{
history histil;
numBlob blob;
while (blobFrom <= blobTo) {
activate(blobFrom,hist,&histl);
if (blobFrom == blobTo) {
blob = stepDown(blobFrom++,histl);
if (blob)
inflate(blob,hist1);
else
if (active < blobTo)
active = blobTo;
}
else {
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250 blob = _vhDesc(blobFrom);

251 if (_concurrent(blobFrom)) {

252 activPath(blob,blobTo,hist1);
253 inflate(_sibling(blobFrom) ,hist);
254 blobFrom = (numBlob) (blobTo+1);
255 }

256 else {

257 blobFrom = blob;

258 hist = histi;

259 }

260 }

261 } /* while */

262 }

263

264 void activatePath(numBlob blobFrom,numBlob blobTo)
265 {

266 history hist;

267 numBlob blobO,blob = blobFrom;

268 do { /* sensing history enforcement */
269 hist = _history(blob);

270 blob = _ancestor(blob);

271 } while (blob && (hist == _noHist));

272 if ((hist == _cancelHlist) || (!blob))

273 hist = _noHist;

274 blob = blobTo; /* tracing the activation Path */
275 do {

276 blobO = blob;

277 _vhDesc(blob = _ancestor(blob)) = blobO;

278 } while (blob > blobFrom);

279 activPath(_vhDesc(blobFrom),blobTo,hist);

282 void fromBlobToBlob(numBlob origin,numBlob destination,ptrFunc act)
283 {

33
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284
285
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315
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numBlob liveAtom,commonAncestor;
liveAtom = activeAtomFrom(origin);
commonAncestor = nearestCommonAncestor(origin,destination);
deactivatePath(liveAtom,commonAncestor,0/*FALSE*/) ;
if (act) (*act)(_backId(origin),_backId(destination));/* trigger action */
if (commonAncestor == destination) {
destination = stepDown(destination,_history(destination));
inflate(destination,_history(destination));
¥

else activatePath(commonAncestor,destination);

t _gtact(numBlob root)

bInfo[root].status |= _visited;

if (_active(root))
if (root == k) return (1); /* k = blob desired. */

if (_primogen(root)) /*See function below */
if (_gtact(_primogen(root))) return (1);

if (_sibling(root) && !(_status(_sibling(root)) & _visited))
if (_gtact(_sibling(root))) return (1);

return (0);

int in_Blob(numBlob blob)

{

for (k=1; k<=nBlob; ++k) bInfol[k].status &= ~“_visited;
k = _blobId(blob); /* k is used in next call!! */

return (_gtact(1));

numBlob nextActive(numBlob blob)

{

do { if(++blob>nBlob) return(0); } while (!_active(blob));
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return(blob);

void _steng(numEvent event)

{
unsigned int count,begin,end,dif;
if (tevent) {

deactivatePath(activeAtomFrom(1),1,1);

free((char*)ctlllem);
return;
¥
active = 1;
do {
begin = _start(active); end = _last(active);
dif = end - begin; dif++; count = O;

while (count < dif) /* There are events from this state*/
{ /*pass every event of this state  */
if (event == _event(begin+count))
if (bTrans[begin+count].cond) {
if ((bTrans[begin+count].cond)()) {
fromBlobToBlob(active,_state(begintcount),
bTrans[begin+tcount].action);

return; /* outermost transition fired */

¥
else {
fromBlobToBlob(active,_state(begintcount),
bTrans[begin+tcount].action);
return;
¥
count++; /* get next event */
¥
active = nextActive(active);

} while (active > 0);

35
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352 }

353

354 int stEng(numEvent event) /* Return O if event handled appropriately */
355 {

356 static int called = O;

357 ++called;

358 if (called > 1) { /*Avoid recursive call*/

359 called--;
360 return (RECURSIONNOTALLOWED);
361 }

362 if (finished) return (FINISHED);
363 _steng(event);

364 if (levent) finished++;

365 return (--called);

366 )

8.3 st.h — blobs and events id definition

001 /* st.h --- Header for tables that specify an statechart */
002

003 #ifndef STH
004 #define STH
005

006 #define Timer /* Rule for the user to define external */
007 #define Alive /* numerical blob id. Each id must be */
008 #define InSec /* in the range 1..n, where n represents */
009 #define Dead /* the total number of blobs of the */
010 #define Stopwatch /* statechart */
011 #define Reset

012 #define Operation

013 #define Display

W 0 N Wy

014 #define Normal
015 #define On

-
o

016 #define Off

[ure
[N
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017
018
019
020
021
022
023
024
025
026
027
028
029

8.4

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

#define Exit O /* The values associated to events are irrelevant to */

#define el 1 /* the run-time algorithm.
#define e2 2
#define e3 3
#define e4 4
#define eb 5

extern BTRANS bTrans[];/* transitions

*/

*/

extern BNODE bInfo[]; /# topology. The programmer must pass these */

/* tables through call to StartStEng */
#endif
st.c — specification tables
/* st.c —-—- Statechart specification tables */

#include "engine.h"

#include '"st.h"

int cond(void);

/* Sole function (for simplicity) called whenever */
/* entry or exit a state */
extern void Show(int,int);

extern void trans(int,int);

BTRANS bTrans[] =

{/* state, event,state, condition, action functions */

{o, o, O, 0, 0 ¥,
{ Stopwatch, e5, Dead, 0, 0 T,
{ Reset, e2, Operation, 0, 0 T,

{ Reset, ed, Reset, 0, trans },
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019 { Operation, e4, Reset, 0, 0 T,

020 { Normal, e3, InSec, 0, 0 T,

021 { InSec, e3, Normal, 0, 0 T,

022  { Off, e2, On, 0, 0 ¥,

023  { On, e2, Off, 0, 0 ¥,

024 { Alive, ed, Dead, cond, O T,

025 { Dead, el, Stopwatch, 0, 0 T,

026 { Dead, e2, Operation, 0, 0 ¥

027 };

028

029 BNODE bInfo[l = {

030 /*state, primogen, sibling,ancestor, status, entry,exit */
031 {o, 0, 0, 0, 0, 0, 0 3,
032 { Dead, 0, Alive, Stopwatch,_noHist, Show,Show},
033 { Stopwatch, Alive, Stopwatch, O, _noHist, Show,Show},
034 { Alive, Reset, Dead, Stopwatch,_starHist,Show,Show},
035 { Reset, 0, Operation, Alive, _noHist, Show,Show},
036 { Operation, Timer, Reset, Alive, _noHist, Show,Show},
037 { Timer, On, Display, Operation,_concurr, Show,Show},
038 { Display, Normal,Timer, Operation,_concurr, Show,Show},
039 { On, 0, 0ff, Timer, _noHist, Show,Show},
040 { Normal, 0, InSec, Display, _noHist, Show,Show},
041 { Off, 0, On, Timer, _noHist, Show,Show},
042 { InSec, 0, Normal, Display, _noHist, Show,Show}
043 };

8.5 stopwatc.c — code of Windows program example

001 /* stopwatc.c —-- Program Example of Statechart + Windows */
002

003 #include <windows.h>

004 #include "engine.h"

005 #include <string.h>

006 #include "st.h"
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007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

LRESULT FAR PASCAL WinProc (HWND ,UINT ,WPARAM,LPARAM);

static HWND mHwnd;

RECT retang;

int cxCarac,cyCarac;

int cond(void) {

return in_Blob(0ff); /* labelled e4 from Reset to Reset.

void trans(int state, int inOut) {

/* call presentation code */

ShowBehaviour(mHwnd,"Transiton from Reset to Reset'");

extern void ShowBehaviour (HWND,LPSTR);

void Show(int state,int inOut)

{

char sChar[80];

static LPSTR names[] = { "Timer","Alive","InSec","Dead",
"Stopwatc','Reset","Operation","Display",'"Normal",'"On","0ff"

};

static LPSTR op[] = { "OnExit ", "OnEntry" };

wsprintf ((LPSTR)sChar,"%s %s'",op[inOut] ,names[state-1]);

ShowBehaviour(mHwnd,sChar) ;

void ShowBehaviour (HWND hWnd, LPSTR str)

{

char szBuffer[80];

HDC hdc;
ScrollWindow(hWnd,0,-cyCarac,&retang,&retang);
hdc = GetDC(hWnd) ;

TextOut (hdc,cxCarac,retang.bottom-cyCarac,szBuffer,

39

/* Condition function that guards the transition */

*/
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041 wsprintf ((LPSTR)szBuffer,"%-60s",(LPSTR)str));
042 ReleaseDC(hWnd,hdc);

043 ValidateRect (hWind ,NULL) ;

044 }

045

046 int PASCAL WinMain(HINSTANCE hInst,HINSTANCE hprvInst,
047 LPSTR lpszLinhaCmd,int nCmdMostrar)

048 {

049 char szllomeAplic[] = "Stopwatch";

050 MSG msg;

051 1pszLinhaCmd = NULL;

052 if (‘hprvInst) {

053 WIDCLASS wC;

054 wC.style = CS_HREDRAW | CS_VREDRAW;

055 wC.lpfnWindProc = WinProc;

056 wC.cbClsExtra = 0;

057 wC.cbWindExtra = 0;

058 wC.hInstance = hlnst;

059 wC.hIcon = LoadIcon(NULL,IDI_APPLICATION);
060 wC.hCursor = LoadCursor (NULL,IDC_ARROW) ;

061 wC.hbrBackground = (HBRUSH)GetStockObject (WHITE_BRUSH) ;
062 uC.lpszMenullame = NULL;

063 wC.lpszClasslName = szNomelplic;

064 RegisterClass(&wC);

065 }

066 mHwnd = CreateWindow(szNomeAplic,"StopWatch Example",

067 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT,CW_USEDEFAULT,

068 CW_USEDEFAULT,CW_USEDEFAULT ,NULL ,NULL ,hInst ,NULL) ;

069 ShowWindow(mHwnd ,nCmdMostrar) ;

070 UpdateWindow (mHwnd) ;

071

072 StartStEng(bInfo,14,bTrans,14); /* Put the statechart engine in motion */
073 while (GetMessage(&msg,NULL,0,0)) {

074 Translatelessage (&msg) ;
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075
076
o077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108

DispatchMessage (&msg) ;
}
StopStEng(); /* Stop the statechart engine */

return msg.wParam;

LRESULT FAR PASCAL WinProc (HWHD hWnd,UINT mensagem,
WPARAM wParam,LPARAM 1Param)

char szBuffer[80];
HDC hdc;
PAINTSTRUCT ps;
TEXTMETRIC tm;

LPCSTR cab = "Transitions Events";

switch (mensagem)
{
case WM_CREATE:

hdc = GetDC(hWnd) ;
GetTextMetrics(hdc,&tm);
cxCarac = tm.tmAveCharWidth;
cyCarac = tm.tmHeight;
ReleaseDC(hWnd ,hdc);
retang.top = 2*cyCarac;

return O;

case WM_SIZE:

retang.right LOWORD(1Param) ;
retang.bottom = HIWORD(1Param) ;

return O;

case WM_PAINT:
hdc = BeginPaint (hWnd,&ps);

TextOut (hdc,cxCarac,cyCarac/2,cab,lstrlen(cab));
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109 EndPaint (hWnd,&ps) ;

110 return O;

111

112 case WHM_CHAR:

113 wParam -= ’0’; /* get logic events */
114 wsprintf(szBuffer,"%35d" ,wParam) ;

115 ShowBehaviour (hWnd,szBuffer);

116 if (stEng((numEvent)wParam)==FINISHED)
117 DestroyWindow(hWnd) ;

118 return O;

119

120 case WM_DESTROY: PostQuitMessage(0);

121 return O;

122 }

123 return DefWindowProc(hWnd,mensagem,wParam,lParam);
124 ¥

8.6 Definition file for Windows

001 NAME Stopwatch
002 DESCRIPTION ’Example Stopwatch’

003 EXETYPE WINDOWS

004 STUB ’winstub.exe’

005 CODE PRELOAD MOVEABLE DISCARDABLE
006 DATA PRELOAD MOVEABLE MULTIPLE

007 HEAPSIZE 1024
008 STACKSIZE 8192

8.7 Makefile

001 #dos.mak -- Makefile of the Stopwatch example for DOS (MS C/C++)
002

003 COMP = /c /W4 /WX /0d

004

005 .c.obj:
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006
007

cl $(COMP) /Tp$*.c

008 stopwatc.exe: engine.obj st.obj stopwatc.obj

009 link /co $**,stopwatc.exe;

010

011 engine.obj: engine.c engine.h

012 st.obj: st.c st.h engine.h

013 stopwatc.obj: stopwatc.c engine.h
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