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Introduction

Objectives:

- How can we determine if a system is secure?

- We need more precise metrics than simple guidelines.

Hidden intentions:

- Discuss an upper bound for security.

- Detect if the requirements for attaining the upper bound are viable
in practice.
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Security notions

1 Computational Security(asymptotic):

- Cost of best known attack exceeds adversary power.
- Security against one type of attack does not exclude others.

2 Provable security (conditional):

- Reduction from a conjectured hard problem to the cryptosystem
problem.

- Sometimes, the problem was not as hard as it seemed.
- Analogous to NP-completeness reductions.

3 Unconditional security:

- Resists attacks with unlimited computational power.
- The only possible Cryptanalysis must be outside the threat model.

Focus: Unconditionally secure cryptosystems against passive attacks.

Note: We need probability, not complexity theory!
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Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to
confidentiality?

Answer 1
Secure if an adversary cannot obtain the key from ciphertext.

Answer 2
Secure if an adversary cannot obtain the plaintext from ciphertext.

Answer 3
Secure if an adversary cannot determine a single letter of the plaintext from the
ciphertext.

Answer 4
Secure if an adversary cannot obtain plaintext information from ciphertext only.

Final Answer
Secure if an adversary cannot compute a function of the plaintext from ciphertext only.
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Probability

Definition

A discrete random variable X consists in a finite set X and a
probability distribution defined over X . The probability of a symbol X
taking value x is denoted by Pr [X = x ] or Pr [x ] and is such that
0 ≤ Pr [x ] and ∀x ∈ X ,

∑
x∈X Pr [x ] = 1.

Event

A subset E ⊆ X is an event if Pr [x ∈ E ] =
∑

x∈E Pr [x ].

Examples:

1 Coin: Pr [heads] = Pr [tails] = 1/2.

2 Sum of two unbiased dice:
Pr [2] = Pr [12] = 1/36,Pr [3] = Pr [11] = 1/18,Pr [4] = 1/12.
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Probability

Let X and Y discrete random variables in the sets X e Y , respectively.

Joint probability

The joint probability Pr [x , y ] is the probability of X taking value x and
Y taking value y .

Conditional probability

The conditional probability Pr [x |y ] is the probability of X taking value
x , given that Y takes value y .

Independent random variables

Random variables X and Y are independent if
∀x ∈ X , ∀y ∈ Y ,Pr [x , y ] = Pr [x ]Pr [y ].
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Probability

We have that Pr [x , y ] = Pr [x |y ]Pr [y ] = Pr [y |x ]Pr [x ].

Bayes’ Theorem

If Pr [y ] > 0 then:

Pr [x |y ] =
Pr [x ]Pr [y |x ]

Pr [y ]

Corollary: X and Y are independent variables iff
∀x ∈ X ,∀y ∈ Y ,Pr [x |y ] = Pr [x ].

Example: X is the sum of two dice, Y is the equality of two sides:
Pr [equal ] = 1

6 ,Pr [¬equal ] = 5
6 ,Pr [equal |4] = 1

3 ,Pr [4|equal ] = 1
6 .
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Application to cryptography

Suppose the following probabilities:

- Random variable K (key).

- Random variable M (plaintext).

- Random variable C (ciphertext).

- K and M are independent.

We have that:

- Probability of a certain key is Pr [K = K ].

- Probability a priori of a certain plaintext is Pr [M = m].

- Probability a posteriori of a certain ciphertext is Pr [C = c].

Convention: Consider non-zero probabilities only.
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Ciphertext probability

Definitions

Let C (k) = Enck(m),m ∈M the set of valid ciphertexts for key k .

∀c ∈ C,Pr [C = c] =
∑

k,c∈C(k)

Pr [K = k]Pr [M = Deck(c)].

We can compute conditional probabilities:

- Pr [C = c |M = m] =
∑

k,m=Deck (c)

Pr [K = k]

- Pr [M = m|C = c] =

Pr [M = m] ·
∑

k,m=Deck (c)

Pr [K = k]

∑
k,c∈C(k)

Pr [K = k]Pr [M = Deck(c)]
.
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Perfect Secrecy

Definition

Let Gen,Enc ,Dec functions for key generation, encryption and
decryption. A cryptosystem (Gen,Enc ,Dec) provides perfect secrecy iff
∀m ∈M, ∀c ∈ C and over any probability distribution over M:

Pr [M = m|C = c] = Pr [M = m].

In other words:

Pr [C = c |M = m] = Pr [C = c].

The probability of a plaintext m, given that the ciphertext c was
observed is identical to the a priori probability of plaintext m.

Important: Do transposition ciphers attain perfect secrecy?
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Perfect indistinguishability

Lemma

A cryptosystem (Gen,Enc ,Dec) over a message space M provides
perfect secrecy iff ∀m0,m1 ∈M, ∀c ∈ C for all probability distributions
over M: Pr [C = c |M = m0] = Pr [C = c |M = m1].

Prova:

→ If a system provides perfect secrecy,
Pr [C = c |M = m0] = Pr [C = c] = Pr [C = c |M = m1].

← Let m0 ∈M and p = Pr [C = c |M = m0] = Pr [C = c |M = m].

Pr [C = c] =
∑
m∈M

Pr [C = c |M = m]Pr [M = m]

=
∑
m∈M

p · Pr [M = m] = p ·
∑
m∈M

Pr [M = m]

= p = Pr [C = c|M = m0]. �
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Adversarial indistinguishability

Definition

Let A a passive adversary, Π = (Gen,Enc ,Dec) a cryptosystem and
Priv eavA,Π the execution of an experiment with A:

1 A produces messages m0,m1 ∈M.

2 Key k is generated from Gen and a random bit b is chosen. Then
c = Enck(mb) is computed and given to A.

3 A outputs bit b′

4 The output of the experiment is 1 if b′ = b and 0 otherwise. A is
successful when Priv eavA,Π = 1.

A cryptosystem Π = (Gen,Enc ,Dec) over a message space M provides
perfect secrecy if for all adversaries A:

Pr [Priv eavA,Π = 1] =
1

2
.
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Perfect secrecy

Theorem

Let M = C = K = Zn, with integer n. Suppose that the n keys from the
shift cipher are used with uniform probability. Then, for any plaintext
probability distribution, the shift cipher provides perfect secrecy.

Pr [C = c] =
∑
k∈Zn

Pr [K = k]Pr [M = Deck(c)]

=
∑
k∈Zn

1

n
Pr [M = (c − k) mod n]

=
1

n

∑
k∈Zn

Pr [M = (c − k) mod n]
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Perfect Secrecy

For a fixed c , values (c − k) mod n form a permutation of Zn. Then:∑
k∈Zn

Pr [M = (c − k) mod n] =
∑
m∈Zn

Pr [M = m] = 1

Thus:

Pr [c] =
1

n

We also have that:

∀m ∈M,∀c ∈ C,Pr [c |m] = Pr [K = (y − c) mod n] =
1

n

By Bayes’ Theorem:

Pr [m|c] =
Pr [m]Pr [c |m]

Pr [c]
=

Pr [m] 1
n

1
n

= Pr [m]. �
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Perfect Secrecy

Shannon Theorem

Let S be a cryptosystem with |K| = |C| = |M|. S provides perfect
secrecy iff all possible keys are chosen with probability 1/|K| and
∀m ∈M, ∀c ∈ C there is a single key such that c = Enck(m).

Proof: Suppose that S provides perfect secrecy. By assumption,
|C| = |Enck(m), k ∈ K| = |K|. Hence, there are no k1 6= k2 such that
Enck1(m) = Enck2(m) = c .

Let n = |K|,M = mi , 1 ≤ i ≤ n and c ∈ C a fixed ciphertext. We can
label keys k1, k2, , . . . , kn such that Encki (mi ) = c . By Bayes’ Theorem:

Pr [mi |c] =
Pr [c |mi ]Pr [mi ]

Pr [c]
=

Pr [K = ki ]Pr [mi ]

Pr [c]

For a system providing perfect secrecy:

Pr [mi |c] = Pr [mi ]⇒ Pr [ki ] = Pr [c]⇒ Pr [ki ] = 1/|K|. �
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One-time pad

Definition

Let n ≥ 1 and integer and M = C = K = (Z2)n. For k ∈ (Z2)n, let
Enck(m) = m ⊕ k e Deck(c) = c ⊕ k , with random choice of k.

Advantages:

- Perfect secrecy (shift cipher defined over Z2).

- Efficiency.

Disadvantages:

- |K| ≥ |P|.
- Per-message random key.

- Vulnerable against known plaintext attacks.

- Complex key management.

Traditionally, cipher used only by military and diplomacy.
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