
Digital signature schemes

Diego F. Aranha

Institute of Computing
UNICAMP

Diego Aranha (IC) Digital signature schemes 1/23

Introduction

Asymmetric cryptographic provides confidentiality, but how to provide
integrity, authentication and non-repudiation?

Problem: How to protect against chosen-ciphertext attacks?

Solutions: Digital signatures!

Analogous to hand signatures:

- Entity S with public key b “signs” a message m in a way that allows
anyone to verify the origin of S and that m was not modified.

Main applications:

- Secure distribution of software.

- Management of electronic documents.

Diego Aranha (IC) Digital signature schemes 2/23

Introduction

Advantages over MACs:

- No need to establish a shared key with each destination.

- Public and transferable verification.

- Non-repudiation.

Disadvantages compared to MACs:

- Message expansion.

- Lower performance.

Important: Signature operation is not necessarily an inverse of
asymmetric encryption!

Diego Aranha (IC) Digital signature schemes 3/23

Digital signatures

Sets:

- Message space P.

- Signature space A.

- Key space K.

Algorithms:

- Signature algorithm SK : P → A.

- Verification algorithm VK : P ×A → {0, 1}.
- Consistency:

∀K ∈ K,∀m ∈ P,VK (m, s) =

{
1 if s = SK (m)

0 if s 6= SK (m).

Diego Aranha (IC) Digital signature schemes 4/23

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).

Solution: Prevent replays in the upper layer (application, transport
protocol).

Diego Aranha (IC) Digital signature schemes 5/23

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).

Solution: Prevent replays in the upper layer (application, transport
protocol).

Diego Aranha (IC) Digital signature schemes 5/23

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).

Solution: Prevent replays in the upper layer (application, transport
protocol).

Diego Aranha (IC) Digital signature schemes 5/23

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).

Solution: Prevent replays in the upper layer (application, transport
protocol).

Diego Aranha (IC) Digital signature schemes 5/23

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Adversary strategy

Active adversary that intercepts and manipulates messages m and
signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature
for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).

Solution: Prevent replays in the upper layer (application, transport
protocol).

Diego Aranha (IC) Digital signature schemes 5/23

Forging attacks

Key-only attack:

- Adversary knows only the public verification key.

Known-message attack:

- Adversary has access to messages and corresponding signatures.

Chosen-message attack:

- Adversary chooses a message to be signed and receives the
corresponding signature.

Diego Aranha (IC) Digital signature schemes 6/23

Adversary objectives

Existential forgery:

- Adversary is capable of creating a valid signature for at least one
message, without knowing an authentic signature for that message.
In other words, create a pair (m, s) such that vK (x , y) = 1.

Selective forgery:

- Adversary is able to create a signature s valid for a message m
chosen previously, without knowing an authentic signature for m.

Universal forgery:

- Adversary computes signing key and creates authentic signatures for
any message m ∈M.

Important: Security under computational assumptions!

Diego Aranha (IC) Digital signature schemes 7/23

RSA signature (Rivest, Shamir, Adleman, 1977)

Key generation:

1 Generate primes p and q with k/2 bits.

2 Compute N = pq and φ(N) = (p − 1)(q − 1).

3 Select b such that gcd(b, φ(N)) = 1. (small prime?)

4 Compute a such that a = b−1 mod φ(N).

5 M = S = ZN .

6 K = (N, p, q, a, b).

7 Public key is (b,N), private key is (a,N, p, q).

Signature: Compute s = SK (m) = ma mod n.

Verification: Compute VK (m, s) = 1↔ m ≡ sb mod n.

Diego Aranha (IC) Digital signature schemes 8/23

RSA signature

Security issues:

- Adversary can choose arbitrary s ∈ Z∗N and obtain a message with
valid signature sb mod N.
Important: Adversary does not have complete control over m.

- Adversary can forge a signature s over message m = m1m2 if
capable of obtaining signatures s1, s2 for m1 ∈ Z∗N and
m2 = m/m1 mod N:

sb = (s1 · s2)b = (ma
1 ·ma

2)b = m1 ·m2 = m mod N.

Important: Adversary must convince signer to sign random-looking
messages.

Solution: Employ a hash function and compute SK (H(m))!

Diego Aranha (IC) Digital signature schemes 9/23

RSA signature

Security issues:

- Adversary can choose arbitrary s ∈ Z∗N and obtain a message with
valid signature sb mod N.
Important: Adversary does not have complete control over m.

- Adversary can forge a signature s over message m = m1m2 if
capable of obtaining signatures s1, s2 for m1 ∈ Z∗N and
m2 = m/m1 mod N:

sb = (s1 · s2)b = (ma
1 ·ma

2)b = m1 ·m2 = m mod N.

Important: Adversary must convince signer to sign random-looking
messages.

Solution: Employ a hash function and compute SK (H(m))!

Diego Aranha (IC) Digital signature schemes 9/23

Digital signatures and hash functions

Key-only attack:

- Ineffective if hash function is preimage resistant.

Known-message attack:

- Ineffective if hash function is second preimage resistant.

Chosen-message attack:

- Ineffective if hash function is collision resistant.

Diego Aranha (IC) Digital signature schemes 10/23

Other signature schemes

It is possible to instantiate digital signatures from other security
assumptions:

- Discrete logarithm (ElGamal, Schnorr, DSA).

- Discrete logarithm in elliptic curves (ECDSA).

- Cryptographic hash functions alone (Merkle, Lamport).

Digital signatures based on the discrete logarithm are usually
probabilistic:

- Many signatures are valid for the same message.

- Verification needs to accept all of these signatures.

Diego Aranha (IC) Digital signature schemes 11/23

ElGamal signature (ElGamal, 1985)
Key generation:

1 Choose prime p such that p − 1 has a big factor and primitive
element α ∈ Z∗p.

2 M = Z∗p,S = Z∗p × Zp−1.

3 K = {(p, α, a, β) : β ≡ αa (mod p).

4 Public key is b = 〈p, α, β〉, private key is a.

5 Let H : {0, 1}∗ → Zp−1 a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from Z∗p−1.

2 Compute Sa(m, k) = (γ, δ), where γ = αk mod p and
δ = (H(m)− aγ)k−1 mod (p − 1).

Verification:

1 Compute Vb(m, (γ, δ)) = 1↔ βγγδ ≡ αH(m) (mod p).

Important: Verify consistency!
Diego Aranha (IC) Digital signature schemes 12/23

ElGamal signature (ElGamal, 1985)

If signature was correctly constructed, verification will accept it:

βγγδ ≡ αaγαkδ (mod p)

≡ αH(m) (mod p),

because we have that aγ + kδ ≡ H(m) (mod p − 1).

Intuition from the verification:

αH(m) ≡ βγγδ ≡ αaγ+kδ (mod p).

Since α is primitive element modulo p, the congruence is valid iff the
exponents are congruent modulo φ(p) = p − 1. Solving for δ, We obtain
the signature equation:

δ = (H(m)− aγ)k−1 (mod p − 1).

Diego Aranha (IC) Digital signature schemes 13/23

ElGamal signature (ElGamal, 1985)

If signature was correctly constructed, verification will accept it:

βγγδ ≡ αaγαkδ (mod p)

≡ αH(m) (mod p),

because we have that aγ + kδ ≡ H(m) (mod p − 1).

Intuition from the verification:

αH(m) ≡ βγγδ ≡ αaγ+kδ (mod p).

Since α is primitive element modulo p, the congruence is valid iff the
exponents are congruent modulo φ(p) = p − 1. Solving for δ, We obtain
the signature equation:

δ = (H(m)− aγ)k−1 (mod p − 1).

Diego Aranha (IC) Digital signature schemes 13/23

ElGamal signatures (ElGamal, 1985)

Security issues:

- If attacker chooses γ, needs to solve δ = logγ(αH(m)β−γ).

- If attacker chooses δ, needs to solve βγγδ ≡ αH(m) (mod p).

- Recovering the private key from public key amounts to computing
a = logα β.

- Hash function prevents existential forgery.

Important: The scheme does not have a known security reduction.

Diego Aranha (IC) Digital signature schemes 14/23

ElGamal signatures (ElGamal, 1985)

Protocol failures:

1 Leaking k with mdc(γ, p − 1) = 1 allows to recover the private key
a = (H(m)− kδ)γ−1 (mod p − 1).

2 The same k used in two signatures (m1, (γ, δ1)) e (m2, (γ, δ2)):

βγγδ1 ≡ αm1 , βγγδ2 ≡ αm2 (mod p).

Dividing the two equations above:

αm1−m2 ≡ γδ1−δ2 ≡ αk(δ1−δ2) (mod p)

m1 −m2 ≡ k(δ1 − δ2) (mod p − 1).

Let d = mdc(δ1 − δ2, p − 1), x ′ = (m1 −m2)/d , δ′ = (δ1 − δ2)/d :

x ′ ≡ kδ′ (mod (p − 1)/d)→ k = x ′δ′
−1

(mod (p − 1)/d).

Correct: One of the two d values of k modulo (p − 1) with γ ≡ αk (mod p).

Diego Aranha (IC) Digital signature schemes 15/23

Schnorr signature (Schnorr, 1989)
Key generation:

1 Choose primes p, q with q|(p − 1) and q much smaller than p.

2 Let α = α
(p−1)/q
0 ∈ Z∗p the q-th root of 1 modulo p, with α0

primitive element modulo p.

3 M = {0, 1}∗,S = Zq × Zq.

4 K = {(p, q, α, a, β) : β ≡ αa (mod p).

5 The public key is b = 〈p, q, α, β〉, the private key is a.

6 Let H : {0, 1}∗ → Zq a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from Z∗q.

2 Compute Sa(m, k) = (γ, δ), where γ = H(m||αk mod p) and
δ = k + aγ mod q.

Verification: Vb(m, (γ, δ)) = 1↔ H(m||αδβ−γ mod p) = γ.

Important: Shorter signatures and formal security under ideal H!
Diego Aranha (IC) Digital signature schemes 16/23

Digital Signature Algorithm (NIST, 1991)
Small modification to ElGamal signature:

δ = (H(m) + aγ)k−1 (mod p − 1).

The verification equation changes to αH(m)βγ ≡ γδ (mod p).

Supposing q|(p − 1) like in Schnorr, α, β, γ have order q. Reducing
exponents modulo q:

δ = (H(m) + aγ)k−1 (mod q) (1)

Now define γ′ = γ mod q = (αk mod p) mod q. We can replace γ by γ′

in the previous equation and the verification equation changes to
αH(m)βγ

′ ≡ γδ (mod p).

Multiplying (1) by δ′ = δ−1 mod q, δ 6= 0, we obtain:

αH(m)δ′βγ
′δ′ mod p = γ → (αH(m)δ′βγ

′δ′ mod p) mod q = γ′.

Diego Aranha (IC) Digital signature schemes 17/23

Digital Signature Algorithm (NIST, 1991)
Key generation:

1 Choose primes p, q with q|(p − 1) and q much smaller than p.

2 Let α = α
(p−1)/q
0 ∈ Z∗p the q-th root of 1 modulo p, with α0

primitive element modulo p.

3 M = {0, 1}∗,S = Zq × Zq.

4 K = {(p, q, α, a, β) : β ≡ αa (mod p).

5 The public key is b = 〈p, q, α, β〉, the private key is a.

6 Let H : {0, 1}∗ → Zq a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from Z∗q.

2 Compute Sa(m, k) = (γ, δ), with γ, δ 6= 0, where
γ = (αk mod p) mod q and δ = (H(m) + aγ)k−1 mod q.

1 Verification: Vb(m, (γ, δ)) = 1↔ (αH(m)δ′βγδ
′

mod p) mod q = γ.

Diego Aranha (IC) Digital signature schemes 18/23

Elliptic Curve DSA (NIST, 2000)

Key generation:

1 Choose curve E (Fp) and let A be a point or prime order q.

2 M = {0, 1}∗,S = Z∗q × Z∗q.

3 K = {(p, q,E ,A, a,B) : B = aA.

4 Public key is b = 〈p, q,E ,A,B〉, private key is a.

5 Let H : {0, 1}∗ → Zq a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from Z∗q.

2 Compute Sa(m, k) = (r , s), with r , s 6= 0, where
kA = (u, v), r = u mod q, s = (H(m) + ar)k−1 mod q.

Verification: Let s ′ = s−1 mod q and (u, v) = (H(m)s ′)A + (rs ′)B. We
have that Vb(m, (r , s)) = 1↔ u mod q = r .

Diego Aranha (IC) Digital signature schemes 19/23

Hash-based one-time signatures (Lamport, 1979)
Key generation:

1 Let H a cryptographic hash function at the security level n.

2 For i ∈ {1, . . . , `(n)} choose random yi ,0, yi ,1 ← {0, 1}n.

3 Compute xi ,0 = H(yi ,0) and xi ,1 = H(yi ,1).

4 The public key b is composed by the values xi ,j and the private key
a by the values yi ,j .

Signature:

1 On message m = m1 · · ·m`(n) ∈ {0, 1}`(n) and private key a,
compute signature s = (y1,m1 , . . . , y`(n),m`(n)

).

Verification:

1 On message m = m1 · · ·m`(n) ∈ {0, 1}`(n), signature
s = (s1 · · · s`(n)), and public key b, check if H(si) = xi ,mi

.

Important: Security of the signature scheme can be reduced to security
of H. Keys can never be repeated.

Diego Aranha (IC) Digital signature schemes 20/23

Merkle hash-based signatures (Merkle, 1979)

Define (xj , yj) to be the j-th one-time key pair. Compute inner nodes by
applying H recursively. The public key is the root of the tree. A signature
can be computed by traversing the tree to select a one-time key pair.

Diego Aranha (IC) Digital signature schemes 21/23

Merkle hash-based signatures (Merkle, 1979)

Verification involves traversing the tree upwards and checking if the last
hash matches the public key.

Diego Aranha (IC) Digital signature schemes 22/23

