Digital signature schemes

Diego F. Aranha
Institute of Computing UNICAMP

Introduction

Asymmetric cryptographic provides confidentiality, but how to provide integrity, authentication and non-repudiation?

Problem: How to protect against chosen-ciphertext attacks?
Solutions: Digital signatures!
Analogous to hand signatures:

- Entity S with public key b "signs" a message m in a way that allows anyone to verify the origin of S and that m was not modified.

Main applications:

- Secure distribution of software.
- Management of electronic documents.

Introduction

Advantages over MACs:

- No need to establish a shared key with each destination.
- Public and transferable verification.
- Non-repudiation.

Disadvantages compared to MACs:

- Message expansion.
- Lower performance.

Important: Signature operation is not necessarily an inverse of asymmetric encryption!

Digital signatures

Sets:

- Message space \mathcal{P}.
- Signature space \mathcal{A}.
- Key space \mathcal{K}.

Algorithms:

- Signature algorithm $S_{K}: \mathcal{P} \rightarrow \mathcal{A}$.
- Verification algorithm $V_{K}: \mathcal{P} \times \mathcal{A} \rightarrow\{0,1\}$.
- Consistency:

$$
\forall K \in \mathcal{K}, \forall m \in \mathcal{P}, V_{K}(m, s)= \begin{cases}1 & \text { if } s=S_{K}(m) \\ 0 & \text { if } s \neq S_{K}(m)\end{cases}
$$

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!

Secure message authentication

Important: How to formalize security of digital signatures?

We need to define the adversary strategy!
Adversary strategy
Active adversary that intercepts and manipulates messages m and signatures n in transit.

Secure message authentication

Important: How to formalize security of digital signatures?
We need to define the adversary strategy!
Adversary strategy
Active adversary that intercepts and manipulates messages m and signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature for a message of his/her choice.

Secure message authentication

Important: How to formalize security of digital signatures?
We need to define the adversary strategy!
Adversary strategy
Active adversary that intercepts and manipulates messages m and signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).

Secure message authentication

Important: How to formalize security of digital signatures?
We need to define the adversary strategy!
Adversary strategy
Active adversary that intercepts and manipulates messages m and signatures n in transit.

Intuition

Notion that the adversary should not be capable of forging a signature for a message of his/her choice.

Problem: Adversary can always replay previously captured (m, s).
Solution: Prevent replays in the upper layer (application, transport protocol).

Forging attacks

Key-only attack:

- Adversary knows only the public verification key.

Known-message attack:

- Adversary has access to messages and corresponding signatures.

Chosen-message attack:

- Adversary chooses a message to be signed and receives the corresponding signature.

Adversary objectives

Existential forgery:

- Adversary is capable of creating a valid signature for at least one message, without knowing an authentic signature for that message. In other words, create a pair (m, s) such that $v_{K}(x, y)=1$.

Selective forgery:

- Adversary is able to create a signature s valid for a message m chosen previously, without knowing an authentic signature for m.

Universal forgery:

- Adversary computes signing key and creates authentic signatures for any message $m \in \mathcal{M}$.

Important: Security under computational assumptions!

RSA signature (Rivest, Shamir, Adleman, 1977)

Key generation:

1 Generate primes p and q with $k / 2$ bits.
2 Compute $N=p q$ and $\phi(N)=(p-1)(q-1)$.
3 Select b such that $\operatorname{gcd}(b, \phi(N))=1$. (small prime?)
4 Compute a such that $a=b^{-1} \bmod \phi(N)$.
${ }_{5} \mathcal{M}=\mathcal{S}=\mathbb{Z}_{N}$.
$6 K=(N, p, q, a, b)$.
7 Public key is (b, N), private key is (a, N, p, q).
Signature: Compute $s=S_{K}(m)=m^{a} \bmod n$.
Verification: Compute $V_{K}(m, s)=1 \leftrightarrow m \equiv s^{b} \bmod n$.

RSA signature

Security issues:

- Adversary can choose arbitrary $s \in \mathbb{Z}_{N}^{*}$ and obtain a message with valid signature $s^{b} \bmod N$. Important: Adversary does not have complete control over m.
- Adversary can forge a signature s over message $m=m_{1} m_{2}$ if capable of obtaining signatures s_{1}, s_{2} for $m_{1} \in \mathbb{Z}_{N}^{*}$ and $m_{2}=m / m_{1} \bmod N$:

$$
s^{b}=\left(s_{1} \cdot s_{2}\right)^{b}=\left(m_{1}^{a} \cdot m_{2}^{a}\right)^{b}=m_{1} \cdot m_{2}=m \bmod N .
$$

Important: Adversary must convince signer to sign random-looking messages.

RSA signature

Security issues:

- Adversary can choose arbitrary $s \in \mathbb{Z}_{N}^{*}$ and obtain a message with valid signature $s^{b} \bmod N$. Important: Adversary does not have complete control over m.
- Adversary can forge a signature s over message $m=m_{1} m_{2}$ if capable of obtaining signatures s_{1}, s_{2} for $m_{1} \in \mathbb{Z}_{N}^{*}$ and $m_{2}=m / m_{1} \bmod N$:

$$
s^{b}=\left(s_{1} \cdot s_{2}\right)^{b}=\left(m_{1}^{a} \cdot m_{2}^{a}\right)^{b}=m_{1} \cdot m_{2}=m \bmod N .
$$

Important: Adversary must convince signer to sign random-looking messages.

Solution: Employ a hash function and compute $S_{K}(H(m))$!

Digital signatures and hash functions

Key-only attack:

- Ineffective if hash function is preimage resistant.

Known-message attack:

- Ineffective if hash function is second preimage resistant.

Chosen-message attack:

- Ineffective if hash function is collision resistant.

Other signature schemes

It is possible to instantiate digital signatures from other security assumptions:

- Discrete logarithm (EIGamal, Schnorr, DSA).
- Discrete logarithm in elliptic curves (ECDSA).
- Cryptographic hash functions alone (Merkle, Lamport).

Digital signatures based on the discrete logarithm are usually probabilistic:

- Many signatures are valid for the same message.
- Verification needs to accept all of these signatures.

ElGamal signature (EIGamal, 1985)

Key generation:

1 Choose prime p such that $p-1$ has a big factor and primitive element $\alpha \in \mathbb{Z}_{p}^{*}$.
$2 \mathcal{M}=\mathbb{Z}_{p}^{*}, \mathcal{S}=\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p-1}$.
$3 \mathcal{K}=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right.$.
4 Public key is $b=\langle p, \alpha, \beta\rangle$, private key is a.
5 Let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{p-1}$ a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from \mathbb{Z}_{p-1}^{*}.
2 Compute $S_{a}(m, k)=(\gamma, \delta)$, where $\gamma=\alpha^{k} \bmod p$ and $\delta=(H(m)-a \gamma) k^{-1} \bmod (p-1)$.

Verification:

1 Compute $V_{b}(m,(\gamma, \delta))=1 \leftrightarrow \beta^{\gamma} \gamma^{\delta} \equiv \alpha^{H(m)}(\bmod p)$.
Important: Verify consistency!

ElGamal signature (EIGamal, 1985)

If signature was correctly constructed, verification will accept it:

$$
\begin{aligned}
\beta^{\gamma} \gamma^{\delta} & \equiv \alpha^{a \gamma} \alpha^{k \delta} \quad(\bmod p) \\
& \equiv \alpha^{H(m)} \quad(\bmod p)
\end{aligned}
$$

because we have that $a \gamma+k \delta \equiv H(m)(\bmod p-1)$.

ElGamal signature (EIGamal, 1985)

If signature was correctly constructed, verification will accept it:

$$
\begin{aligned}
\beta^{\gamma} \gamma^{\delta} & \equiv \alpha^{a \gamma} \alpha^{k \delta} \quad(\bmod p) \\
& \equiv \alpha^{H(m)} \quad(\bmod p)
\end{aligned}
$$

because we have that $a \gamma+k \delta \equiv H(m)(\bmod p-1)$.
Intuition from the verification:

$$
\alpha^{H(m)} \equiv \beta^{\gamma} \gamma^{\delta} \equiv \alpha^{a \gamma+k \delta} \quad(\bmod p)
$$

Since α is primitive element modulo p, the congruence is valid iff the exponents are congruent modulo $\phi(p)=p-1$. Solving for δ, We obtain the signature equation:

$$
\delta=(H(m)-a \gamma) k^{-1} \quad(\bmod p-1)
$$

ElGamal signatures (EIGamal, 1985)

Security issues:

- If attacker chooses γ, needs to solve $\delta=\log _{\gamma}\left(\alpha^{H(m)} \beta^{-\gamma}\right)$.
- If attacker chooses δ, needs to solve $\beta^{\gamma} \gamma^{\delta} \equiv \alpha^{H(m)}(\bmod p)$.
- Recovering the private key from public key amounts to computing $a=\log _{\alpha} \beta$.
- Hash function prevents existential forgery.

Important: The scheme does not have a known security reduction.

ElGamal signatures (EIGamal, 1985)

Protocol failures:

1 Leaking k with $m d c(\gamma, p-1)=1$ allows to recover the private key

$$
a=(H(m)-k \delta) \gamma^{-1}(\bmod p-1)
$$

2 The same k used in two signatures $\left(m_{1},\left(\gamma, \delta_{1}\right)\right)$ e $\left(m_{2},\left(\gamma, \delta_{2}\right)\right)$:

$$
\beta^{\gamma} \gamma^{\delta_{1}} \equiv \alpha^{m_{1}}, \quad \beta^{\gamma} \gamma^{\delta_{2}} \equiv \alpha^{m_{2}} \quad(\bmod p)
$$

Dividing the two equations above:

$$
\begin{aligned}
\alpha^{m_{1}-m_{2}} & \equiv \gamma^{\delta_{1}-\delta_{2}} \equiv \alpha^{k\left(\delta_{1}-\delta_{2}\right)} \quad(\bmod p) \\
m_{1}-m_{2} & \equiv k\left(\delta_{1}-\delta_{2}\right) \quad(\bmod p-1)
\end{aligned}
$$

$$
\text { Let } d=m d c\left(\delta_{1}-\delta_{2}, p-1\right), x^{\prime}=\left(m_{1}-m_{2}\right) / d, \delta^{\prime}=\left(\delta_{1}-\delta_{2}\right) / d \text { : }
$$

$$
x^{\prime} \equiv k \delta^{\prime} \quad(\bmod (p-1) / d) \rightarrow k=x^{\prime} \delta^{\prime-1} \quad(\bmod (p-1) / d) .
$$

Correct: One of the two d values of k modulo $(p-1)$ with $\gamma \equiv \alpha^{k}(\bmod p)$.

Schnorr signature (Schnorr, 1989)

Key generation:

1 Choose primes p, q with $q \mid(p-1)$ and q much smaller than p.
2 Let $\alpha=\alpha_{0}^{(p-1) / q} \in \mathbb{Z}_{p}^{*}$ the q-th root of 1 modulo p, with α_{0} primitive element modulo p.
$3 \mathcal{M}=\{0,1\}^{*}, \mathcal{S}=\mathbb{Z}_{\boldsymbol{q}} \times \mathbb{Z}_{q}$.
$4 \mathcal{K}=\left\{(p, q, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right.$.
5 The public key is $b=\langle p, q, \alpha, \beta\rangle$, the private key is a.
6 Let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from \mathbb{Z}_{q}^{*}.
2 Compute $S_{a}(m, k)=(\gamma, \delta)$, where $\gamma=H\left(m \| \alpha^{k} \bmod p\right)$ and $\delta=k+a \gamma \bmod q$.

Verification: $\quad V_{b}(m,(\gamma, \delta))=1 \leftrightarrow H\left(m \| \alpha^{\delta} \beta^{-\gamma} \bmod p\right)=\gamma$.
Important: Shorter signatures and formal security under ideal H !

Digital Signature Algorithm (NIST, 1991)

Small modification to ElGamal signature:

$$
\delta=(H(m)+a \gamma) k^{-1} \quad(\bmod p-1)
$$

The verification equation changes to $\alpha^{H(m)} \beta^{\gamma} \equiv \gamma^{\delta}(\bmod p)$.
Supposing $q \mid(p-1)$ like in Schnorr, α, β, γ have order q. Reducing exponents modulo q :

$$
\begin{equation*}
\delta=(H(m)+a \gamma) k^{-1} \quad(\bmod q) \tag{1}
\end{equation*}
$$

Now define $\gamma^{\prime}=\gamma \bmod q=\left(\alpha^{k} \bmod p\right) \bmod q$. We can replace γ by γ^{\prime} in the previous equation and the verification equation changes to $\alpha^{H(m)} \beta^{\gamma^{\prime}} \equiv \gamma^{\delta}(\bmod p)$.

Multiplying (1) by $\delta^{\prime}=\delta^{-1} \bmod q, \delta \neq 0$, we obtain:

$$
\alpha^{H(m) \delta^{\prime}} \beta^{\gamma^{\prime} \delta^{\prime}} \bmod p=\gamma \rightarrow\left(\alpha^{H(m) \delta^{\prime}} \beta^{\gamma^{\prime} \delta^{\prime}} \bmod p\right) \bmod q=\gamma^{\prime}
$$

Digital Signature Algorithm (NIST, 1991)

Key generation:
1 Choose primes p, q with $q \mid(p-1)$ and q much smaller than p.
2 Let $\alpha=\alpha_{0}^{(p-1) / q} \in \mathbb{Z}_{p}^{*}$ the q-th root of 1 modulo p, with α_{0} primitive element modulo p.
$3 \mathcal{M}=\{0,1\}^{*}, \mathcal{S}=\mathbb{Z}_{q} \times \mathbb{Z}_{q}$.
$4 \mathcal{K}=\left\{(p, q, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right.$.
5 The public key is $b=\langle p, q, \alpha, \beta\rangle$, the private key is a.
6 Let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from \mathbb{Z}_{q}^{*}.
2 Compute $S_{a}(m, k)=(\gamma, \delta)$, with $\gamma, \delta \neq 0$, where $\gamma=\left(\alpha^{k} \bmod p\right) \bmod q$ and $\delta=(H(m)+a \gamma) k^{-1} \bmod q$.

1 Verification: $V_{b}(m,(\gamma, \delta))=1 \leftrightarrow\left(\alpha^{H(m) \delta^{\prime}} \beta^{\gamma \delta^{\prime}} \bmod p\right) \bmod q=\gamma$.

Elliptic Curve DSA (NIST, 2000)

Key generation:

1 Choose curve $E\left(\mathbb{F}_{p}\right)$ and let A be a point or prime order q.
$2 \mathcal{M}=\{0,1\}^{*}, \mathcal{S}=\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{q}^{*}$.
$3 \mathcal{K}=\{(p, q, E, A, a, B): B=a A$.
4 Public key is $b=\langle p, q, E, A, B\rangle$, private key is a.
5 Let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ a cryptographic hash function.

Signature:

1 Choose integer k uniformly at random from \mathbb{Z}_{q}^{*}.
2 Compute $S_{a}(m, k)=(r, s)$, with $r, s \neq 0$, where $k A=(u, v), r=u \bmod q, s=(H(m)+a r) k^{-1} \bmod q$.

Verification: Let $s^{\prime}=s^{-1} \bmod q$ and $(u, v)=\left(H(m) s^{\prime}\right) A+\left(r s^{\prime}\right) B$. We have that $V_{b}(m,(r, s))=1 \leftrightarrow u \bmod q=r$.

Hash-based one-time signatures (Lamport, 1979)

Key generation:
1 Let H a cryptographic hash function at the security level n.
2 For $i \in\{1, \ldots, \ell(n)\}$ choose random $y_{i, 0}, y_{i, 1} \leftarrow\{0,1\}^{n}$.
3 Compute $x_{i, 0}=H\left(y_{i, 0}\right)$ and $x_{i, 1}=H\left(y_{i, 1}\right)$.
4 The public key b is composed by the values $x_{i, j}$ and the private key a by the values $y_{i, j}$.

Signature:

1 On message $m=m_{1} \cdots m_{\ell(n)} \in\{0,1\}^{\ell(n)}$ and private key a, compute signature $s=\left(y_{1, m_{1}}, \ldots, y_{\ell(n), m_{\ell(n)}}\right)$.

Verification:

1 On message $m=m_{1} \cdots m_{\ell(n)} \in\{0,1\}^{\ell(n)}$, signature $s=\left(s_{1} \cdots s_{\ell(n)}\right)$, and public key b, check if $H\left(s_{i}\right)=x_{i, m_{i}}$.

Important: Security of the signature scheme can be reduced to security of H. Keys can never be repeated.

Merkle hash-based signatures (Merkle, 1979)

Define $\left(x_{j}, y_{j}\right)$ to be the j-th one-time key pair. Compute inner nodes by applying H recursively. The public key is the root of the tree. A signature can be computed by traversing the tree to select a one-time key pair.

Merkle hash-based signatures (Merkle, 1979)

Verification involves traversing the tree upwards and checking if the last hash matches the public key.

