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Introduction

Asymmetric cryptographic provides confidentiality, but how to provide
integrity, authentication and non-repudiation?

Problem: How to protect against chosen-ciphertext attacks?
Solutions: Digital signatures!

Analogous to hand signatures:

- Entity S with public key b “signs” a message m in a way that allows
anyone to verify the origin of S and that m was not modified.

Main applications:
- Secure distribution of software.

- Management of electronic documents.
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Introduction

Advantages over MACs:
- No need to establish a shared key with each destination.
- Public and transferable verification.

- Non-repudiation.

Disadvantages compared to MACs:
- Message expansion.

- Lower performance.

Important: Signature operation is not necessarily an inverse of
asymmetric encryption!
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Digital signatures

Sets:
- Message space P.
- Signature space A.
- Key space K.

Algorithms:
- Signature algorithm Sk : P — A.
- Verification algorithm Vi : P x A — {0,1}.
- Consistency:
1 if s =5Sk(m)

VK € K,VYm e P, Vk(m,s) = _
” k(m.s) {0 if s # Sk(m).
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Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!
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Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition
Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.
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Adversary strategy

Active adversary that intercepts and manipulates messages m and
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Notion that the adversary should not be capable of forging a signature
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Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.

Problem: Adversary can always replay previously captured (m,s).

Solution: Prevent replays in the upper layer (application, transport
protocol).
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Forging attacks

Key-only attack:

- Adversary knows only the public verification key.

Known-message attack:

- Adversary has access to messages and corresponding signatures.

Chosen-message attack:

- Adversary chooses a message to be signed and receives the
corresponding signature.
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Adversary objectives

Existential forgery:

- Adversary is capable of creating a valid signature for at least one
message, without knowing an authentic signature for that message.
In other words, create a pair (m,s) such that vg(x,y) = 1.

Selective forgery:

- Adversary is able to create a signature s valid for a message m
chosen previously, without knowing an authentic signature for m.

Universal forgery:

- Adversary computes signing key and creates authentic signatures for
any message m € M.

Important: Security under computational assumptions!
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RSA signature (Rivest, Shamir, Adleman, 1977)

Key generation:
1 Generate primes p and g with k/2 bits.
2 Compute N = pg and ¢(N) = (p—1)(g — 1).
3 Select b such that gcd(b, #(N)) = 1. (small prime?)
4 Compute a such that a = b~ mod ¢(N).
5 M =S8 =127Zy.
6 K=(N,p,q,a,b).
7 Public key is (b, N), private key is (a, N, p, q).

Signature: Compute s = Sx(m) = m? mod n.

Verification: Compute Vi(m,s) =1 <> m = s mod n.
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RSA signature

Security issues:

- Adversary can choose arbitrary s € Zj}, and obtain a message with
valid signature s® mod N.
Important: Adversary does not have complete control over m.

- Adversary can forge a signature s over message m = mymo if
capable of obtaining signatures s1, s for m; € Z}, and
my = m/m; mod N:

sP=(s1 )P =(mi - m3)>=m -my=mmodN.

Important: Adversary must convince signer to sign random-looking
messages.
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RSA signature

Security issues:

- Adversary can choose arbitrary s € Zj}, and obtain a message with
valid signature s® mod N.
Important: Adversary does not have complete control over m.

- Adversary can forge a signature s over message m = mymo if
capable of obtaining signatures s1, s for m; € Z}, and
my = m/m; mod N:

b

"= (51 %)" = (mfi - m3)P

=my-my =mmod N.

Important: Adversary must convince signer to sign random-looking
messages.

Solution: Employ a hash function and compute Sk (H(m))!
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Digital signatures and hash functions

Key-only attack:

- Ineffective if hash function is preimage resistant.

Known-message attack:

- Ineffective if hash function is second preimage resistant.

Chosen-message attack:

- Ineffective if hash function is collision resistant.
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Other signature schemes

It is possible to instantiate digital signatures from other security
assumptions:

- Discrete logarithm (ElGamal, Schnorr, DSA).

- Discrete logarithm in elliptic curves (ECDSA).

- Cryptographic hash functions alone (Merkle, Lamport).

Digital signatures based on the discrete logarithm are usually
probabilistic:

- Many signatures are valid for the same message.

- Verification needs to accept all of these signatures.
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ElGamal signature (EIGamal, 1985)

Key generation:
1 Choose prime p such that p — 1 has a big factor and primitive
element o € Zy,.
2 M=7p,8="7, X Lp-1.
3 K={(p,a,a,B): 8 =a? (mod p).
4 Public key is b = (p, a, B), private key is a.
5 Let H:{0,1}* — Zp_1 a cryptographic hash function.

Signature:
1 Choose integer k uniformly at random from Zj,_;.
2 Compute S;(m, k) = (7, 6), where v = aX mod p and
§ = (H(m) — ay)k~! mod (p — 1).

Verification:
1 Compute Vy(m, (7,6)) =1 < 8770 = oM™ (mod p).

Important: Verify consistency!
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ElGamal signature (EIGamal, 1985)
If signature was correctly constructed, verification will accept it:

By’ = a™ak (mod p)
™ (mod p),

because we have that ay + kd = H(m) (mod p —1).
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ElGamal signature (EIGamal, 1985)

If signature was correctly constructed, verification will accept it:

By’ = a™ak (mod p)
™ (mod p),

because we have that ay + kd = H(m) (mod p —1).
Intuition from the verification:

oM = 379 = 0@7+k0 (mod p).

Since « is primitive element modulo p, the congruence is valid iff the
exponents are congruent modulo ¢(p) = p — 1. Solving for §, We obtain
the signature equation:

§=(H(m)—ay)k™! (mod p—1).
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ElGamal signatures (EIGamal, 1985)

Security issues:
- If attacker chooses 7, needs to solve § = Iogw(aH(’")ﬁ_V).

If attacker chooses 4, needs to solve 377 = aH(™ (mod p).

Recovering the private key from public key amounts to computing
a=log, .
Hash function prevents existential forgery.

Important: The scheme does not have a known security reduction.
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ElGamal signatures (EIGamal, 1985)

Protocol failures:

1 Leaking k with mdc(~y,p — 1) =1 allows to recover the private key
a=(H(m) - ké)y~t (mod p —1).
2 The same k used in two signatures (my, (7, 01)) e (ma, (7, 02)):

By =a™, 192 =a™ (mod p).

Dividing the two equations above:

m—my

amem = (mod p)
m —my = k(01 —352) (modp—1).

81=0r — k(61—62)

Let d = mdc(51 — o, p— 1), x' = (m1 — mz)/d,(SI = ((51 - 52)/d
X' = k' (mod (p—1)/d) = k=x'8'"" (mod (p—1)/d).

Correct: One of the two d values of k modulo (p — 1) with v = o* (mod p).
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Schnorr signature (Schnorr, 1989)
Key generation:
1 Choose primes p, g with g|(p — 1) and g much smaller than p.

2 Let a= agp_l)/q € Zy, the g-th root of 1 modulo p, with ag
primitive element modulo p.

3M={0,1}*,8 =Zg X Zqg.

4 K={(p,q,,a,8) : B =a? (mod p).

5 The public key is b = (p, g, , ), the private key is a.
6 Let H:{0,1}* — Zq a cryptographic hash function.

Signature:
1 Choose integer k uniformly at random from Z7.
2 Compute Sy(m, k) = (7, 6), where v = H(m||a* mod p) and
d = k+ ay mod q.

Verification: V,(m, (v,6)) = 1 < H(m||a’8~7 mod p) = 1.

Important: Shorter signatures and formal security under ideal H!
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Digital Signature Algorithm (NIST, 1991)

Small modification to ElGamal signature:
§ = (H(m) +ay)k™* (mod p —1).
The verification equation changes to a"(™M 37 =~ (mod p).

Supposing g|(p — 1) like in Schnorr, a, 3, have order g. Reducing
exponents modulo g:

5 = (H(m) +a7)k™"  (mod q) (1)

Now define 4/ = v mod g = (aX mod p) mod q. We can replace v by '
in the previous equation and the verification equation changes to
oMM BY" =49 (mod p).

Multiplying (1) by &' = 6! mod g, # 0, we obtain:

aHmd 579" mod p =~ — (MY 37" mod p) mod g = /.
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Digital Signature Algorithm (NIST, 1991)
Key generation:

1 Choose primes p, g with g|(p — 1) and g much smaller than p.

2 Let a= a(()p_l)/q € Zy, the g-th root of 1 modulo p, with ag
primitive element modulo p.

3 M={0,1}*,8 = Zg x Zq

4 K={(p,q,,a,8): B =a? (mod p).

5 The public key is b = (p, g, a, B), the private key is a.
6 Let H:{0,1}* — Z4 a cryptographic hash function.

Signature:
1 Choose integer k uniformly at random from Z.

2 Compute S;(m, k) = (7, ), with 7,8 # 0, where
v = (¥ mod p) mod g and § = (H(m) + ay)k~* mod gq.

1 Verification: V,(m, (v,6)) = 1 < ("™ 379 mod p) mod g = 7.
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Elliptic Curve DSA (NIST, 2000)

Key generation:
1 Choose curve E(F,) and let A be a point or prime order q.
2 M ={0,1}*,8 = Zy x Zg,
3 K={(p,q,E,A aB):B=aA
4 Public key is b= (p, q, E, A, B), private key is a.
5 Let H:{0,1}* — Z4 a cryptographic hash function.

Signature:
1 Choose integer k uniformly at random from Zg.
2 Compute S;(m, k) = (r,s), with r,s # 0, where
kA = (u,v),r = umod q,s = (H(m) + ar)k=! mod q.

Verification: Let s’ = s~ mod g and (u,v) = (H(m)s')A + (rs')B. We
have that Vj,(m,(r,s)) =1 <> umod g =r.
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Hash-based one-time signatures (Lamport, 1979)
Key generation:
1 Let H a cryptographic hash function at the security level n.
2 Forie {1,...,4(n)} choose random y;q,y;1 < {0,1}".
3 Compute xjo = H(yio) and xi1 = H(yi1).
4 The public key b is composed by the values x;; and the private key
a by the values y; ;.

Signature:
1 On message m = my --- myy) € {0, 114" and private key a,
compute signature s = (y1,m,, . - - ,yg(n)’mg(n)).

Verification:
1 On message m = my - -- my,) € {0, 114" signature
s = (s1- -~ Sy(n)), and public key b, check if H(s;) = xi m;.

Important: Security of the signature scheme can be reduced to security

of H. Keys can never be repeated.
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Merkle hash-based signatures (Merkle, 1979)

Define (xj, y;) to be the j-th one-time key pair. Compute inner nodes by
applying H recursively. The public key is the root of the tree. A signature
can be computed by traversing the tree to select a one-time key pair.

‘ H(Y[0]) ‘ ‘ H(Y[1]) ‘ ‘ H(Y[2D) ‘ ‘ H(Y[3D) ‘ ‘ H(Y[4D) ‘ ‘ H(Y[5D) ‘ ‘ H(Y[6]) ‘ ‘ H(Y[7]) ‘
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Merkle hash-based signatures (Merkle, 1979)

Verification involves traversing the tree upwards and checking if the last
hash matches the public key.

’ H(Y[0D) ‘ ‘ H(Y[1D) ‘ |H(Y[i=2]) | ’ H(Y[3D) | ‘ H(Y[4]) ‘ ‘ H(Y[5D) ‘ ‘ H(Y[6]) ‘ ‘ H(Y[7]) ‘
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