O conteddo do presente relatério é de (nica responsabilidade do(s) autor(es).
(The contents of this report are the sole responsibility of the author(s).)

An Implementation Structure for
RM-OSI/ISO Transaction Processing
Application Contexts

Fldavio Morais de Assis Silva
Edmundo Roberto Mauro Madeira

Relatério Técnico DCC-11/93

Maio de 1993

An Implementation Structure for RM-OSI/ISO

Transaction Processing Application Contexts

Flavio Morais de Assis Silva

Edmundo Roberto Mauro Madeira*

*Departamento de Ciéncia da Computagao, Universidade Estadual de Campinas,
13081-970 Campinas, SP. Pesquisa desenvolvida com suporte financeiro do CNPq
— Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico sob processo
130765/90-2

Abstract

This technical report presents a structure for a modular im-
plementation of application contexts from the RM-OSI/ISO (Re-
ference Model - Open Systems Interconnection / International Or-
ganization for Standardization) in which the TP (Transaction Pro-
cessing) protocol participates. This protocol provides services to
support the execution of distributed atomic transactions in the OSI
environment. The structure presented influences the implementa-
tion of other application contexts.

In this text it is also shown the way the upper layers protocols
are being implemented in a didactic communication system called
SISDI-OSI (Sistema Diddtico para o Modelo OSI - Didactic System
for the OST Model) in terms of process configuration and interpro-
cess communication mechanisms. The experiences with protocol
implementations for this system are then commented.

1 Introduction

Defined as a group of related operations that are executed so that the
ACID (Atomicity, Consistency, Isolation, Durability) properties are gua-
ranteed [16], an atomic transaction constitutes an appropriate abstract
concept for the execution of operations on environments subject to faults
and where there is resources sharing, since transactions make errors and
concurrency aspects transparent for the user. Distributed systems in ge-
neral are examples of such environments. Atomic transactions executed
on such systems are called Distributed Atomic Transactions.

TP (Transaction Processing) [16, 17, 18] and CCR (Commitment,
Concurrency and Recovery) [11, 12] are the protocols from the reference
model RM-OSI/ISO (Reference Model — Open Systems Interconnection /
International Organization for Standardization) [5] that provide services
at the Application layer of this model for the support of distributed
atomic transactions execution. TP and CCR are based on the Two-
Phase Commit with Presumed Abort protocol [22], that is a distributed
transaction commit protocol known from the database area.

The TP and CCR services can be used for an atomic execution of a set
of operations provided by other application protocols. For example, these
protocols can be used together with RDA (Remote Database Access) for
the atomic execution of operations to access remote databases [14, 15]. In
such case, the TP and CCR services delimit the transaction and control
its termination, while the RDA services determine the kind of operations
that constitute the transaction.

This technical report presents a logical structure for the implemen-
tation of application contexts in which the TP protocol participates.
These application contexts are referenced hereafter by TP Application
Contexts. Then it is described the structure of a didactic communication
system called SISDI-OSI (Sistema Didatico para o Modelo OSI — Didac-
tic System for the OSI Model) that is being developed at UNICAMP [21].
The implementation of the TP protocol for this system is in progress.
Later on it is commented on how some components of this system were
implemented. The structure for TP application contexts influences the
implementation of other application contexts.

2 Application Layer Structure for TP Appli-
cation Contexts

2.1 Application Layer Structure as defined by ISO

In the RM-OSI/ISO, the active elements that execute functions of a spe-
cific layer are called entities of this layer. In the Application layer then
there are Application Entities, refered just by AFEs. An AE represents
a set of Application layer communication capabilities for the realization
of some communication objective. There are so AEs for the access to
remote files or to access databases in other systems. An AE provides
communication services to Application Processes, or just APs. The APs
represent the information processing activities of the users of the com-
munication system.

The services provided by an AE are a composition of the services
provided by the ASFEs (Application Service Elements) that take part in

the AE. An ASE represents an element at the Application layer that
provides communication services for the realization of a specific commu-
nication objective and comprises the protocol necessary for the support
of such services. There are, for example, the RDA, FTAM (File Transfer,
Access and Management), ROSE (Remote Operations Service Element)
and ACSE (Association Control Service Element) ASEs, that provide
services, respectively, for access to remote databases, for access to re-
mote files, for the execution of interactive remote operations and for the
establishment and release of application associations (defined right be-
low). There is also an ASE for the CCR protocol and another for the
TP protocol. Two ASEs in different systems exchange data units cal-
led APDUs (Application Protocol Data Units) for the realization of their
protocol.

The use of the communication capabilities of an AE and the use of an
AP in a specific occasion is modelled respectively by an A EI(Application
Entity Invocation) and an API (Application Process Invocation). So that
two AEIs can communicate they must establish previously an application
assoctation, or just association, that represents a context over which the
data exchanges between the AEls take place.

The Application layer structure as defined by ISO [13] is shown on
figure 1. On this figure one can see that an AEI contains objects cal-
led MACF (Multiple Association Control Function) and SAOs (Single
Association Objects). The MACF component represents functions that
control related activities executed on more than one association. A SAQO
models communication functions and state information related to the
use of just one association. There is one SAQO for each association used
by the AEL

Fach SAO is further decomposed in a component called SACF (Single
Association Control Function) and ASEs. The ASEs in a SAO are the
ones whose services are used on that association. Since ASEs provide
specific communication functions, the realization of the activities on an
association may require the use of the capabilities of more than one
ASE. The SACF represents the component of the SAO that controls the
interaction among the ASEs of this SAO and their use of the resources

AEI
MACF

SAO 1 SAO 2
S | ASE1 S | ASE1
A | ASE2 A | ASE4
C| ASE3 C| ASE5
F | ACSE F | ACSE

Assoc. 1 Assoc. 2

Figure 1: Application layer structure as defined by ISO

provided by the lower layers. Such resources are, for example, tokens
and synchronization points from the Session layer or services for data
transfer. All the lower layer resources are accessed through Presentation
layer services.

The ASEs that provide the services used to form the operations to be
carried out atomically are called U-ASEs (User ASEs). For an atomic
transaction consisting of remote database access operations, for example,
the RDA and ROSE ASEs are U-ASEs [14, 15].

So that two AEIs can exchange information through an association,
they must be aware and follow a set of rules that will coordinate the
communication. This set of rules is called an application context. Among
the application context rules are, for example, the determination of which
ASFEs take part in the association, what are the event sequences allowed
(these rules extend the rules established by each ASE individually) and
which primitives are used to transmit the APDUs to the remote system.
The exact application context to be used on an association is negotiated
during the establishment of the association.

The application contexts are used, in a general way, to describe the

types of services that are provided through an association. For remote
database access, for example, there are two application contexts [14]: the
RDA Basic Application Context and the RDA TP Application Context!.
The former allows atomic transactions to span over just one system, the
database server. The latter allows the definition of atomic transactions
that can span over several systems. The TP and CCR protocols partici-
patein the RDA TP Application Context and are used exactly to provide
the services for the control of this type of transactions.

2.2 Application Layer Structure for TP Application Con-
texts

The Two-Phase Commit with Presumed Abort protocol assumes that the
systems taking part in a distributed atomic transaction form a tree struc-
ture [22]. The nodes of this tree represent the systems and the branches
of the tree form the communication topology, that is, the determination
of who can send messages to whom. A system can only communicate
with another one that is attached to it by a tree branch. Since TP and
CCR are based on this protocol, for their operation it is also considered
the existence of trees. Two types of trees are defined: dialogue trees and
transaction trees (see figure 2). A dialogue tree contains at each node
a TPSUI (Transaction Processing Service User Invocation). A TPSU
(Transaction Processing Service User) represents a user of TP services.
TPSUs are considered as being part of an AP. A TPSUI is an invocation
of a TPSU, representing the use of TP services for a specific occasion
of information processing. Fach branch of the dialogue tree represents
a TP dialogue. A TP dialogue represents a communication relationship
between two TPSUIs, and establishes certain caracteristics of this rela-
tionship. This concept is by some means analogous to the application

!These application contexts, defined in [14], are called generic application contexts.
In these contexts the parts dependent on the type of database are not specified.
To each type of database there will be specializations of these generic application
contexts that then will generate complete definitions of application contexts. One
such specialization appears in [15].

association concept. A dialogue supports the establishment of new rela-
tionships between the TPSUlIs called transaction branches. Two TPSUIs
linked by a dialogue are not necessarily participating in a transaction.
A transaction branch represents effectively the relationship between
two TPSUIs when they participate in a transaction. Transaction trees
are composed of transaction branches. A transaction tree contains also
TPSUIs as nodes and this tree indeed represents a transaction. More
than one such tree can coexist over the same dialogue tree (see figure 2).

A
TPSUI
B %]\ D
TPSUI TPSUI TPSUI
E %/‘N H //\1
TPSUI TPSUI TPSUI TPSUI TPSUI

The TPSUIs from A to I and the arcs between them form

a dialogue tree. On this dialogue tree there are two transaction
trees: one formed by TPSUIs A, B, C, E, F and G and another
formed by D, H and 1.

Figure 2: Dialogue and transaction trees

The TP services are used for the construction of the trees and, if
their user desires, also the subsequent control of the commitment or
rollback of the atomic transaction. When a transaction is committed all
its operations are executed and the results are made permanent. The
rollback of a transaction restores all the data manipulated by it to their
initial state, as if none of its operations were executed.

The user can also use just the TP services for establishment and pru-
ning of the dialogue tree and for handshaking and control of a dialogue.
This way the own user controls its transactions. CCR services are used
by TP only when the TP controls the user transactions.

CCR services are defined to be used on just one branch of the tran-
saction tree, to control the transaction on that branch. TP services are
used to control the whole transaction tree. For this control TP uses CCR
services on each branch. The TP services user, for example, issues just
one TP-COMMIT.req primitive (a TP primitive) to request the commit-
ment of the transaction. When the TP protocol machine receives this
primitive, it generates events that cause a C-PREPARE.req primitive (a
CCR primitive) to be issued on each association.

Examples of TP services are:

TP-BEGIN-DIALOGUE used to establish a new dialogue;
TP-END-DIALOGUE used to terminate a dialogue;

TP-HANDSHAKE used by the TP service users to synchronize their
processing;

TP-COMMIT used by a TP service user to indicate that it has finished
all the processing for the current transaction and to request that
the transaction be committed;

TP-ROLLBACK used to cause the rollback of the transaction.
The CCR services are:

C-BEGIN used to begin a transaction branch;

C-PREPARE used by a node (superior) to ask one of its children (su-
bordinates) in the transaction tree if it can commit the transaction
or not;

C-READY used by a subordinate of a node in the transaction tree to
answer its superior that it can commit the transaction;

C-COMMIT used by a node (superior) to request a subordinate to
commit its part of the transaction;

C-ROLLBACK used by a node (superior or subordinate) to force the
return of the transaction to its initial state;

C-RECOVER used to process recovery from faults. TP uses this ser-
vice in a transparent way for its user.

Figure 3 shows the information flow in TP application contexts where
the CCR is also used (for the contexts where CCR is not used this figure
would be modified just by taking out the CCR ASE and its relationships).
The full lines indicate the flow of primitives, while the dashed ones indi-
cate the flow of APDUs. The services with names started by the letters
TP-, U-, C-, A-, P- and SAF- refer to services provided by, respectively,
TP, U-ASE, CCR, ACSE, the Presentation layer and the SACF (see be-
low for SACF services). The interactions between the MACFE and the
TP-ASE are done through the use of services whose names start with
AF-, from Auziliary Functions. These services are used only inside the
TP protocol machine.

Note that the APs interact just with the MACEF', using only TP and
U-ASE service primitives. The services of other ASEs, as the CCR ASE,
are used to support these services. The TP services are used to specify
the beginning of an atomic transaction and to coordinate its final result.
The U-ASE services specify the operations to be carried out atomically.

From service requests done to it, the MACF interacts directly only
with the SACF. In the data reception direction also all the primitives
generated inside the SAQ and from the Presentation layer are passed to
the MACF by the SACF. This is done so that the MACF can control the
events on the various associations and the SACF can control the events
on one association, inside a SAQ, performing activities as, for exam-
ple, verifying the correct sequence of events according to the application
context.

On the data sending direction, the SACF passes the primitives to the
ASFEs to which they correspond. The TP-ASE can send its APDUs either

10

AP

$ TP- and U-Services

MACF

U-, C-
AF-, SAF- and P-Services

} AF Services
TP-APDUs U-Services
< > TP
C-Services
S 1 1V\ C-Services | U-ASE
A CCR-APDUs A
e Spom CCR N
C
U-ASE-APDUs :
A-Services
P-Services
ACSE
P-Services

PRESENTATION LAYER

Figure 3: Information flow for TP application contexts

11

using CCR primitives or passing them to the SACF. The SACF receives,
beyond APDUs from TP, also APDUs from CCR and from the U-ASE
and send them to the remote system as values of user data parameters
of Presentation layer service primitives. The CCR services can also be
requested by the TP-ASE or by the SACF just for the control of the
transaction, without sending any APDU as user data.

On figure 3 more than one U-ASE could exist. For example, in
the RDA TP Application Context, mentioned previously, there are two
U-ASEs: the RDA ASE and the ROSE ASE. The AP issues just RDA
services. The RDA protocol uses ROSE services to convey RDA APDUs.
In this case, the ROSE APDUs, containing embedded RDA APDUs,
are passed to the SACF, that can concatenate them with TP or CCR
APDUs.

The ACSE services are used by the SACF in TP application contexts
and only these two components can issue Presentation layer service pri-
mitives directly. The ACSE uses the services for the establishment and
release of presentation connections. An application association is always
supported by a presentation connection. The SACF uses the other Pre-
sentation services. When the SACF receives primitives coming from the
Presentation layer, it extracts the APDUs in the user data parameter (if
any) and sends them to the adequate ASE.

The TP protocol specification defines the actions to be carried out
by the TP-ASE, the MACF and the SACF components. The TP-ASE
has as functions just to creat APDUs, as a result of the issue of a TP
primitive by the TPSUI (that causes an issue of an AF- primitive by the
MACF), and AF- primitives, generated as a result of the receipt of an
APDU coming from the remote system. The SACF controls the events
that take place in the SAO while the association is being used to support
a dialogue (or channel, as it will be defined later) as also while it is not
being used. The SACF functions will be better described later. The
MACF controls the events related to the atomic transaction control for
the realization of the Two-Phase Commit with Presumed Abort protocol.
Note that this is the main part of the TP protocol. It is done by the
MACF and not by the TP-ASE because the function of the Two-Phase

12

Commit with Presumed Abort protocol is indeed the control over events
resulting from the communication with various systems, that in the RM-
OSI/ISO is represented by events that happen on various associations.
The MACF also serves as interface between the AP and the SAOs.

In the following sections, 2.3 to 2.7, it will be presented a logical struc-
ture for the implementation of TP application contexts. The structure
is defined by a refinement of each component of the Application layer.
Aspects of implementations already done are commented on section 3.

2.3 Structure for MACFs

Conceptually the MACF functions can be considered as being structured
into the components shown on figure 4. The Info component represents
the informations that are necessary for the control of the related activities
executed on the associations or arisen from this control. Such kind of
informations can be, for example, informations about the global state
of the atomic transaction and informations about primitives or fields of
previously sent or received primitives.

MACF

Info SAO Whole SACF Error
Activities Transaction Primitives Control
Control Control Control

Figure 4: Structure for MACFs

The Whole Transaction Control component represents the handling
of events related to the global activity executed on the several associa-
tions, that is, the control of events that are concerned with the whole
transaction. For example, as was previously commented, the issue of a
TP-COMMIT.req primitive by a TPSUI on an intermediate node cau-
ses the TP protocol to send informations to each of its subordinates,

13

i.e., causes activities to be done on all the associations controled by the
MACF. This primitive then relates to the whole transaction.

The SAO Activities Control represents the handling of events related
to just one branch (association) but that depends on or influences the
global state of the activity. For example a TP-BEGIN-DIALOGUE.req
primitive can not be issued during the termination phase of a transaction
(depending on certain conditions). Although this primitive relates to
just one association, the sequencing control for its issue depends on the
global state of the transaction (the state on which the transaction is).
Conceptually one can consider that there is one instance of the SAQ
Activities Control component to each SAQ.

The SACF Primitives Control represents the treatment of primitives
that refer to a SAO as a whole. The TP protocol defines two such
primitives:

1. SAF-DETACH-ASSOCIATION.req: used by the MACF to tell the
SAO that this SAO is no longer needed to be controled by this
MACF; and

2. SAF-ASSOCIATION-LOST.ind: used by the SAO to tell the
MACYF that the association is no longer controled by this MACF.
This primitive is issued when a problem is detected with the associ-
ation, as, for example, the abrupt release of the association caused
by a communication error (for instance the detection of a protocol
error in any of the lower layers).

The SACF Primitives Control component handles then the issue of a
SAF-DETACH-ASSOCIATION.req primitive and the receipt of a SAF-
ASSOCTATION-LOST.ind primitive. Conceptually one can also consi-
der that there is one instance of such component for each SAO controled
by a MACF.

The Error Control component controls events indicating error on an
association. These events can cause actions to be carried out on other
associations. For example, when it is detected an association abort,

14

depending on the global state of the atomic transaction, the whole tran-
saction must be rolled back. This means that informations must be
transfered on several associations to coordinate a consistent termination
of the transaction on all the systems that participated in it.

This MACF decomposition intends to clarify the understanding of
the activities specified in [18] for the MACF.

2.4 Structure for SAOs

By considering the functionalities present on the association establish-
ment process, it is convenient to decompose a SAQO in two components:
the Association Establisher and the Application Context Specific Part
(figure 5).

SACF

Association

Establisher

Application

mmwn e

Context
Specific Part

Figure 5: Structure for a SAO

The Assoctation Establisher component is the responsible, as its own
name indicates, for the establishment of associations. This component
is considered to be part of the SACF, because the association establish-
ment procedure can require interactions among ASks and the control
over resources provided by the lower layers, what are SACF functions.
At association establishment phase, the specific application context to
be used on the association is negotiated. One of the functions of the
Association Fstablisher component is to execute this negotiation, and
therefore it must know which contexts the AEI supports.

15

The Application Context Specific Part represents the functions to
control the interactions among the ASEs and the use of the resources
provided by the lower layers, according to the specific application context
negotiated.

In an implementation it is very useful to really consider this function
of SACFs. As it represents the realization of the rules of an application
context one can consider to have separate implementations of Application
Context Specific Parts, one for each application context supported by the
system. An implementation of one of these components would contain
the code to carry out the functions associated with this component that
are related to the specific application context it represents. After having
negotiated the application context to be used on an association, the

Association FEstablisher activates the appropriate Application Context
Specific Part.

This implementation structure suggests therefore that the implemen-
tation of a given ASE should be done considering the activities of the
protocol that are dependent on application contexts and those that are
not. By letting the SACF do all the application context dependent ac-
tivities (in its Application Context Specific Part) the ASEs implementa-
tions become very modular, being able to be used on many application
contexts in a transparent way.

For the CCR protocol implementation, for example, the CCR ASE
does just APDU and primitive generation, caused respectively by the
issue of primitives by the user of the ASE and by the arrival of APDUs
from the remote system, and the control of events sequencing rules. The
control over the sequential numbers and token possession is done by
the SACFs, because it depends on the use of these resources by other
ASFEs that can take part in the application context. This control is then
dependent on the application context used.

16

2.5 Structure for the Application Context Specific Part
of SACFs

To provide a scheme of the functions realized by the Application Context
Specific Part of SACFs, the decomposition showed on figure 6 was done.
The Info component represents informations necessary for the control of
the SAQO or arisen from this control. Informations of such kind may be,
for example:

Application Context Specific Part

Info Dialogue Association Lower layers
Establisher Controler Resources
Controler
SA.CF . Router Concatenator /
Primitives
Deconcatenator
Handler
Mapper

Figure 6: Structure for the Application Context Specific Part of SACFs

¢ state information about the global activity executed in the SAO.
The TP specifies states for the SAO in order to detect protocol
errors. The SAQ is, for example, in the Free state when the asso-
ciation is just established or when it is not in use; the Busy state
represents the period between the dialogue establishment and the
liberation of the SAO by the MACF (use of the SAF-DETACH-
ASSOCIATION.req primitive); and there are other states that de-
fine more specific phases as Bidding, that is the state of a SAO
when it is processing the Bid Mechanism (see below) or the Stray
state, that defines the period during dialogue establishment when
there is no Bidding,

17

e information about token possession, parameters of primitives pre-
viously sent or received, the current sequential number for the
synchronization numbers, among others, that influence the SACF
operation or are used to fill in parameters of Presentation services
primitives.

The Association Controler represents functions that analyse each
event that takes place in the SAO and control the necessary actions
to be performed. For example, controls the sequencing rules of events
considering all the ASEs present in the SAO.

The Dialogue Establisher represents functions for the establishment
of a dialogue. A dialogue is a relationship that is created over an as-
sociation. TP specifies two such dialogues: dialogues for the execution
of a transaction branch, called simply dialogues, and channels, that are
dialogues for doing recovery from communication and application faults.
The Dialogue Establisher component controls the Bid Mechanism when
it is used to establish a dialogue. This mechanism is used to prevent the
occurence of collision at dialogue establishment time.

The SACF Primitives Handler treats the primitive SAF-DETACH-
ASSOCIATION.req, defined above. This primitive has an argument
whose value determines certain events that can still happen on the as-
sociation (arrival of APDUs) but that are not to be considered as errors
by the SACF. The SACF controls the association while not in use by a
dialogue or channel.

By the interaction scheme among the components of the SAO shown
on figure 3, the APDUs from the ASEs (except ACSE APDUs) are sent
to the SACF for transmission. During data receptions, conversely, the
APDUs are sent by the SACF to the ASEs. This scheme results from
the fact that the TP application contexts allow for concatenation of AP-
DUs, so that these APDUs can be sent together as user data of just
one Presentation service primitive. A concatenation can involve AP-
DUs from just one ASE but also APDUs from diferent ones. The rules
specifying the allowed concatenations are specified individually by each
ASE, but there are also rules specified by the application context. These

18

application context rules extend the ones from each ASE. The Conca-
tenator/Deconcatenator component represents these functions. All the
ASEs send their APDUs to the SACF. The SACF can then concatenate
the APDUs according to the rules of the application context being used.

The mapping of the APDUs, concatenated or not, into the user data
parameter of Presentation layer service primitives to be sent to the re-
mote system also depends on the specific application context being used.
The specification of ASEs determines the primitives that must be used
to transfer their APDUs, but the concatenation process can alter the
choice of the Presentation primitive. The Mapper component represents
the functions to choose the appropriate primitive, according to the con-
catenations done (if any) and the application context used. This com-
ponent also fills in the other parameters of the Presentation primitive.
The control over lower layers resources are necessary to it.

The Router component represents the functions of determining the
right component that must treat a CCR or ACSE primitive generated by
the receipt of an APDU from the remote system. This component sends
the primitive to the TP-ASE or to the MACF, depending respectively
on if the primitive contains TP APDUs as user data or not.

The Lower Layers Resources Controler represents the functions to
control aspects of use of lower layer resources as tokens and synchroni-
zation points. Such resources are provided by the lower layers through
Presentation layer services but the semantics attributed to them and the
control of their use are determined by the Application layer. For example
the Session layer provides mechanisms for setting synchronization points
in the dialogue but is not concerned with the state information associ-
ated with each point. It is Application layer responsibility to maintain
the necessary state information for doing resynchronization. For these
points the Session layer services just provide means for setting them and
to indicate resynchronizations.

Because more than one ASE can make use of such resources, the
SACF must control the use of the primitives that affect them. Therefore,
for example, the control over token possession and the sequential number
for the synchronization points are done by the SACF, determining then

19

the changes on the values of the variables specified in [6] (variable V(A),
V(M), V(R) and Vsc) for the control of these sequential numbers and
the issue of service primitives related to these synchronization points.
Doing the implementation this way results in the ASEs doing nothing
about this control.

2.6 Structure for AEIs

An AEI for atomic transactions support has the structure depicted on
figure 7. On this figure a set of MACVF's is depicted, each one controling
a set of SAOs. There is also another set of SAOs under the control of a
component called Free Associations Controler.

AFEI

| INFO| | MACF | . MACF | Free Associations Controler

Figure 7: Structure for AEIs

The latter set of SAOs represents associations that are established,
but that are not being used at the moment. It forms a pool of available
associations. The existence of such associations is useful for efficiency
reasons, because associations already established can be reused. Instead
of releasing an association, the AEIs can keep this association established
for use in the future. For example, it would be useful to maintain associa-
tions with a system if this system participates frequently in transactions
that use the same application context. This happens, for example, in
a bank environment, where customers make many similar transactions

20

(to take money out from accounts at the same bank agency, for exam-
ple) at a bank terminal daily. The associations would not have to be
reestablished at each time of use.

The Free Associations Controler represents functions to grant soli-
citations of associations to support new dialogues made by the MACFs
and to control the set of associations when they are not being used. It
represents also the functions to attach a SAO from this set to a MACF,
when the dialogue establishment is requested by the remote system. The
Free Associations Controler is not considered here to be a MACF, be-
cause the associations under its control are inactive, and, therefore, can
not have activities related that must be controled. It represents just a
local management function.

In the document that defines the TP protocol [18] a Channel Protocol
Machine (CPM) is specified. This protocol machine is considered as
being a MACF that controls the establishment and release of channels,
used to recover dialogues in the event of faults. The functionalities of
this machine are however modelled here by the Error Control component
from the MACF, by components of the Application Context Specific Part
from SACF's and by the Free Associations Controler.

2.7 Structure for AEs

In order to consider addressing aspects, an AE was structured in the way
shown on figure 8. Associated with the invocations of an AE appears
a module called AFEI Selector. This module carries out functions to
determine an AEI to treat an association establishment request made by
a remote system. During an association establishment, the presentation
address of the AE with which the association is to be established must be
necessarily provided by the system that requests the establishment. This
address does not determine, however, an AFE invocation. The association
establishment requestor can, optionally, provide informations about a
specific AEI or API with which the association is to be established. If so
the AFEI Selector module directs the establishment request for this AEIL
If they are not provided, this module is responsible for determining an

21

adequate AFEI to treat the request (or to request the creation of a new
AEI). This determination is done based on local system decisions. If the
request can not be accepted at this level of AEI selection this module
answers negatively to the remote system. Note that this module interacts
with the ACSE, because the informations necessary for the selection of
an AEI (informations about APs, AEs, AEIs and APIs) are transmited
on APDUs of this protocol. The ACSE ASE receives these APDUs and

issues primitives to the AFEI Selector module.

AEIL = AEIs
Selector
7 7
- -
ACSE LT
ya -
Faad
“

Figure 8: Structure for AEs

Since potentially many application protocols can participate in TP
application contexts, this implementation structure should be followed
by all application protocols. It is modular, because the protocol acti-
vities dependent on application contexts are separated from the ASE
implementation, resulting in the ASEs being implemented in a way that
they can be used on many application contexts without modifications.
All the application context dependent aspects are isolated in SACFs.
This structure is not directly derived from implementations of other ap-
plication contexts, but it is useful to structure even them according to
the ideas above.

22

3 Implementation Aspects: the SISDI-OSI

An RM-OSI upper layers implementation is being developed at UNI-
CAMP (Universidade Estadual de Campinas). The objectives of this
implementation is to have a didactic communication environment to be
used in computer network courses, to serve as a basis to gain experience
in protocol implementation issues and to build a platform for the de-
velopment of certain types of applications as, for example, ODP (Open
Distributed Processing) [27] systems.

This system is called SISDI-OSI (Sistema Diddtico para o Modelo OSI
— Didactic System for OSI Model) [21] (figure 9) and its project includes
the implementation of all the Presentation and Session layers functio-
nal units, an interface that maps the Transport Class 4 services onto
TCP/IP, and, at the Application layer, the following protocols: ACSE,
CCR, ROSE, TP, RDA, DS (Directory Services), NM (Network Mana-
gement) and MMS (Manufacturing Message Specification). Although it
does not appear in the RM-OSI/ISO, SISDI-OSI includes also an imple-
mentation of the MMS Application Program Interface, as defined by the
MAP/TOP project [20]. So that the user of SISDI-OSI can access the
system, it is defined an interface that allows the user to submit APs or in-
dividual services and to observe the effects on the system in all the layers.
An ASN.1 compiler [8] [24] was developed that, from ASN.1 descriptions
of PDUs?, generates data structures in the C language that can be used
in the protocols implementations. This compiler also generates coding
and decoding rotines to be used at the Presentation layer. SISDI-OSI
is a second version of a system called SISDI-MAP (Sistema Diddtico do
Protocolo e da Interface de Aplicacio MMS do MAP — Didactic System
of the MMS Protocol and Application Interface from MAP) [23]. SISDI-
MAP had been implemented in IBM-PC compatible systems, under DOS
operating system, using a real time kernel to provide a multitasking en-
vironment. SISDI-OSI is being reprojected, now for the UNIX environ-

2A PDU (Protocolo Data Unit) is a data unit exchanged between entities from the
Presentation layer or from the lower layers. This term can also be used, as it is the
case, to refer to PDUs or APDUs generically

23

ment and it is being developed at SUN workstations. SISDI-MAP had

just a very small part of

SISDI-OSL.

3.1

Because it is a didactic s

USER_OPERATION INTERFACE |
|AP| |AP| |AP| |AP| |AP|
Pl RO o API
e D - MMS DS TP RDA
NM :
|
[
Acil—J
< >"'| Presentation layer | ASN.1 |
ez e >| Session layer |
ez b INTERFACE
TCP/IP

Figure 9: SISDI-OSI

General Implementation Scheme

ystem, SISDI-OSI is structured more based on

simplicity aspects than on efficiency issues. The scheme for the imple-

mentation of protocols (

ASEs, MACFs, SACFs and Presentation and

Session protocols) for this system is shown on figure 10. Each proto-

col is implemented as an

independent UNIX process, that simulates its

instances of use internally (for example, by using tables). To receive

24

messages, that can be service primitives, APDUs or control primitives,
each process has just one queue, whose address is known by the other
processes which must send messages to it. The messages can be selected
by type, although this functionality is currently not used. Fach process
is also attached to a memory area that is shared by all the protocols.
This area contains a buffer used to store the contents of primitives and

APDUs.

’ messages queue messages queue ’
L= I
% Process Process E
A B
(protocol 1) (protocol 2)

Shared
Memory
(Buffer)

Figure 10: Structure for protocol implementation

The queues and shared memory area were implemented using me-
chanisms for interprocess communication from the UNIX System V, res-
pectively Messages and Shared Memory [2, 26]. When a process must
send a message to another process, it allocates an area in the buffer,
writes the contents of the message in this area and puts a message in the
target process queue. The structure of this message, exemplified by the
case of a CCR C-COMMIT .req primitive issue, is shown on figure 11.
The message contains a field to identify the protocol instance to which
the message is related (invoc_id field); a field to indicate the protocol to
which the message relates (component field — in this example, because it

is a CCR primitive, this field has the value CCR); a field to identify if the

25

message contains PDU or primitive data (info_type field); and a pointer
to the area at the buffer where the data are really stored (info_ptr field).
The primitive parameters are stored in a region of the buffer and the
first field of this region is an integer value that determines the type of
the primitive (or APDU).

: ~__invoc.id component info_type info_ptr
3 4 CCR PRIMITIVE
CCR]
process
8 primitive parameters
Buffer (Shared Memory) L indicates the primitive

type (C_.COMMIT req)

Figure 11: Structure of the messages that are put into process queues

The simulation of instances of use of each protocol is done accor-
ding to the language used for the implementation. The ACSE ASE, for
example, was implemented in C. The simulation of the instances was
done then using internal tables, that maintain the state for each indivi-
dual instance of use. The CCR implementation, by its turn, was done
using ESTELLE [10], that is a Formal Description Technique defined
by ISO, and a compiler that translates an ESTELLE specification into
C code [1]. The simulation of the instances was done then by using
ESTELLE module instances. In every case, however, the instances are
simulated internally in an UNIX process and the messages that arrive at
the queue are treated according to the invoc_id field, shown on figure 11.

26

The Semaphore mechanism from UNIX System V [2] is also used, to
control concurrency in accessing the buffer area. The pattern of use of the
buffer by the protocols from the RM-OSI model implies that concurrency
control is only necessary during allocation and deallocation of buffer
areas, because these procedures change buffer management data. After
having been allocated in the buffer an area will not be read or written
concurrently, but by one protocol at a time. This means that it is not
necessary to control concurrency during reading or writing of allocated
data.

When a message is sent to a protocol the sending process must spe-
cify the invocation identifier of the recipient process that the message
relates to. Inside a SAQ a given invocation identifier is used on all the
SAO components to identify the same association. By the same way
the presentation and the session connection that supports an association
have all the same invocation identifier. Inside a SAO and at the Pre-
sentation and Session layers therefore a process that receives a message
with a given invocation identifier just send any APDU or message with
the same invocation identifier.

The MACF however must control the invocation identifiers relating
to the associations it controls. An appropriate project for an Application
Program Interface [19] for TP application contexts should consider this
control. Note that the notion of Application Program Interfaces does
not exist at the RM-OSI, but it is encouraged here. The system must
contain a mechanism to allow the reutilization of invocation identifiers.

3.2 Message Structures

The message structures for the Application and Presentation layers were
developed in such a way to be according to the data structures genera-
ted by the ASN.1 compiler used in the system [24]. The C structures
generated by the compiler define the way the data must be structured
so that the rotines are able to code the outgoing data into BER (Basic
FEncoding Rules) [9]. BER are the codification rules to be used for all
APDUs and PDUs from the Presentation layer in SISDI-OSI. For the

27

outgoing data the coding rotines encode the data from the C data struc-
tures into BER. For incoming data the decoding rotines process the data
in BER and transforms them into the C data structures.

The C data structures generated by the processing of the definitions
of an application protocol APDUs can be included in the code for this
protocol, giving already the declaration of such APDUs. As many pri-
mitive parameters are directly mapped on APDU fields and vice-versa,
the C structures generated by the ASN.1 compiler are also used to struc-
ture primitive parameters. The primitive parameters have the same type
declaration as the APDU fields into which they are mapped.

Primitive parameters that are mapped into presentation PDU fields
are processed in the same way, because the Presentation layer PDUs are
also processed by the ASN.1 compiler, since the encoding rules defined
for this layer is also BER [3]. Primitive parameters that are mapped
into Session PDU fields or that are not mapped into any PDU field are
defined by the protocol implementor.

The structure for primitives and PDUs was done in such a way to
follow exactly the data structures generated by the ASN.1 compiler and
to avoid data copying. The informations that go in the messages that
are put into the queues of the processes are just data to identify the type
of message and the address where the contents of the message are (see
figure 11). The major part of the message, that is its contents, is put
into the buffer in the shared memory. The protocols that must access
them, do it just by manipulating pointers.

The use of pointers provides a very flexible way to perform APDU
concatenations. The SACF identifies the ASE of each APDU and fills
in fields at the user data parameter of Presentation service primitives.
These fields allow the SACF to specify the presentation context to be
used to codify each APDU. This constitutes one more SACF function
that hides this control from the ASEs. A detailed explanation of the
data structures used appear in [25].

The coding rotines at the Presentation layer receives all the APDUs
to be coded in a tree structure together with a Presentation layer PDU.
The compiler then allocates an appropriate area in the buffer to put the

28

result of the codification. If the area is not big enough another one is
allocated and both are linked by using a pointer. The coded data at the
lower layes are treated as a linked list of the buffer areas that contain
them.

An interesting aspect of the data structure used is that when the pri-
mitives, APDUs and Presentation layer PDUs are stored in an area at
the buffer, the first field of this area is an integer that identifies the type
of the primitive or PDU (see figure 11). The remainder part contains
the primitive parameters or the PDU fields. By using pointers, when a
primitive and PDU have correspondent parameters and fields, the trans-
formation of one into the other is made just by changing the value of
this integer field. This avoids data copying.

The definition of types for parameters of primitives from the Session
layer and for the transport primitives implemented (as mentioned above,
just an interface to the TCP protocol was done) is also done in a way
to facilitate the conversion into PDU fields, but the ASN.1 compiler can
not be used, since the codification rules used in these layers are not BER.

3.3 Synchronization Assumption

A useful assumption that was made for the implementation of appli-
cation contexts is to synchronize the processing of all the components
of a SAO and the Presentation and Session layers. This synchroniza-
tion is intended to not permit parallel execution of these components
for the processing of events related to an association and the supporting
presentation and session connections. Parallel execution of activities re-
lated to different associations and presentation and session connections
is however allowed.

If synchronization is not supposed the implementations get much
more difficult due to state inconsistencies that can happen among the
components. One such situation occurs for example when sending the
CCR APDU C-ROLLBACK-RI [12]. This APDU is mapped in the
user data parameter of P-RESYNCHRONIZE primitives. The follo-
wing scenario can happen during a collision of P-RESYNCHRONIZE

29

primitives (figure 12). On figure 12a the C-ROLLBACK-RI is sent to
the SACEF for transmission and the Presentation layer sends a primi-
tive P-RESYNCHRONIZE.ind to the SACF, containing, as user data,
another C-ROLLBACK-RI. The SACF treats first the APDU that co-
mes from the CCR ASE and sends this APDU as user data of a P-
RESYNCHRONIZE.req primitive (figure 12b). A collision then occurs
at the Presentation layer (figure 12¢). This collision is resolved by Session
layer rules and depends on the value of the synchronization point num-
ber, that is a parameter of the P-RESYNCHRONIZE service primitives,
and on which AEI has requested the establishment of the association
[7]. The SACF then would have also to determine the result of the col-
lision, in order to consider the primitive P-RESYNCHRONIZE.ind, and
to decide either to send the APDU to the CCR, or to descard it. The
implementation of the SACF then gets more complicated and there is
duplication of activities. With the assumption of synchronicity the out-
going and the incoming events would happen serially, keeping then state
consistency among the SACF and the Presentation and Session layers.

This synchronization assumption can be implemented using a queue
to store messages to the SACF and to the session entity. This queue
should be managed by a component that would control the sending of
messages to these components depending on the use of the association
and its supporting presentation and session connections. Although this
synchronization assumption implies mechanisms to indicate when a new
message from this queue can be sent to the SACF or session entity, it is
being considered that this mechanism is easier to be done than to con-
trol problems analogous to the one described above. The synchorization
assumption is also useful because the implementations become clearer
and then more probable of being correct.

The lack of synchronization between an ASE and its user may cause
alterations to be done in the protocol state table. The ASE can, for
example, treat an user primitive just after treating an APDU received
from the remote system. If the issue of the primitive was correct if the
APDU was not arrived but incorrect after it, the user would not have
a way to know if it can or not issue the primitive. The synchronization

30

C-ROLLBACK-RI

P-RESYNCHRONIZE.ind
(C-ROLLBACK-RI)

SACF

(waits for P-RESYNCHONIZE.rsp)

CCR

(®)

&~ P-RESYNCHRONIZE.ind
(C-ROLLBACK-RI)

SACF]

P-RESYNCHRONIZE.req
(C-ROLLBACK-RI)

CCR []

©

(waits for P-RESYNCHONIZE .rsp)

SACF
P-RESYNCHRONIZE.ind
?

APRES

P-RESYNCHRONIZE

collision!

Figure 12: Example of a collision caused by lack of synchronization bet-
ween components

31

assumption eliminates this problem for the ASEs whose service user is
inside a SAQ. If the user can not (or should not) be synchronized with the
ASE then the problem continues and perhaps modifications to the state
table must be done. [25] describes the modifications done for the CCR
state table for the cases where a synchronization could not be assumed.

3.4 SAO Mounting

The implementation structure suggested on this technical report tries to
make the implementation of the Application layer components as much
modular as it is possible. After the Association Establisher component
establishes the association and determines the application context to be
used on the association, it activates an appropriate Application Context
Specific Part. This component contains all the informations about the
application context negotiated and processes the SAO mounting.

In this process the Application Context Specific Part component sends
to each ASE that takes part in the application context the informations
necessary to “configure” the ASE for this application context. The in-
formations are, for example, the queue identifier of the process to which
the ASE must send its primitives, the queue identifier of the Application
Context Specific Part in order to the ASE to send its APDUs and some
specific informations dependent on each ASE. For the CCR, for example,
it is sent the title of the remote AE. This information is necessary for
the issue of one of its primitives (C-BEGIN.ind) [11, 12].

4 Conclusion

The objectives of this technical report are to try to give a structure for
application contexts that contain the TP protocol so that they can be
better understood and to show the general structure for the implemen-
tation of these application contexts in a didactic communication system
called SISDI-OSI.

The definition of functionalities to each component was done conside-
ring their precise definitions in order to obtain a very modular structure

32

for the implementations. The presented structure suggests to isolate
the application context dependent activities of application protocols in
SACFs (in the Application Context Specific Part). In this way the im-
plementation of the ASEs can be just “configured” and then can be used
on any application context that defines this ASE as a participant. By
using these configurations, the structure then is also useful for the im-
plementation of other application contexts. This would make a generic
structure for the implementation of a very complex Application layer
and seems to bring great flexibility to the implementation.

The use of the C data structures generated by the ASN.1 compiler
has been very practical in the implementation of the protocols and gives
a very flexible way to treat concatenations of APDUs. The fact that
the coding rotines receives the APDUs and Presentation PDUs to codify
at once tends to make the data structures easier to be handled by the
protocols than schemes in which each APDU is codified isolately, by the
own ASE calling coding rotines, as the scheme described in [4].

The synchronization assumption for the execution of SAO compo-
nents and Presentation and Session layer entities makes the implemen-
tations easier to be done and then more probable of being right. This
assumption however requires new functionalities to control the use of
an association and its supporting presentation and session connections.
In any case it seems that these new functionalities are easier to be re-
alized than having to cope with the problems generated by the lack of
synchronism.

The implementation of the CCR protocol was done using the TDF
ESTELLE. This generated a specification of the relationship of this pro-
tocol with other Application layer components that is according to the
implementation structure here defined. This specification can also be
used to complement the TP ESTELLE specification present in [18] and
so allows for the study of a semi-automatic implementation of these pro-
tocols.

The SISDI-OSI is however under development and much work is still
necessary to be done. Particularly the TP implementation is not com-
plete. Other implementations for sure will bring more informations about

33

this implementation structure and its applicability to other application
contexts, not only TP application contexts.

References

[1]

[2]

EWS User’s Manual — Fsprit Project 265 — SEDOS Fstelle De-
monstrator, June 1989.

Maurice J. Bach. The Design of the UNIX Operating System.
Prentice-Hall Software Series. Prentice-Hall, Inc., EUA, 1986.

CCITT. Presentation protocol specification for open systems inter-
connection for CCITT applications — recommendation X.226, 1988.

Sanjay B. Chikarmane. Upper layer architecture for HP MAP 3.0
OSI services. Hewlett-Packard Journal, pages 11-14, August 1990.

ISO. Information processing systems — open systems interconnection
— basic reference model — ISO 7498, 1984.

ISO. Information processing systems — open systems interconnection
— basic connection oriented session service definition — ISO 8326,
August 1987.

ISO. Information processing systems — open systems interconnection
— basic connection oriented session protocol specification — ISO 8327,
August 1987.

ISO. Information processing systems — open systems interconnection
— specification of abstract syntax notation one (ASN.1) - ISO 8824,
December 1987.

ISO. Information processing systems — open systems interconnection
— specification of basic encoding rules for abstract syntax notation
one (ASN.1) — ISO 8825, November 1987.

34

[10] ISO. Information processing systems — open systems interconnection
— estelle - a formal description technique based on an extended state
transition model — ISO/IEC ISO 9074, November 1988.

[11] ISO. CCR service definition — ISO 9804 — final text, February 1990.

[12] ISO. Information technology — open systems interconnection — pro-
tocol specification for the commitment, concurrency and recovery

service element — ISO/IEC 9805, April 1990.

[13] ISO. Information processing systems — open systems interconnection
— application layer structure — ISO/IEC DIS 9545, 1988.

. Information processing systems — open systems interconnection

14] ISO. Inf tion p ing syst pen syst int ti
— remote database access — part 1 : Generic model, service and
protocol, May 1991.

[15] ISO. IPS — OSI — remote database access — part 2: SQL specializa-
tion, February 1990.

[16] ISO. Information technology — open systems interconnection — dis-
tributed transaction processing — part 1: OSI TP model — ISO/IEC
10026-1, May 1991.

[17] ISO. Information technology — open systems interconnection — dis-
tributed transaction processing — part 2: OSI TP service — ISO/IEC
DIS 10026-2, May 1991.

[18] ISO. Information technology — open systems interconnection — dis-
tributed transaction processing — part 3: Protocol specification —

ISO/IEC 10026-3.2, October 1991.

[19] Edmundo Roberto Mauro Madeira and Manuel de Jesus Mendes. An
application interface model for communication software. In IFEFE
Global Telecommunications Conference — GLOBECOM’90, San Di-
ego, EUA, December 1990.

[20]

[21]

[26]

[27]

35

Manuel J. Mendes. Redes Locais Industriais. UNICAMP/CONSALI,
1990.

Manuel de Jesus Mendes, Edmundo Roberto Mauro Madeira,
Flavio Morais de Assis Silva, Elza Kiyomi Shimabukuro Garcia, Li-
siane Maria Bannwart Ambiel, Luiz Otavio Merlin Miranda, Maria
Inés Valderrama Restovic, Milton T. Sakamoto, and Célio Toshihiro
Fujito. SISDI-OSI: Sistema diddtico para o modelo OSI. In 17o.
Simposio Brasileiro de Redes de Computadores, UNICAMP, Cam-
pinas, SP, May 1993.

C. Mohan and B. Lindsay. Efficient commit protocols for the tree of
processes model os distributed transactions. Technical report, IBM
Research Laboratory, San Jose, EUA, 1983.

Antenor Paglioni Junior, Durval Carvalho Avila J acintho, Edmundo
Roberto Mauro Madeira, Ivo Alexandre Fernandes, Jaime Nicolato
Correa, José Mario Souza Lima, Maria Cristina Zabeu, Veronica
Lima Pimentel de Sousa, and Manuel de Jesus Mendes. SISDI-MAP:
Sistema didatico do protocolo e da interface de aplicacio MMS do
MAP. In Semindrio Franco-Brasileiro em Sistemas Informdticos
Distribuidos, Florianépolis, SC, September 1989.

Marfa Inés Valderrama Restovic. Compilador ASN.1 e Codifi-
cador/Decodificador BER. Master thesis, UNICAMP, September
1992.

Flavio Morais de Assis Silva. Um Refinamento da Fstrutura da
Camada de Aplicagio do RM-OSI/ISO e Aspectos de sua Imple-
mentacdo em um Sistema Diddtico de Comunicagdo. Master thesis,

UNICAMP, May 1993.

SUN Microsystems, USA. Programming Utilities and Libraries,
1990. Revision A of 27 March.

Volker Tschammer, Manuel de Jesus Mendes, Wanderley Lopes
de Souza, Edmundo Roberto Mauro Madeira, and Waldomiro P.

36

de Loyolla. Processamento distribuido aberto e o modelo rm-
odp/iso. In Ilo. Simpdsio Brasileiro de Redes de Computadores,
UNICAMP, Campinas, SP, May 1993.

01/92

02/92

03/92

04/92

05/92

06/92

07/92

08/92

09/92

10/92

11/92

12/92

Relatdorios Técnicos — 1992

Applications of Finite Automata Representing Large Vo-
cabularies, C. L. Lucchesi, T. Kowaltowski

Point Set Pattern Matching in d-Dimensions, P. J. de Re-
zende, D. T. Lee

On the Irrelevance of Edge Orientations on the Acy-
clic Directed Two Disjoint Paths Problem, C. L. Lucchesi,
M. C. M. T. Giglio

A Note on Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams,
W. Jacometti

An (l,u)-Transversal Theorem for Bipartite Graphs,
C. L. Lucchesi, D. H. Younger

Implementing Integrity Control in Active Databases,

C. B. Medeiros, M. J. Andrade

New Experimental Results For Bipartite Matching,
J. C. Setubal

Maintaining Integrity Constraints across Versions in a Da-
tabase, C. B. Medeiros, (. Jomier, W. Cellary

On Clique-Complete Graphs, C. L. Lucchesi, C. P. Mello,
J. L. Szwarcfiter

Examples of Informal but Rigorous Correctness Proofs for
Tree Traversing Algorithms, T. Kowaltowski

Debugging Aids for Statechart-Based Systems, V. G. S.
Elias, H. Liesenberg

Browsing and Querying in Object-Oriented Databases,
J. L. de Oliveira, R. de O. Anido

37

01/93

02/93

03/93

04/93

05/93

06/93

07/93

08/93

09/93

10/93

Relatérios Técnicos — 1993

Transforming Statecharts into Reactive Systems, Antonio
G. Figueiredo Filho, Hans K. F. Liesenberg

The Hierarchical Ring Protocol: An Efficient Scheme
for Reading Replicated Data, Nabor das C. Mendonga, Ri-
cardo de O. Anido

Matching Algorithms for Bipartite Graphs, Herbert A. Baier
Saip, Claudio L. Lucchesi

A lexBFS Algorithm for Proper Interval Graph Recog-
nition, Celina M. H. de Figueiredo, Jodo Meidanis, Célia P. de
Mello

Sistema Gerenciador de Processamento Cooperativo,
Ivonne. M. Carrazana, Nelson. C. Machado, Célio. C. Guimardes

Implementacao de um Banco de Dados Relacional Dotado
de uma Interface Cooperativa, Nascif A. Abousalh Neto, Ari-

adne M. B. R. Carvalho

Estadogramas no Desenvolvimento de Interfaces, Fabio N.
de Lucena, Hans K. FE. Liesenberg

Introspection and Projection in Reasoning about Other
Agents, Jacques Wainer

Codificagdo de Sequéncias de Imagens com Quantizagio
Vetorial, Carlos Antonio Reinaldo Costa, Paulo Licio de Geus

Minimizag¢do do Consumo de Energia em um Sistema para
Aquisi¢ao de Dados Controlado por Microcomputador,
Paulo Cesar Centoducatte, Nelson Castro Machado

38

Departamento de Ciéncia da Computacdo — IMECC
Caiza Postal 6065

Universidade Fstadual de Campinas

13081-970 — Campinas — SP

BRASIL

reltec@dcc.unicamp.br

39

