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Programming Dialogue Control of UserInterfaces Using StatechartsF�abio Nogueira de Lucena (fabio@dcc.unicamp.br)Hans Liesenberg (hans@dcc.unicamp.br)AbstractThis paper presents a technique to implement control of com-plex user interface dialogues. It is based on event-driven control
ow speci�cations described by a deterministic statechart dialect.With the aid of this technique the dialogue control is expressedin terms of a statechart. This statechart is then converted intotables handled by a run-time commented in greater detail. Theexecution of the run-time driven by those tables is equivalent tothe behaviour speci�ed by the underlying statechart. The resultingsystem calls speci�c application functions in response to user in-teractions mapped to events by the presentation component. Theapplication is seen as a set of subroutines which can be invokedduring the interaction with the user. The use of the proposedtechnique frees the programmer from the implementation of com-plex control aspects. The way of how to construct these statechartdependent tables, their use by the run-time, and the way semanticactions are attached are illustrated by a small example of a reativesystem which highlights mainly dialogue control aspects.1 IntroductionThe behaviour of interactive programs is often event-driven and cannotbe conveniently described in terms of a function which maps input intooutput data. The behaviour is better captured by an internal state which1
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Figure 1: Seeheim model [Gre85].is a�ected by asynchronous events.1 Interactive programs have to �reappropriate actions according to generated events. Under some circum-stances there might be many event sources and no speci�c sequence ofevent occurrences may be assumed. A same event may a�ect the stateof a program in distinct ways or even have no e�ect at all depending onthe context in which it is eventually handled. From this perspective, thespeci�cation of programs of this kind is di�cult and the implementationis error-prone. Highly interactive systems based on a direct manipula-tion interaction style associated with multi-thread dialogues are a goodexample of hardly tractable speci�cation problems.2Di�erent models and notations have been used to describe the inter-action between an user and a computer [Mye89]. State transition dia-grams and one of their extensions, namely statecharts, shall be discussednext.The proposal of this paper is based on the Seeheim's logical userinterface model depicted in Figure 1. The Seeheim model divides auser interface into three layers. The presentation layer is responsible forthe external presentation of the user interface. This layer de�nes how1Events are commonly generated by user actions upon input devices like a mouseor a keyboard.2Despite of the apparent chaotic picture, this style of interaction is highly modal[Jac86] and suitable to be described by means of state diagrams.



Programming Dialogue Control of User Interfaces Using Statecharts 3an interactive system appears and is felt by the end user. It performslow-level input/output processing (lexical aspects). The dialogue controllayer receives tokens from surrouding layers and determines how the con-versation evolves based on those tokens. This layer de�nes as well whichsequences of such tokens are to be considered or not (syntactic aspects).The dialogue layer has to keep the current state of the user interface andhas to have control over this state since the dialogue evolution dependson it. It accepts inputs from the lexical layer and assembles them intocommands and data on the one hand, and receives tokens from appli-cation requiring data and supplying responses to user requests on theother hand. The last layer represents the functionality (semantics) of aninteractive application.In this paper we propose a technique to derive a control structureunderlying a dialogue layer which is described in terms of a statechart.State transition diagrams are very often used to represent this compo-nent. These diagrams are commented in more detail later on and theirdrawbacks in relation to statecharts are pointed out. These shortcomingslet the application of statecharts become very interesting in this context.The technique consists of an invariant control run-time which imple-ments the behaviour of a statechart dialect described in Section 4 andof the transformation of statecharts speci�cations into comprehensibleinformation to the run-time described in Section 5. The implementationof the run-time is discussed in more detail and its code supplied in orderto enable readers to implement their own applications. In Section 3 alittle more is said about dialogue speci�cation. In the following section asmall illustrative example is presented informally. This example is usedthroughout this paper.2 The Stopwatch ExampleFigure 2 shows the statechart speci�cation of a hypothetical stopwatch.The statechart Stopwatch corresponds to the operation of this toy stop-watch example whose display is either switched on (Alive) or o� (Dead).Alive is the default substate of Stopwatch indicated by a special arrow,



4 F�abio Lucena & Hans Liesenbergi.e, whenever Stopwatch is activated Alive becomes activated as well.The default substate of Alive is the state Reset. When this state isreached the stopwatch counter value becomes zero and the display blinksfor three seconds, for instance. The semantic actions related to statesand transitions are particular of the application being modelled. If theevent e4 takes place, then the state is left and revisited and the samerelated semantic actions are performed once more. If the event e2 occurswhile Reset is active, a transition to the state Operation is �red.The activation of the state Operation implies the activation of bothTimer andDisplay, since they represent a concurrent decomposition ofOperation. IfOperation is activated for the �rst time, then the defaultsubstates of Timer andDisplay become activated. On the contrary themost recently substates are reactivated because of the in-depth historyattribute of the state Alive.If the state On becomes activated the timer starts to tick away fromthe current value of the stopwatch counter. This process is interruptedif event e2 takes place and �res the transition from On to O�. A sub-sequent occurrence of e2 causes the return to state On.The substates of Display represent the presentation mode of thestopwatch counter. If Normal is active, the value of the stopwatchcounter is displayed in terms of minutes and seconds. If, on the otherhand, InSec is active the display shows the time interval represented bythe stopwatch counter solely in seconds. In two cases the Alive and allof its active substates are deactivated and Dead becomes active: if evente5 occurs independently of the con�guration of the substates of Alive orif the state O� is active and the event e4 occurs. In former case, if Onis active just before the event �ring takes place, then the counter keepsticking away and the counter cannot be stopped while the state Deadis active.The state Dead is left under four circumstances: if either the evente1, e2, e5 or the event Exit occurs. In the �rst case Alive is activatedsince it represents the default substate of Stopwatch. In the second caseit becomes active because it is the ancestor of the destination state of the�red transition. In the third case Dead is deactivated and reactivated
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Figure 2: A simple example



6 F�abio Lucena & Hans Liesenbergand in the last case the animation of Stopwatch ceases. WheneverAlive or Operation is revisited the activation of their substates com-plies the history enforcements. The Stopwatch ceases all its activities,in whatever con�guration it might be, if the event Exit takes place. Inthis case a controlled deactivation is performed and the system comes toa halt.3 Dialogue Speci�cationTwo alternatives of how to specify and to structure a dialogue shallnow be presented. The �rst one is based on conventional state transitiondiagrams. These diagrams are widely used [Was85, Jac86, HH89] despiteof their drawbacks pointed out in [Har87]. The second one is based on thestatechart notation where the control process is more sophisticated, butit avoids some problems of the former. Both speci�cation alternatives aregraphical. This feature represents an advantage over textual descriptionsemployed by other speci�cation languages. Further information abouttechniques employed to describe dialogues can be found in [Mye89]. thetransition network model class according to [Gre86]. event model is usedin textual languages like ALGAE [FB87]3.1 State Transition DiagramsOne way of representing an event-driven control process is based onstate transition diagrams. Speci�cally in the context of MS-Windowsprogramming, Bertrand and Welch [BW91] have adopted a similar ap-proach referred to as state tables.This kind of diagrams consists of nodes, which represent particularstates of a system, and of directed labelled edges between pairs of nodeswhich indicate transitions between states �red by the occurrence of anevent enrolled in the corresponding transition label. During the execu-tion of a state transition diagram, one particular state is considered tobe the current state (at the beginning of an activation process the initialstate becomes the current state) and, at each new event occurrence, the



Programming Dialogue Control of User Interfaces Using Statecharts 7labels of its outgoing transition edges are swept across in an attemptto identify a transition sensible to the current event. If such an edge isidenti�ed, then the corresponding transition is �red. The simplicity ofthe control process is however outweighed by a number of well knowndisadvantages. These can be inherent [Har87] or speci�c to dialoguecontrol speci�cations [BC91, Mye89].The framework of state transition diagrams is essentially \
at." Thelack of means to incrementally de�ne contexts hampers a better structur-ing of a system speci�cation, i.e., no hierarchical framework is provided.These 
at diagrams present another nasty feature. If a new diagram isto be composed of two already existing diagrams, then the states of thenew diagram are represented by the cartesian product of the state sets ofthe two underlying state transition diagrams.3 This explosive nature canbe a great handicap when non-trivial systems have to be speci�ed sincethose diagrams become very complex and their comprehension di�cult.Multi-thread dialogue interfaces belong to this class of systems. Anotherdisadvantage is the lack to explicitly represent concurrency since exactlyone state represents the current state of the system. Concurrency hasto be hidden and cannot be shown explicitly by the event-driven control
ow represented by a state transition diagram.Some of the speci�c shortcomings of state transition diagrams todescribe dialogue control aspects are as well present in statecharts (e.g.,all states must have explicit transitions for all possible erroneous inputand commands, if they are to be handled properly). A more heavy useof statecharts in the human-computer interface context, however, is notwell documented in the academic literature.3.2 StatechartsHarel [Har87] extended state transition diagrams eliminating some short-comings and named them statecharts. The statechart notation producesmore concise speci�cations. It is also richer in terms of expressiveness3Thus, if one diagram has m and the other n states the resulting diagram is com-posed of m� n states!



8 F�abio Lucena & Hans Liesenbergand supports incremental context de�nitions related to hierarchical de-compositions, control 
ow based on history and explicit concurrencyspeci�cations. The brief description below is not meant to be a tutorial.Statecharts have been proposed originally as a speci�cation formalismfor hardware devices [DH89]. At a later stage the notation has been usedto specify software systems [HLN+90] or even user interfaces [Wel89,vZM91]. A subset of the statechart notation and not necessarily thesame terminology proposed by Harel has been adopted in this paper.Statecharts are described in terms of nested contexts representedgraphically by non-overlapping rectangles with rounded corners calledblobs or states. The nesting re
ects successive decompositions. Blobscan be of two kinds: mutually exclusive and concurrent blobs. The for-mer is indicated by a solid and the latter by a dashed contour.4 Figure2 depicts one example. If a context is decomposed in terms of mutuallyexclusive blobs (as state Stopwatch in Figure 2), one of those (Dead, orAlive in the particular case) must be active at a given instance whenevertheir direct ancestor is active. On the other hand, if a context is decom-posed into concurrent blobs, whenever this context becomes active, allof its concurrent blobs become active as well. For example, wheneverthe state Operation is active, all of its direct descendants (Timer andDisplay) are active too.If a given blob is decomposed into mutually exclusive blobs, thenone of the subordinated blobs has to be declared as its default descen-dant which is indicated by a special transition edge. It is the case ofthe substate Alive of the state Stopwatch in Figure 2. This defaultstate becomes active whenever its direct ancestor (Stopwatch) becomesactive and if the activation of no other of its siblings is being enforcedby the activation process due to a history condition. The set of activestates of a statechart in a stable situation (i.e., at an instance where notransition takes place) is referred to as its con�guration.A transition is represented by a directed edge between two mutuallyexclusive blobs and, if �red, causes a context swapping. A transition4The use of dashed contours to depict concurrent blobs does not exist in purestatecharts. It makes the blob identi�cation labelling homogeneous.



Programming Dialogue Control of User Interfaces Using Statecharts 9edge is labelled with an event identi�er and is possibly associated with aguarding condition. A transition is �red whenever the origin blob of thecorresponding edge is active, the event referred by its label has occurredand its guarding condition (if it exists) is satis�ed. For example, thelabel e4[in blob(O�)] of the transition from Alive to Dead (Figure 2)will enable this transition whenever the state Alive is active, the evente4 occurs, and if at this instant the guarding condition is (is state O�active?) is true.It is necessary to provide mechanisms other than only control in orderto make statecharts useful. We do not only expect from a statechart theparsing of valid event sequences. It is necessary to have a mechanismto produce some output. This mechanism is implemented in terms offunction calls in the current proposal. Functions are attached to statesand/or transition edges of a statechart. These functions are invokedeach time a particular state is entered (activated), left (deactivated) ora speci�c edge is traversed.A function associated to a transition is called after the deactivation ofthe origin blob and before the activation of destination blob. Each blobmight as well be associated with two functions: one is executed wheneverthe state is activated and another when it is deactivated. These outputsare analogous with the outputs of Mealy and Moore machines of the �niteautomata theory. In Moore machines, however, output is produced onlywhen one state is reached. A statechart output may also be producedupon leaving a state.4 Run-time ImplementationThis section presents more detailed information about a particular im-plementation of the complex statechart semantics and often refers tocode of the listings at the end of this paper. A reference to speci�clines of code is made as follows: [<�le identi�er>, <�rst line of relevantcode>-<last line of relevant code>,...].The transformation of the control underlying a statechart speci�ca-tion into an executable code can be eased if the control structure of the



10 F�abio Lucena & Hans Liesenbergresulting program is kept as close as possible to the control process whichdescribes the behaviour of a statechart. This control structure is referredto as the statechart run-time control (or the run-time for short) or evenas the statechart engine. The run-time has been implemented in ANSIC. The run-time represents the invariant code of a system developedaccording to the proposed technique. It performs, in essence, event sen-sitivity checks and controls the state activation and deactivation process.In order to get down to details about its implementation, a data struc-ture holding information about a particular statechart topology and itstransition lattice shall be described next. The information held by thesedata structures must be supplied and must re
ect the topology and theattributes of the system's statechart speci�cation.Tables are not the best way to hand over information to the run-time,because their construction process is error-prone. The run-time does notperform any automatic checking. The construction of those tables isbetter done by a compiler of statechart speci�cations into the requireddata structures. An proper environment of this kind is described in[FL93]. The way of how to construct the two tables manually accordingto a given statechart shall now be described.It is important to point out that the code presented here implementsonly a subset of the statechart semantics originally de�ned by Harel.This subset is illustrated by means of an example given in Section 2.Anything else not mentioned has not been contemplated. The code ofthe run-time is listed as the contents of the �les engine.h (Section 8.1)and engine.c (Section 8.2).The data related to a statechart topology is kept in a tree structurewhich re
ects the hierarchy de�ned by its topology. The correspondencebetween blobs and nodes of the tree is an one-to-one relation. Figure 3shows one tree which is equivalent to the hierarchical structure of thestatechart described in Figure 2. This tree is a binary tree by chance.No restriction is imposed on the arity of nodes of this kind of trees.Nodes are identi�ed internally by values in the range of 1 to n, wheren represents the total number of blobs a particular statechart is com-
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10Figure 3: Internal numerical identi�ers determined by StartStEng()posed of. The internal blob identi�cation corresponds to the node enu-meration of the related tree in an inorder traversal. These values indexan array whose elements keep information related to the correspondingblobs and relevant to the tree traversals demanded by the context swap-ping procedure due to transition �rings. The designer is not obliged torelate blob identi�ers to numerical values in accordance to the enumera-tion rule of internal identi�ers. The numerical identi�ers de�ned by thedesigner (\external" identi�ers) are converted automatically into \inter-nal" identi�ers which adhere to the required ordering relation [engine.c,007-011, 042-090, 117-123]. A closer look at the data structure holdingstatechart-dependent information shall be given next.4.1 Data Structure for Statechart TopologiesThe de�nition of an element of the array which describes the topologyof a statechart speci�cation is given in Figure 4. The content of thisFigure is a transcription of [engine.h, 043-050]. It stores the followinginformation for each state: its identi�er (state), a reference to its defaultdirect descendant (primogen), a reference to its next sibling (sibling {the sibling list is circular), a reference to its direct ancestor (ancestor),



12 F�abio Lucena & Hans Liesenbergtypedef struct {numBlob state, /* Numerical Id of the blob given by the designer */primogen, /* Direct descendant */sibling, /* Next sibling in a circular list of siblings */ancestor; /* Direct ancestor */bStatus status; /* Concurrent/exclusive blob, history, etc. */ptrFunc OnEntry, OnExit; /* Executed whenever a state is entered or left */} BNODE;Figure 4: Data structure to hold information about a blobstatus information (status) and two pointers to functions to be calledwhenever the corresponding blob is entered (OnEntry) or left (OnExit)respectively, i.e., whenever it is activated or deactivated. A similar �eld(action) exists in BTRANS (Figure 5) which speci�es a function to becalled whenever the corresponding transition is �red.The status information consists of a sequence of bits which indicatesthe existence or not of a shallow history condition de�ned at the corre-sponding blob, an in-depth history, a history condition cancellation, andtells if the blob in question is a concurrent or a mutually exclusive blob.Their values correspond to those de�ned at [engine.h, 012-024].4.2 Data Structure for TransitionsThe array of type BTRANS holds information about the sensitivity of blobsto speci�c events (see Figure 5, which corresponds to [engine.h, 035-041]). One element of this array keeps for each transition the identi�ersof the origin (from) and the destination blob (to), one pointer to afunction which returns a boolean value indicating if the transition cantake place (cond) and to a function which represents a semantic action(action).One element of this type asserts that if state from is active and eventoccurs, then the function cond is called and its result tested. If it is true,



Programming Dialogue Control of User Interfaces Using Statecharts 13typedef struct {numBlob from; /* Origin blob */numEvent event; /* Event wich triggers the transition */numBlob to; /* Destination blob */int (*cond)(void); /* Condition that guards the transition */ptrFunc action; /* Action executed whenever the transition takes place */} BTRANS;Figure 5: Data structure to hold information about a transitionthe transition to state to takes place. After the deactivation process dueto the transition in progress has been concluded and just before thestart of the subsequent activation process, the function action is called[engine.c, 283-295].Events are as well associated to numerical values, but their enumera-tion is not critical since it does not a�ect the operation of the run-time.4.3 Run-time InterfaceA statechart represented by the data structures described above canbe exercised by means of four functions. Two of them initialize anddeactivate the run-time:� int StartStEng(BNODE*,numBlob,BTRANS*,numEvent)This function [engine.c, 108-127] receives the tables describedabove as well as their particular dimensions.� void StopStEng()It [engine.c, 129-133] informs the run-time that its executionshould cease.The remaining functions are:� int stEng(numEvent)It [engine.c, 354-366] signals an event occurrence.



14 F�abio Lucena & Hans Liesenberg� int in Blob(numBlob)It [engine.c, 308-313] veri�es if a given blob is active or not. It isusually invoked by transition guards.4.4 Run-time ExecutionStartStEng() [engine.c, 108-127] receives the address and the dimen-sions of the tables which describe the topology and transitions of a par-ticular statechart speci�cation and are used by the run-time in order tomake it behave according to this speci�cation. This framework makesit possible to change the behaviour without the need to recompile anycode. Internal blob identi�ers are generated and the tables are updatedaccordingly. In order to improve the look-up of the transition table, thistable is sorted in increasing order of the internal origin blob identi�er[engine.c, 095-105].The array structure enables random access to the information relatedto a speci�c blob. The way how blobs are identi�ed internally turn thesearch for a nearest common ancestor very simple. The ancestor links arefollowed from the destination or the origin blob, whichever is representedby the greatest internal identi�er, until a blob is reached with an internalidenti�er less than or equal to the identi�er of the other blob of the pairof blobs passed as parameters [engine.c, 149-163].The control structure, which guides context swappings, is indepen-dent of the topology of a speci�c statechart and is referred to as thestatechart run-time control, or simply the run-time, as stated before.The main function (stEng(event) [engine.c, 354-366]) describing thefunctionality of the run-time receives as its argument an event identi-�er. This function traverses the list that holds the identi�ers of activeblobs (this list is referred to as the con�guration or as the global stateof a statechart and is kept by the status �eld of the elements of thebInfo[] array) and veri�es the sensitivity of those blobs to the currentevent.A context swapping due to a transition �ring is carried out in twosteps. At �rst all blobs from the atomic blob reachable from the origin



Programming Dialogue Control of User Interfaces Using Statecharts 15blob, up to the nearest common ancestor of the origin and the destinationblob (excluding the latter), have to be deactivated as well as all concur-rent siblings and their descendants along this path. Next the blobs ofthe path between the destination blob and the nearest common ancestormentioned above (excluding the latter) are activated in reverse order.From this point the activation process is kept up until an atomic blobis eventually reached. All concurrent siblings of activated blobs at thissecond stage of the context swapping process are activated as well.The transition �ring function (fromBlobToBlob() [engine.c, 282-294]) identi�es an active atomic blob reachable from the origin blob(activeAtomFrom() [engine.c, 138-147]), it �nds out the nearest com-mon ancestor (nearestCommonAncestor() [engine.c, 149-163]) of theorigin and the destination blob, it deactivates all blobs along the pathfrom the active atomic blob found previously up to the nearest com-mon ancestor (excluding the latter) as well as all concurrent componentsalong this path [engine.c, 166-195]. It then calls the function represent-ing the semantic action related to the transition (if speci�ed), and startsthe activation process (activatePath() [engine.c, 264-280]).The �rst step of the activation process consists of a search of pos-sible history enforcements at the nearest common ancestor and levelsabove and a demarcation of the path from the destination blob up tothe nearest common ancestor (vhDesc of the WrkMemory is used for thispurpose). This path is then followed from the nearest common ancestordown to the destination blob and all blobs along this path (except for theformer) are activated. Concurrent siblings are activated according to thehistory mode being enforced. Once the destination blob is reached, theactivation process is sustained, but now complying with history enforce-ments, until an atomic blob is eventually reached. Concurrent siblingsare activated in the same manner at this second stage of the activationprocess.Since no activation path is predetermined for the second part of theactivation process or for concurrent siblings come across along this pro-cess, the activation in those cases is performed according to one of thefollowing manners: if a history condition is being enforced, then the most



16 F�abio Lucena & Hans Liesenbergrecently visited blob is reactivated; if no such blob exists or no historycondition is being enforced, then the default direct descendant is acti-vated. A history condition can be an in-depth (the history conditionapplies to all lower level contexts of the context where it has been de-�ned unless overridden or cancelled at lower levels) or a shallow history(the history condition applies only to the next lower level context). Atthe start of the statechart engine, the non-predetermined-path activationprocess is applied to the outermost blob.As a result of the deactivation process, the deactivated blobs areremoved from the current con�guration and, in consequence of the sub-sequent activation process, the just activated blobs are added at a secondstage. In other words, the activated subtree of the nearest common an-cestor is replaced by a new one.The active variable is used by the function steng() [engine.c,321-352] to determine the next blob of the original con�guration to besubmitted to a sensitivity test. Once all blobs of a con�guration havebeen swept across, the function in question can be called again to handlea new event, but now in the context of the resultant con�guration fromthe handling of the prior event.Since the order for the sensitivity tests is determined by the in-creasing order of the internal blob identi�ers computed by the functionStartStEng() [engine.c, 108-127], the �ring of transitions is performedin a deterministic way. Thus, alternative orderings may produce distinctbehaviours. It is important to point out that if a given event is foundon the event list of two transitions which have as their origin a direct orindirect ancestor and its descendant respectively, then the event has noe�ect on the latter since the descendant becomes deactivated during the�ring of the transition which has its origin at the former.As already indicated above the algorithm to �nd the nearest commonancestor is as well heavily dependent on the correct enumeration of blobs.The concept of the nearest common ancestor is degenerated in two cases:if the destination blob is a direct or indirect descendant of the origin blob(e.g., the transition labelled e5 in Figure 2) and the second by the re-verse (e.g., the transition labelled e1 from state Dead to Stopwatch).



Programming Dialogue Control of User Interfaces Using Statecharts 17If however the origin and the destination blob of a transition edge hap-pen to be the same, then the direct ancestor is taken as their nearestcommon ancestor. This means that the blob in question is activated andimmediately afterwards reactivated. This is the case of the transitionlabelled e4 at Reset. The degenerated cases cause the exclusion of theindirect nearest common ancestor of the deactivation/activation process,i.e., it is kept active all along.5 Implementing the Stopwatch BehaviourThis section describes the implementation of a small statechart speci�-cation with a deterministic behaviour presented in Section 2. The imple-mentation is carried out in the Microsoft Windows environment, but thisis not the sole environment which could have been used as the develop-ment platform. The main purpose is to show how a complex behaviourcan be speci�ed and implemented and not to show how realistic thisexample can be. It is better taken as a template of the development ofcomplex behaviour, particularly of event-driven interactive applications.The next two subsections de�ne respectively how transitions and thetopology of the given statechart speci�cation (Figure 2) are representedin the tables required by the run-time. The simple example shown beforeis used for this purpose. The relevant information can be found in twosmall �les: st.c (Section 8.4) and st.h (Section 8.3).5.1 Specifying TransitionsTransitions are labelled and usually establish a relation between twoblobs, with exception of default transitions. The label of a transitioncarries an event which might �re the transition and possibly a guardingcondition and/or a reference to a function representing a semantic actionto be carried out during the transition as described earlier on. The typeBTRANS in [engine.h, 035-041] describes the relevant information.The enumeration of events [st.h, 018-023] is irrelevant to the im-plemented algorithm of the run-time. An abstract event used within a



18 F�abio Lucena & Hans LiesenbergBTRANS bTrans[] ={/* state, event,state, condition, action functions */{ 0, 0, 0, 0, 0 },{ Stopwatch, e5, Dead, 0, 0 },{ Reset, e2, Operation, 0, 0 },{ Reset, e4, Reset, 0, trans },{ Operation, e4, Reset, 0, 0 },{ Normal, e3, InSec, 0, 0 },{ InSec, e3, Normal, 0, 0 },{ Off, e2, On, 0, 0 },{ On, e2, Off, 0, 0 },{ Alive, e4, Dead, cond, 0 },{ Dead, e1, Stopwatch, 0, 0 },{ Dead, e2, Operation, 0, 0 }}; Figure 6: Transition description of the statechart in Figure 2statechart might correspond to a single physical event or a sequence ofphysical events as in the case of a menu item selection. The event e1, forinstance, could represent an WM LBUTTONDOWN message sent by the Win-dows kernel to the application. The responsibility of binding abstractto physical events is of the presentation component discussed earlier. Inorder to simplify the given example a simple and direct binding is usedwhere each event ek is generated by pressing the key k.The table bTrans in [st.c, 013-027] shown in Figure 6 describesthe transitions of Figure 2. It is important to point out that defaulttransitions are a special case and are described implicitly within thebInfo table which shall be commented next.



Programming Dialogue Control of User Interfaces Using Statecharts 195.2 Specifying TopologyIn this section the representation of a statechart topology is commented.In order to describe a particular topology: one entry for each blob in thetable bInfo (see Figure 7 and [st.c, 029-043]) is used. For each state,its relationships with other states and action functions are listed. Thehierarchy of the statechart in Figure 2 is shown in terms of a tree inFigure 3. In this particular case, the tree turned out to be a binary tree.Nodes of this kind of trees, however, can be of any arity, since siblingsare kept in a circular list which is reached from the direct ancestor byits default descendant pointer.For the state Stopwatch, for instance, its entry in the table iden-ti�es Reset as its default descendant. Stopwatch has no history at-tribute nor is it a concurrent component and thus its status is noHist.Whenever Stopwatch is entered and left the function Show() is called.This function [stopwatc.c, 023-032] is only used to trace the blob ac-tivation/deactivation paths. For simplicity reasons, none of the speci�cfunctionality suggested in Section 2 has been implemented.6 A Windows-based ApplicationThe architecture of programs for MS-Windows di�ers from the one oftraditional programs. It is brie
y commented below since it is used inthe implementation of the example and, in general, is similar to howprograms are implemented on others Windows Systems.AWindows program aggregates in general di�erent independent over-lapping display areas called windows: one of these represents the mainwindow and each of the remaining windows has to be declared as a subor-dinated window (referred to as a child window) of some other one. Oneevent handling function is always associated with each window. TheWindows kernel captures events and sends them to a queue where fromthey are successively consumed and passed to the event handling func-tion of the window associated with the particular event. Thus, one partof the presentation layer is encapsulated by the Windows kernel.
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BNODE bInfo[] = {/*state, primogen, sibling,ancestor, status, entry,exit */{ 0, 0, 0, 0, 0, 0, 0 },{ Dead, 0, Alive, Stopwatch,_noHist, Show,Show},{ Stopwatch, Alive, Stopwatch, 0, _noHist, Show,Show},{ Alive, Reset, Dead, Stopwatch,_starHist,Show,Show},{ Reset, 0, Operation, Alive, _noHist, Show,Show},{ Operation, Timer, Reset, Alive, _noHist, Show,Show},{ Timer, On, Display, Operation,_concurr, Show,Show},{ Display, Normal,Timer, Operation,_concurr, Show,Show},{ On, 0, Off, Timer, _noHist, Show,Show},{ Normal, 0, InSec, Display, _noHist, Show,Show},{ Off, 0, On, Timer, _noHist, Show,Show},{ InSec, 0, Normal, Display, _noHist, Show,Show}}; Figure 7: Topology description of the statechart in Figure 2



Programming Dialogue Control of User Interfaces Using Statecharts 21The attributes of a window and of visible symbols shown to the userwithin the bounds of that particular window are de�ned all over a Win-dows program. The code of a program based on Windows and a state-chart speci�cation consists of:i. a function WinMain() which in general creates an instance of themain window, retrieves events from the event list of the Windowskernel and dispatches them to the appropriate event handling func-tion of the target window;ii. event handling functions associated to windows de�ned within theprogram. These functions are noti�ed of event occurrences when-ever the targets of those events are represented by the correspond-ing windows. They receive the control after the noti�cation of anevent occurrence, the event is converted to a logical event and thelogical events is passed to the dialogue control layer. This layer, inresponse, triggers tasks related to changes of the internal state ofthe interface due to event occurrences. It includes the handling ofpresentation aspects and function invocations related to the func-tionality of the application; and �nallyiii. functions which represent operations of the application proper.Most of the facilities provided by the Windows environment are ofa very low abstraction level and correspond basically to the facilities ofa presentation layer. One extra layer is often provided by libraries witha procedure-oriented or object-oriented interface on top of the WindowsAPI. These tools (generally referred to as toolboxes and toolkits, respec-tively) provide some facilities to support simple interaction operations(e.g., scrolling) and provide a higher degree of abstraction to the pro-gram developer. Little support is given to the designer to structure thedialogue evolution of a system. In this paper the presented technique isused for this purpose.



22 F�abio Lucena & Hans Liesenberg7 Concluding RemarksStatecharts are an extension of conventional state transition diagrams.Due to the hierarchical nature of the speci�cation notation, distinct con-texts can be de�ned incrementally at di�erent levels of a hierarchy. Thesecontexts come into existence and are destroyed in a controlled mannerby �ring events. Designs based on this technique turn out to be betterstructured in general. The task of the designer becomes lighter sincegreater e�orts can now be put on what has to be performed in speci�ccontexts without having to pay greater attention on what is happening interms of context swappings. This focus concentration makes the designtask easier.The way how a complex speci�cation in terms of a statechart couldbe implemented using a run-time in the Microsoft Windows environ-ment has been described. The present work re
ects an evolution from aprevious proposal [BW91]. There are some restrictions of the run-timewhich inhibit the implementation of the whole statechart functionality.Nevertheless the restricted behaviour implementation is believed to beuseful to implement interface dialogues, and new version with additionalfuncitonality are planned.Care must be taken since the tables for the run-time are built man-ually. A proper environment [FL93], however, may solve this di�culty.It is easy to see, by means of the presented example, that the un-derlying control of a complex behaviour can be trivially implemented byadopting the proposed technique. Complexity does not simply disap-pear, but it is transferred to the run-time. Changes of behaviour requirechanges in only two tables and can even be made at run time. If theprogrammer makes use of the proposed technique, the existence of so-phisticated control mechanisms can be taken for granted and only lexicaland semantic aspects have to be taken into consideration. The program-mer is released from the error-prone task of developing a complicatedcode segment which exist in all interactive system: the dialogue controlcomponent.
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STOPWATC.CFigure 8: Relationship among �les8 ListingsFigure 8 illustrates the relations between the �les which implement theadopted example. The �rst module stands for the tables holding therelevant data of a given statechart. The second module represents theinvariant code (named run-time or statechart engine) which controls ba-sically the transition �rings and the state activation and deactivationprocess. The last module contains semantic actions (i.e., the applica-tion proper in terms of a set of functions) and some code responsible forthe presentation of information to the end-user. The complete relevantlistings follow.8.1 engine.h | run-time header001 /* engine.h -- The Statechart Engine (HEADER) */002003 #ifndef ENGINEH004 #define ENGINEH005006 typedef unsigned short numBlob; /* engine data types */007 typedef unsigned short numEvent;008 typedef char bStatus;



24 F�abio Lucena & Hans Liesenberg009 typedef char history;010 typedef void (*ptrFunc)(int,int);011012 /* status information operations013 bit 6: 0(blob) 1(concurrent component)014 bit 5: activated015 bit 4: mark blob visited016 bit 2: cancel history enforcement017 bit 1: star history (* history)018 bit 0: standard history (h history) */019020 #define _noHist 0x00 /* masks */021 #define _hHist 0x01022 #define _starHist 0x02023 #define _cancelHist 0x04024 #define _concurr 0x08025026 #define _hist 0x07 /* masks of internal use */027 #define _activ 0x20028 #define _visited 0x10029030 #define ERR_NBLOBS 2 /* Error codes */031 #define RECURSIONNOTALLOWED 3032 #define FINISHED 4033 #define OUTOFMEMORY 5034035 typedef struct {036 numBlob from; /* Origin blob */037 numEvent event; /* Event wich triggers the transition */038 numBlob to; /* Destination blob */039 int (*cond)(void);/* Condition that guards the transition */040 ptrFunc action; /* Action executed whenever transition takes place */041 } BTRANS;042



Programming Dialogue Control of User Interfaces Using Statecharts 25043 typedef struct {044 numBlob state, /* Numerical Id of the blob given by the designer */045 primogen, /* Direct default descendant */046 sibling, /* Next sibling in a circular list of siblings */047 ancestor; /* Direct ancestor */048 bStatus status; /* Concurrent, history, etc. */049 ptrFunc OnEntry, OnExit;/* Callbacks called when entry/left a state */050 } BNODE;051052 /* Interface to the run-time */053054 extern int stEng(numEvent); /* Pass event to the run-time */055 extern int in_Blob(numBlob); /* Return true if blob is active */056057 /* Activate and deactivate the statechart run-time */058 extern int StartStEng(BNODE*,numBlob,BTRANS*,numEvent);059 extern void StopStEng(void);060061 #endif0628.2 engine.c | run-time implementation001 /* engine.c -- The Statechart Engine */002003 #include <stdlib.h>004 #include <string.h>005 #include "engine.h"006007 typedef struct WorkMemory {008 numBlob vhDesc; /* It keeps track of paths in the tree */009 numBlob start, last; /* Holds the range (btrans) relevant to a blob */010 numBlob blobId, backId;/* backId(k) = user id equivalent to run-time id */011 } WrkMem; /* k. blobId(k) = run-time id to k user id. */



26 F�abio Lucena & Hans Liesenberg012013 static WrkMem *ctlMem;014 static numBlob active;015 static numBlob nBlob;016 static numEvent nTran;017 static BNODE *bInfo;018 static BTRANS *bTrans;019 static numBlob k; /* General purpose */020 static char finished = 0;/* Mark for the end of execution of the run-time */021022 /* declarations to legibility */023 #define _vhDesc(x) ctlMem[(x)].vhDesc024 #define _start(x) ctlMem[(x)].start025 #define _last(x) ctlMem[(x)].last026 #define _blobId(x) ctlMem[(x)].blobId027 #define _backId(x) ctlMem[(x)].backId028 #define _concurrent(x) (bInfo[(x)].status & _concurr)029 #define _history(x) (history)(bInfo[(x)].status & _hist)030 #define _active(x) (bInfo[(x)].status & _activ)031 #define _activate(x) (bInfo[(x)].status |= _activ)032 #define _deactivate(x) (bInfo[(x)].status &= (~_activ))033 #define _ancestor(x) (bInfo[(x)].ancestor)034 #define _sibling(x) (bInfo[(x)].sibling)035 #define _primogen(x) (bInfo[(x)].primogen)036 #define _exit(x) bInfo[(x)].OnExit037 #define _entry(x) bInfo[(x)].OnEntry038 #define _state(x) bTrans[(x)].to039 #define _status(x) bInfo[(x)].status040 #define _event(x) bTrans[(x)].event041042 /* Functions to compare elements of arrays passed to quicksort */043 int CompBlobs(const void *el1, const void *el2)044 {045 return (((BNODE*)el1)->state - ((BNODE*)el2)->state);



Programming Dialogue Control of User Interfaces Using Statecharts 27046 }047048 int CompTrans(const void *el1, const void *el2)049 {050 return (((BTRANS*)el1)->from - ((BTRANS*)el2)->from);051 }052053 /* Get internal identifiers to blobs.054 The relation between internal and external identifiers is hold in055 blobId and backId elements of the structure WrkMem056 */057 void _intBlobId(numBlob root)058 {059 _blobId(root) = ++k;060 _backId((numBlob)k) = root;061 if (_primogen(root))062 _intBlobId(_primogen(root));063 if (_sibling(root) && !_blobId(_sibling(root)))064 _intBlobId(_sibling(root));065 }066067 /* Number appropriately each node of the tree (root) starting068 from a given initial value (idInit).069 */070 void intBlobId(numBlob root, numBlob idInit)071 {072 k = (numBlob)(idInit - 1);073 _intBlobId(root);074 for (k=1; k<=nBlob; k++) { /* Adjust tables to new values */075 bInfo[k].state = _blobId(k);076 _primogen(k) = _blobId(_primogen(k));077 _sibling(k) = _blobId(_sibling(k));078 _ancestor(k) = _blobId(_ancestor(k));079 }



28 F�abio Lucena & Hans Liesenberg080 for (k=1; k<=nTran; k++) {081 bTrans[k].from = _blobId(bTrans[k].from);082 bTrans[k].to = _blobId(bTrans[k].to);083 }084 }085086 numBlob Outermost(void) /* Get outermost blob */087 {088 k=1; while (k<=nBlob && _ancestor(k)) k++;089 return (k);090 }091092 /* Sort transitions by origin state and get the range of relevant093 transitions to each state.094 */095 void handleTransitions(void)096 {097 numBlob lastState = 0;098 qsort(bTrans,nTran+1,sizeof(BTRANS),CompTrans);099 for (k=1;k<=nTran;k++)100 if (lastState != bTrans[k].from) {101 _last(lastState) = (numBlob)(k - 1);102 _start(lastState = bTrans[k].from) = k;103 }104 _last(bTrans[k-1].from) = (numBlob)(k - 1);105 }106107 extern void inflate(numBlob,history);108 int StartStEng(BNODE *blnd,numBlob qtBlobs,BTRANS *trn,numEvent qtTrans)109 {110 nTran = qtTrans;111 nBlob = qtBlobs;112 bInfo = blnd;113 bTrans = trn;



Programming Dialogue Control of User Interfaces Using Statecharts 29114 ctlMem = (WrkMem*)malloc((nBlob+1)*sizeof(WrkMem));115 if (!ctlMem) return (OUTOFMEMORY);116 memset(ctlMem,0,sizeof(WrkMem)*(nBlob+1)); /* clear */117 qsort(bInfo,nBlob+1,sizeof(BNODE),CompBlobs);118 /* Sort binfo by user's identifiers of blobs. This is necessary119 when changing to new values. A generic entry l of the table has de120 value l, then we can set internal id with a simple atribution state121 */122 intBlobId(Outermost(),1);123 qsort(bInfo,nBlob+1,sizeof(BNODE),CompBlobs);124 handleTransitions();125 inflate(1,_noHist); /* Activate the outermost blob without history */126 return (0); /* returns OK! */127 }128129 void StopStEng(void) /* Cease the execution of the run-time */130 {131 if (ctlMem) free((char*)ctlMem);132 finished++; /* Inhibit the execution of any further action */133 }134135 /* Identify leaf of tree whose ancestors are all active.136 This leaf is used by the deactivation process.137 */138 numBlob activeAtomFrom(numBlob blob)139 {140 numBlob blob0;141 do {142 blob = _primogen(blob0 = blob);143 if (blob)144 while (!_active(blob)) blob = _sibling(blob);145 } while (blob);146 return(blob0);147 }



30 F�abio Lucena & Hans Liesenberg148149 /* Due to the node numeration the following property is always true:150 if n1 and n2 are two identifiers of nodes in one tree, if we go up in151 the tree from the higher number (say n2), the first ancestor whose152 id is less or equal to min(n1,n2) represents the "nearest"153 */154 numBlob nearestCommonAncestor(numBlob blob1,numBlob blob2)155 {156 if (blob1 > blob2) {157 numBlob blob0 = blob2;158 blob2 = blob1;159 blob1 = blob0;160 }161 do { blob2 = _ancestor(blob2); } while (blob2 > blob1);162 return(blob2);163 }164165 extern void collapse(numBlob);166 void deactivate(numBlob prior,numBlob blob)167 {168 _deactivate(blob);169 if (_exit(blob)) (_exit(blob))(_backId(blob),0);170 _vhDesc(blob) = prior;171 /* deactivate concurrent blobs if exist */172 if (_concurrent(blob)) collapse(_sibling(blob));173 }174175 void deactivatePath(numBlob blobFrom,numBlob blobTo,int inclusive)176 {177 numBlob prior = 0;178 while (blobFrom != blobTo) {179 deactivate(prior,blobFrom);180 blobFrom = _ancestor(prior = blobFrom);181 }



Programming Dialogue Control of User Interfaces Using Statecharts 31182 if (inclusive) deactivate(prior,blobFrom);183 }184185 /* Deactivate concurrent blobs */186 void collapse(numBlob concurrBlob)187 {188 numBlob liveAtom;189 while (_active(concurrBlob)) {190 liveAtom = activeAtomFrom(concurrBlob);191 deactivatePath(liveAtom,concurrBlob,1/*TRUE*/);192 concurrBlob = _sibling(concurrBlob);193 }194 }195196 numBlob stepDown(numBlob blobFrom,history hist)197 {198 if (hist == _noHist) return(_primogen(blobFrom));199 if ((hist == _hHist) || (hist == _starHist))200 return (numBlob)(_vhDesc(blobFrom)?_vhDesc(blobFrom):_primogen(blobFrom));201 return(0);202 }203204 void activate(numBlob blob,history hist,history* hist1)205 {206 _activate(blob);207 if (_entry(blob)) (_entry(blob))(_backId(blob),1);208 *hist1 = _history(blob);209 if (*hist1 == _cancelHist) *hist1 = _noHist;210 else211 if ((*hist1 == _noHist) && (hist == _starHist))212 *hist1 = _starHist;213 }214215 void inflate(numBlob blobFrom,history hist)



32 F�abio Lucena & Hans Liesenberg216 {217 history hist1 = hist;218 numBlob blob = blobFrom;219 if (!_active(blobFrom)) { /* FALSE - all concurrent siblings activated */220 do {221 blobFrom = blob;222 hist = hist1;223 activate(blobFrom,hist,&hist1);224 blob = stepDown(blobFrom,hist1);225 if (_concurrent(blobFrom)) {226 inflate(blob,hist1);227 inflate(_sibling(blobFrom),hist);228 blob = 0;229 }230 } while (blob);231 if (active < blobFrom) active = blobFrom;232 }233 }234235 void activPath(numBlob blobFrom,numBlob blobTo,history hist)236 {237 history hist1;238 numBlob blob;239 while (blobFrom <= blobTo) {240 activate(blobFrom,hist,&hist1);241 if (blobFrom == blobTo) {242 blob = stepDown(blobFrom++,hist1);243 if (blob)244 inflate(blob,hist1);245 else246 if (active < blobTo)247 active = blobTo;248 }249 else {



Programming Dialogue Control of User Interfaces Using Statecharts 33250 blob = _vhDesc(blobFrom);251 if (_concurrent(blobFrom)) {252 activPath(blob,blobTo,hist1);253 inflate(_sibling(blobFrom),hist);254 blobFrom = (numBlob)(blobTo+1);255 }256 else {257 blobFrom = blob;258 hist = hist1;259 }260 }261 } /* while */262 }263264 void activatePath(numBlob blobFrom,numBlob blobTo)265 {266 history hist;267 numBlob blob0,blob = blobFrom;268 do { /* sensing history enforcement */269 hist = _history(blob);270 blob = _ancestor(blob);271 } while (blob && (hist == _noHist));272 if ((hist == _cancelHist) || (!blob))273 hist = _noHist;274 blob = blobTo; /* tracing the activation Path */275 do {276 blob0 = blob;277 _vhDesc(blob = _ancestor(blob)) = blob0;278 } while (blob > blobFrom);279 activPath(_vhDesc(blobFrom),blobTo,hist);280 }281282 void fromBlobToBlob(numBlob origin,numBlob destination,ptrFunc act)283 {



34 F�abio Lucena & Hans Liesenberg284 numBlob liveAtom,commonAncestor;285 liveAtom = activeAtomFrom(origin);286 commonAncestor = nearestCommonAncestor(origin,destination);287 deactivatePath(liveAtom,commonAncestor,0/*FALSE*/);288 if (act) (*act)(_backId(origin),_backId(destination));/* trigger action */289 if (commonAncestor == destination) {290 destination = stepDown(destination,_history(destination));291 inflate(destination,_history(destination));292 }293 else activatePath(commonAncestor,destination);294 }295296 int _gtact(numBlob root)297 {298 bInfo[root].status |= _visited;299 if (_active(root))300 if (root == k) return (1); /* k = blob desired. */301 if (_primogen(root)) /*See function below */302 if (_gtact(_primogen(root))) return (1);303 if (_sibling(root) && !(_status(_sibling(root)) & _visited))304 if (_gtact(_sibling(root))) return (1);305 return (0);306 }307308 int in_Blob(numBlob blob)309 {310 for (k=1; k<=nBlob; ++k) bInfo[k].status &= ~_visited;311 k = _blobId(blob); /* k is used in next call!! */312 return (_gtact(1));313 }314315 numBlob nextActive(numBlob blob)316 {317 do { if(++blob>nBlob) return(0); } while (!_active(blob));



Programming Dialogue Control of User Interfaces Using Statecharts 35318 return(blob);319 }320321 void _steng(numEvent event)322 {323 unsigned int count,begin,end,dif;324 if (!event) {325 deactivatePath(activeAtomFrom(1),1,1);326 free((char*)ctlMem);327 return;328 }329 active = 1;330 do {331 begin = _start(active); end = _last(active);332 dif = end - begin; dif++; count = 0;333 while (count < dif) /* There are events from this state*/334 { /*pass every event of this state */335 if (event == _event(begin+count))336 if (bTrans[begin+count].cond) {337 if ((bTrans[begin+count].cond)()) {338 fromBlobToBlob(active,_state(begin+count),339 bTrans[begin+count].action);340 return; /* outermost transition fired */341 }342 }343 else {344 fromBlobToBlob(active,_state(begin+count),345 bTrans[begin+count].action);346 return;347 }348 count++; /* get next event */349 }350 active = nextActive(active);351 } while (active > 0);



36 F�abio Lucena & Hans Liesenberg352 }353354 int stEng(numEvent event) /* Return 0 if event handled appropriately */355 {356 static int called = 0;357 ++called;358 if (called > 1) { /*Avoid recursive call*/359 called--;360 return (RECURSIONNOTALLOWED);361 }362 if (finished) return (FINISHED);363 _steng(event);364 if (!event) finished++;365 return (--called);366 }8.3 st.h | blobs and events id de�nition001 /* st.h --- Header for tables that specify an statechart */002003 #ifndef STH004 #define STH005006 #define Timer 1 /* Rule for the user to define external */007 #define Alive 2 /* numerical blob id. Each id must be */008 #define InSec 3 /* in the range 1..n, where n represents */009 #define Dead 4 /* the total number of blobs of the */010 #define Stopwatch 5 /* statechart */011 #define Reset 6012 #define Operation 7013 #define Display 8014 #define Normal 9015 #define On 10016 #define Off 11



Programming Dialogue Control of User Interfaces Using Statecharts 37017018 #define Exit 0 /* The values associated to events are irrelevant to */019 #define e1 1 /* the run-time algorithm. */020 #define e2 2021 #define e3 3022 #define e4 4023 #define e5 5024025 extern BTRANS bTrans[];/* transitions */026 extern BNODE bInfo[]; /* topology. The programmer must pass these */027 /* tables through call to StartStEng */028029 #endif8.4 st.c | speci�cation tables001 /* st.c --- Statechart specification tables */002003 #include "engine.h"004 #include "st.h"005006 int cond(void);007008 /* Sole function (for simplicity) called whenever */009 /* entry or exit a state */010 extern void Show(int,int);011 extern void trans(int,int);012013 BTRANS bTrans[] =014 {/* state, event,state, condition, action functions */015 { 0, 0, 0, 0, 0 },016 { Stopwatch, e5, Dead, 0, 0 },017 { Reset, e2, Operation, 0, 0 },018 { Reset, e4, Reset, 0, trans },



38 F�abio Lucena & Hans Liesenberg019 { Operation, e4, Reset, 0, 0 },020 { Normal, e3, InSec, 0, 0 },021 { InSec, e3, Normal, 0, 0 },022 { Off, e2, On, 0, 0 },023 { On, e2, Off, 0, 0 },024 { Alive, e4, Dead, cond, 0 },025 { Dead, e1, Stopwatch, 0, 0 },026 { Dead, e2, Operation, 0, 0 }027 };028029 BNODE bInfo[] = {030 /*state, primogen, sibling,ancestor, status, entry,exit */031 { 0, 0, 0, 0, 0, 0, 0 },032 { Dead, 0, Alive, Stopwatch,_noHist, Show,Show},033 { Stopwatch, Alive, Stopwatch, 0, _noHist, Show,Show},034 { Alive, Reset, Dead, Stopwatch,_starHist,Show,Show},035 { Reset, 0, Operation, Alive, _noHist, Show,Show},036 { Operation, Timer, Reset, Alive, _noHist, Show,Show},037 { Timer, On, Display, Operation,_concurr, Show,Show},038 { Display, Normal,Timer, Operation,_concurr, Show,Show},039 { On, 0, Off, Timer, _noHist, Show,Show},040 { Normal, 0, InSec, Display, _noHist, Show,Show},041 { Off, 0, On, Timer, _noHist, Show,Show},042 { InSec, 0, Normal, Display, _noHist, Show,Show}043 };8.5 stopwatc.c | code of Windows program example001 /* stopwatc.c -- Program Example of Statechart + Windows */002003 #include <windows.h>004 #include "engine.h"005 #include <string.h>006 #include "st.h"



Programming Dialogue Control of User Interfaces Using Statecharts 39007008 LRESULT FAR PASCAL WinProc(HWND,UINT,WPARAM,LPARAM);009 static HWND mHwnd;010 RECT retang;011 int cxCarac,cyCarac;012013 int cond(void) { /* Condition function that guards the transition */014 return in_Blob(Off); /* labelled e4 from Reset to Reset. */015 }016017 void trans(int state, int inOut) {018 /* call presentation code */019 ShowBehaviour(mHwnd,"Transiton from Reset to Reset");020 }021022 extern void ShowBehaviour(HWND,LPSTR);023 void Show(int state,int inOut)024 {025 char sChar[80];026 static LPSTR names[] = { "Timer","Alive","InSec","Dead",027 "Stopwatc","Reset","Operation","Display","Normal","On","Off"028 };029 static LPSTR op[] = { "OnExit ", "OnEntry" };030 wsprintf((LPSTR)sChar,"%s %s",op[inOut],names[state-1]);031 ShowBehaviour(mHwnd,sChar);032 }033034 void ShowBehaviour(HWND hWnd, LPSTR str)035 {036 char szBuffer[80];037 HDC hdc;038 ScrollWindow(hWnd,0,-cyCarac,&retang,&retang);039 hdc = GetDC(hWnd);040 TextOut(hdc,cxCarac,retang.bottom-cyCarac,szBuffer,



40 F�abio Lucena & Hans Liesenberg041 wsprintf((LPSTR)szBuffer,"%-60s",(LPSTR)str));042 ReleaseDC(hWnd,hdc);043 ValidateRect(hWnd,NULL);044 }045046 int PASCAL WinMain(HINSTANCE hInst,HINSTANCE hprvInst,047 LPSTR lpszLinhaCmd,int nCmdMostrar)048 {049 char szNomeAplic[] = "Stopwatch";050 MSG msg;051 lpszLinhaCmd = NULL;052 if (!hprvInst) {053 WNDCLASS wC;054 wC.style = CS_HREDRAW | CS_VREDRAW;055 wC.lpfnWndProc = WinProc;056 wC.cbClsExtra = 0;057 wC.cbWndExtra = 0;058 wC.hInstance = hInst;059 wC.hIcon = LoadIcon(NULL,IDI_APPLICATION);060 wC.hCursor = LoadCursor(NULL,IDC_ARROW);061 wC.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);062 wC.lpszMenuName = NULL;063 wC.lpszClassName = szNomeAplic;064 RegisterClass(&wC);065 }066 mHwnd = CreateWindow(szNomeAplic,"StopWatch Example",067 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT,CW_USEDEFAULT,068 CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,hInst,NULL);069 ShowWindow(mHwnd,nCmdMostrar);070 UpdateWindow(mHwnd);071072 StartStEng(bInfo,14,bTrans,14); /* Put the statechart engine in motion */073 while (GetMessage(&msg,NULL,0,0)) {074 TranslateMessage(&msg);



Programming Dialogue Control of User Interfaces Using Statecharts 41075 DispatchMessage(&msg);076 }077 StopStEng(); /* Stop the statechart engine */078 return msg.wParam;079 }080081 LRESULT FAR PASCAL WinProc(HWND hWnd,UINT mensagem,082 WPARAM wParam,LPARAM lParam)083 {084 char szBuffer[80];085 HDC hdc;086 PAINTSTRUCT ps;087 TEXTMETRIC tm;088 LPCSTR cab = "Transitions Events";089090 switch (mensagem)091 {092 case WM_CREATE:093 hdc = GetDC(hWnd);094 GetTextMetrics(hdc,&tm);095 cxCarac = tm.tmAveCharWidth;096 cyCarac = tm.tmHeight;097 ReleaseDC(hWnd,hdc);098 retang.top = 2*cyCarac;099 return 0;100101 case WM_SIZE:102 retang.right = LOWORD(lParam);103 retang.bottom = HIWORD(lParam);104 return 0;105106 case WM_PAINT:107 hdc = BeginPaint(hWnd,&ps);108 TextOut(hdc,cxCarac,cyCarac/2,cab,lstrlen(cab));



42 F�abio Lucena & Hans Liesenberg109 EndPaint(hWnd,&ps);110 return 0;111112 case WM_CHAR:113 wParam -= '0'; /* get logic events */114 wsprintf(szBuffer,"%35d",wParam);115 ShowBehaviour(hWnd,szBuffer);116 if (stEng((numEvent)wParam)==FINISHED)117 DestroyWindow(hWnd);118 return 0;119120 case WM_DESTROY: PostQuitMessage(0);121 return 0;122 }123 return DefWindowProc(hWnd,mensagem,wParam,lParam);124 }8.6 De�nition �le for Windows001 NAME Stopwatch002 DESCRIPTION 'Example Stopwatch'003 EXETYPE WINDOWS004 STUB 'winstub.exe'005 CODE PRELOAD MOVEABLE DISCARDABLE006 DATA PRELOAD MOVEABLE MULTIPLE007 HEAPSIZE 1024008 STACKSIZE 81928.7 Make�le001 #dos.mak -- Makefile of the Stopwatch example for DOS (MS C/C++)002003 COMP = /c /W4 /WX /Od004005 .c.obj:



Programming Dialogue Control of User Interfaces Using Statecharts 43006 cl $(COMP) /Tp$*.c007008 stopwatc.exe: engine.obj st.obj stopwatc.obj009 link /co $**,stopwatc.exe;010011 engine.obj: engine.c engine.h012 st.obj: st.c st.h engine.h013 stopwatc.obj: stopwatc.c engine.hReferences[BC91] Len Bass and Jo�elle Coutaz. Developing Software for theUser Interface. SEI Series in Software Engineering. Addison-Wesley Publishing Company, Inc., 1991.[BW91] Michael A. Bertrand and Willian R. Welch. ProgrammingWindows Using State Tables. Supplement to Dr. Dobb's Jour-nal, December 1991.[DH89] Doran Drusinsky and David Harel. Using Statecharts forHardware Description and Synthesis. IEEE Transactions onComputer Aided Design, 8(7):798{807, July 1989.[FB87] Mark A. Flecchia and R. Daniel Bergeron. SpecifyingComplex Dialogs in ALGAE. In Proceedings of the ACMCHI+GI'87 Conference, pages 229{234, Toronto, Canada,April 1987.[FL93] Antonio Gon�calves Figueiredo Filho and Hans Liesenberg.Transforming Statecharts into Reactive Systems. In XIXConferência Latinoamericana de Inform�atica, volume 1,pages 501{509, Buenos Aires, AR, August 1993.[Gre85] Mark Green. Report on Dialogue Speci�cation Tools. InG�unther E. Pfa�, editor, User Interface Management Sys-tems, pages 9{20. Springer-Verlag, 1985.
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