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Introduction

Objectives:
- How can we determine if a system is secure?

- We need more precise metrics than simple guidelines.
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Introduction

Objectives:
- How can we determine if a system is secure?

- We need more precise metrics than simple guidelines.

Hidden intentions:
- Discuss an upper bound for security.

- Detect if the requirements for attaining the upper bound are viable
in practice.
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Security notions

1 Computational Security(asymptotic):

- Cost of best known attack exceeds adversary power.
- Security against one type of attack does not exclude others.

2 Provable security (conditional):

- Reduction from a conjectured hard problem to the cryptosystem
problem.

- Sometimes, the problem was not as hard as it seemed.

- Analogous to NP-completeness reductions.

3 Unconditional security:
- Resists attacks with unlimited computational power.

- The only possible Cryptanalysis must be outside the threat model.
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Security notions

1 Computational Security(asymptotic):

- Cost of best known attack exceeds adversary power.
- Security against one type of attack does not exclude others.

2 Provable security (conditional):

- Reduction from a conjectured hard problem to the cryptosystem
problem.

- Sometimes, the problem was not as hard as it seemed.

- Analogous to NP-completeness reductions.

3 Unconditional security:

- Resists attacks with unlimited computational power.
- The only possible Cryptanalysis must be outside the threat model.

Focus: Unconditionally secure cryptosystems against passive attacks.

Note: We need probability, not complexity theory!
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Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to
confidentiality?

Answer 1
Secure if an adversary cannot obtain the key from ciphertext.
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Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to
confidentiality?

Answer 1

Secure if an adversary cannot obtain the key from ciphertext.

Answer 2

Secure if an adversary cannot obtain the plaintext from ciphertext.

Answer 3

Secure if an adversary cannot determine a single letter of the plaintext from the
ciphertext.

Answer 4

Secure if an adversary cannot obtain plaintext information from ciphertext only.

Final Answer

Secure if an adversary cannot compute a function of the plaintext from ciphertext only.
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Probability

Definition

A discrete random variable X consists in a finite set X and a
probability distribution defined over X. The probability of a symbol X
taking value x is denoted by Pr[X = x] or Pr[x] and is such that

0< Pr[x] and Vx € X, .x Pr[x] = 1.

Event
A subset E C X is an event if Pr[x € E] =} _ Pr[x].

Examples:
1 Coin: Pr[heads] = Pr]tails] = 1/2.
2 Sum of two unbiased dice:
Pr[2] = Pr[12] =1/36, Pr[3] = Pr[11] = 1/18, Pr[4] = 1/12.
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Probability

Let X and Y discrete random variables in the sets X e Y, respectively.

Joint probability

The joint probability Pr[x, y] is the probability of X taking value x and
Y taking value y.

Conditional probability

The conditional probability Pr[x|y]| is the probability of X taking value
X, given that Y takes value y.

Independent random variables

Random variables X and Y are independent if
Vx € X,Vy € Y, Pr[x,y] = Pr[x]Prly].
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Probability

We have that Pr[x,y] = Pr[x|y]Prly] = Pr[y|x]Pr[x].
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Probability
We have that Pr[x,y] = Pr[x|y]Prly] = Pr[y|x]Pr[x].

Bayes' Theorem
If Pr[y] > 0 then:
Pr[x]|Pr|y|x
prixy] = 2o

Corollary: X and Y are independent variables iff
Vx € X,Vy € Y, Pr[x|y] = Pr|x].
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Probability
We have that Pr[x,y] = Pr[x|y]Prly] = Pr[y|x]Pr[x].

Bayes' Theorem
If Pr[y] > 0 then:
Pr[x]|Pr|y|x
prixy] = 2o

Corollary: X and Y are independent variables iff
Vx € X,Vy € Y, Pr[x|y] = Pr|x].
Example: X is the sum of two dice, Y is the equality of two sides:

Prlequal] = %, Pr[-equal] = 2, Prlequal|4] = }, Pr[4|equal] = {.

dfaranha (1C) Perfect Secrecy 7/16



Application to cryptography

Suppose the following probabilities:
- Random variable K (key).
- Random variable M (plaintext).
- Random variable C (ciphertext).
- K and M are independent.

We have that:
- Probability of a certain key is Pr[K = K].
- Probability a priori of a certain plaintext is Pr[M = m].

- Probability a posteriori of a certain ciphertext is Pr[C = .

Convention: Consider non-zero probabilities only.
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Ciphertext probability

Definitions

Let C(k) = Enck(m), m € M the set of valid ciphertexts for key k.

VeeC, PrlC=cl= > Pr[K=kPr[M = Dec(c)].
k,ceC(k)

We can compute conditional probabilities:

-PriC=cM=ml= Y  PrlK=4
k,m=Deci(c)

PriM=m]- Y PrlK =k
k,m=Decy(c)

- PriM = m|C = c] =

k,ceC(k)
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Perfect Secrecy

Definition

Let Gen, Enc, Dec functions for key generation, encryption and
decryption. A cryptosystem (Gen, Enc, Dec) provides perfect secrecy iff
Vm € M,Vc € C and over any probability distribution over M:

Pr[M = m|C = ¢| = Pr[M = m].
In other words:

Pr[C = c|[M = m| = Pr[C = ¢|.

The probability of a plaintext m, given that the ciphertext ¢ was
observed is identical to the a priori probability of plaintext m.

Important: Do transposition ciphers attain perfect secrecy?
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Perfect indistinguishability

Lemma
A cryptosystem (Gen, Enc, Dec) over a message space M provides
perfect secrecy iff Vmg, my € M,Vc € C for all probability distributions

over M: Pr[C _ C|M = mO] = Pr[C = C|M = m]_].

Prova:

— If a system provides perfect secrecy,
Pr[C = c|M = mg] = Pr[C = c|] = Pr[C = c|M = mq].

< Let my € M and p = Pr[C = ¢c|M = mg] = Pr[C = ¢c|M = m].
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Perfect indistinguishability

Lemma
A cryptosystem (Gen, Enc, Dec) over a message space M provides
perfect secrecy iff Vmg, my € M,Vc € C for all probability distributions

over M: Pr[C _ C|M = mO] = Pr[C = C|M = m]_].

Prova:

— If a system provides perfect secrecy,
Pr[C = c|M = mg] = Pr[C = c|] = Pr[C = c|M = mq].

+ Let mg € M and p= Pr[C = c|M = mg] = Pr[C = c|M = m].
PriC=c] = ) Pr[C=c|M=m|PrlM=m]|

meM

= Y p-PrM=ml=p- > Pr[M=m|

meM meM
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Perfect indistinguishability

Lemma

A cryptosystem (Gen, Enc, Dec) over a message space M provides
perfect secrecy iff Vmg, my € M,Vc € C for all probability distributions

over M: Pr[C _ C|M = mO] = Pr[C = C|M = m]_].

Prova:

— If a system provides perfect secrecy,
Pr[C = c|M = mg] = Pr[C = c|] = Pr[C = c|M = mq].

< Let my € M and p = Pr[C = ¢c|M = mg] = Pr[C = ¢c|M = m].

PriC=c] = ) Pr[C=c|M=m|PrlM=m]|
meM
= Z p-PriM=m]|=p- Z Pr[M = m]
meM meM

= p=Pr[C = c|M = my]. O
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Adversarial indistinguishability

Definition
Let A a passive adversary, 1 = (Gen, Enc, Dec) a cryptosystem and
Privl, the execution of an experiment with A:

1 A produces messages mg, my € M.

2 Key k is generated from Gen and a random bit b is chosen. Then
¢ = Enck(mp) is computed and given to A.

3 A outputs bit b’

4 The output of the experiment is 1 if b’ = b and 0 otherwise. A is

successful when Privieh = 1.

A cryptosystem N1 = (Gen, Enc, Dec) over a message space M provides
perfect secrecy if for all adversaries A:
;,eav 1
Pr[Priviih = 1] = -
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Perfect secrecy

Theorem

Let M =C =K =Z,, with integer n. Suppose that the n keys from the
shift cipher are used with uniform probability. Then, for any plaintext
probability distribution, the shift cipher provides perfect secrecy.
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Perfect secrecy

Theorem

Let M =C =K =Z,, with integer n. Suppose that the n keys from the

shift cipher are used with uniform probability. Then, for any plaintext
probability distribution, the shift cipher provides perfect secrecy.
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= > Pr[K = k|Pr[M = Dec,(c)]
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Perfect Secrecy

For a fixed ¢, values (¢ — k) mod n form a permutation of Z,. Then:

Z Pr[M = (c — k) mod n] = Z PriM=m]=1

k€E€Zn meEZn
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Perfect Secrecy

For a fixed ¢, values (¢ — k) mod n form a permutation of Z,. Then:

Z Pr[M = (c — k) mod n] = Z PriM =m] =1

k€E€Zn meEZn

Thus: i
P = -
rlel =~
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Perfect Secrecy

For a fixed ¢, values (¢ — k) mod n form a permutation of Z,. Then:

> PriM =

kE€Zn

Thus:

We also have that:

Vm € M,Vc € C, Pr[c|m] = Pr[K =
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(y —c)mod n| = =

14/16



Perfect Secrecy

For a fixed ¢, values (¢ — k) mod n form a permutation of Z,. Then:

Z Pr[M = (c — k) mod n] = Z PriM =m] =1
k€E€Zn meEZn
Thus:
Pr[c] = =
We also have that:
Vme M,Vc e C,Pr[cm| = Pr[K = (y —c) mod n] = =
By Bayes’ Theorem:
Pr[m]Pr[c|m]  Pr[m]%
Pr(m|c] = Pric] =—3 = Pr[m]. O

n
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Perfect Secrecy

Shannon Theorem

Let S be a cryptosystem with || = |C| = |M|. S provides perfect
secrecy iff all possible keys are chosen with probability 1/|X| and
Vm € M,Vc € C there is a single key such that ¢ = Enci(m).

Proof: Suppose that S provides perfect secrecy. By assumption,
|C| = |Enck(m), k € K| = |K|. Hence, there are no ki # ko such that
Ency,(m) = Ency,(m) = c.
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Perfect Secrecy

Shannon Theorem

Let S be a cryptosystem with || = |C| = |M|. S provides perfect
secrecy iff all possible keys are chosen with probability 1/|X| and
Vm € M,Vc € C there is a single key such that ¢ = Enci(m).

Proof: Suppose that S provides perfect secrecy. By assumption,
|C| = |Enck(m), k € K| = |K|. Hence, there are no ki # ko such that
Ency,(m) = Ency,(m) = c.

Let n=|K|,M =m;,1 <i<nandc €C a fixed ciphertext. We can
label keys ki1, k2, , ..., kn such that Ency.(m;) = c. By Bayes' Theorem:
Pr[c|m;]Pr[m;] B Pr[K = k;]Pr[m;]

Pr|c] B Pr|c]

Pr[mj|c] =

For a system providing perfect secrecy:
Pr[mj|c] = Pr[m;] = Prlkj] = Pr[c] = Pr[kj] =1/|K|. O
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One-time pad

Definition
Let n > 1 and integer and M =C = K = (Z)". For k € (Zy)", let
Ency(m) = m @ k e Deck(c) = c & k, with random choice of k.
Advantages:

- Perfect secrecy (shift cipher defined over Zj).

- Efficiency.

Disadvantages:
- [K] =PI
- Per-message random key.
- Vulnerable against known plaintext attacks.

- Complex key management.
Traditionally, cipher used only by military and diplomacy.
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