Perfect Secrecy

Diego F. Aranha
Institute of Computing UNICAMP

Introduction

Objectives:

- How can we determine if a system is secure?
- We need more precise metrics than simple guidelines.

Introduction

Objectives:

- How can we determine if a system is secure?
- We need more precise metrics than simple guidelines.

Hidden intentions:

- Discuss an upper bound for security.
- Detect if the requirements for attaining the upper bound are viable in practice.

Security notions

1 Computational Security(asymptotic):

- Cost of best known attack exceeds adversary power.
- Security against one type of attack does not exclude others.

2 Provable security (conditional):

- Reduction from a conjectured hard problem to the cryptosystem problem.
- Sometimes, the problem was not as hard as it seemed.
- Analogous to NP-completeness reductions.

3 Unconditional security:

- Resists attacks with unlimited computational power.
- The only possible Cryptanalysis must be outside the threat model.

Security notions

1 Computational Security(asymptotic):

- Cost of best known attack exceeds adversary power.
- Security against one type of attack does not exclude others.

2 Provable security (conditional):

- Reduction from a conjectured hard problem to the cryptosystem problem.
- Sometimes, the problem was not as hard as it seemed.
- Analogous to NP-completeness reductions.

3 Unconditional security:

- Resists attacks with unlimited computational power.
- The only possible Cryptanalysis must be outside the threat model.

Focus: Unconditionally secure cryptosystems against passive attacks.

Security notions

1 Computational Security(asymptotic):

- Cost of best known attack exceeds adversary power.
- Security against one type of attack does not exclude others.

2 Provable security (conditional):

- Reduction from a conjectured hard problem to the cryptosystem problem.
- Sometimes, the problem was not as hard as it seemed.
- Analogous to NP-completeness reductions.

3 Unconditional security:

- Resists attacks with unlimited computational power.
- The only possible Cryptanalysis must be outside the threat model.

Focus: Unconditionally secure cryptosystems against passive attacks.
Note: We need probability, not complexity theory!

Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to confidentiality?

Answer 1

Secure if an adversary cannot obtain the key from ciphertext.

Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to confidentiality?

Answer 1

Secure if an adversary cannot obtain the key from ciphertext.

Answer 2

Secure if an adversary cannot obtain the plaintext from ciphertext.

Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to confidentiality?

Answer 1

Secure if an adversary cannot obtain the key from ciphertext.

Answer 2

Secure if an adversary cannot obtain the plaintext from ciphertext.

Answer 3

Secure if an adversary cannot determine a single letter of the plaintext from the ciphertext.

Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to confidentiality?

Answer 1

Secure if an adversary cannot obtain the key from ciphertext.

Answer 2

Secure if an adversary cannot obtain the plaintext from ciphertext.

Answer 3

Secure if an adversary cannot determine a single letter of the plaintext from the ciphertext.

Answer 4
Secure if an adversary cannot obtain plaintext information from ciphertext only.

Importance of precise definitions

Example: How to formalize security of a cryptosystem with relation to confidentiality?

Answer 1

Secure if an adversary cannot obtain the key from ciphertext.

Answer 2

Secure if an adversary cannot obtain the plaintext from ciphertext.

Answer 3

Secure if an adversary cannot determine a single letter of the plaintext from the ciphertext.

Answer 4

Secure if an adversary cannot obtain plaintext information from ciphertext only.

Final Answer

Secure if an adversary cannot compute a function of the plaintext from ciphertext only.

Probability

Definition

A discrete random variable \boldsymbol{X} consists in a finite set X and a probability distribution defined over X. The probability of a symbol \boldsymbol{X} taking value x is denoted by $\operatorname{Pr}[\boldsymbol{X}=x]$ or $\operatorname{Pr}[x]$ and is such that $0 \leq \operatorname{Pr}[x]$ and $\forall x \in X, \sum_{x \in X} \operatorname{Pr}[x]=1$.

Event

A subset $E \subseteq X$ is an event if $\operatorname{Pr}[x \in E]=\sum_{x \in E} \boldsymbol{\operatorname { P r }}[x]$.
Examples:
1 Coin: $\operatorname{Pr}[$ heads $]=\operatorname{Pr}[$ tails $]=1 / 2$.
2 Sum of two unbiased dice:

$$
\operatorname{Pr}[2]=\operatorname{Pr}[12]=1 / 36, \operatorname{Pr}[3]=\operatorname{Pr}[11]=1 / 18, \operatorname{Pr}[4]=1 / 12 .
$$

Probability

Let \boldsymbol{X} and \boldsymbol{Y} discrete random variables in the sets X e Y, respectively.
Joint probability
The joint probability $\operatorname{Pr}[x, y]$ is the probability of \boldsymbol{X} taking value x and \boldsymbol{Y} taking value y.

Conditional probability
The conditional probability $\operatorname{Pr}[x \mid y]$ is the probability of \boldsymbol{X} taking value x, given that \boldsymbol{Y} takes value y.

Independent random variables

Random variables \boldsymbol{X} and \boldsymbol{Y} are independent if $\forall x \in X, \forall y \in Y, \operatorname{Pr}[x, y]=\operatorname{Pr}[x] \operatorname{Pr}[y]$.

Probability

We have that $\operatorname{Pr}[x, y]=\operatorname{Pr}[x \mid y] \operatorname{Pr}[y]=\boldsymbol{\operatorname { P r }}[y \mid x] \operatorname{Pr}[x]$.

Probability

We have that $\operatorname{Pr}[x, y]=\operatorname{Pr}[x \mid y] \operatorname{Pr}[y]=\boldsymbol{\operatorname { P r }}[y \mid x] \operatorname{Pr}[x]$.

Bayes' Theorem
If $\operatorname{Pr}[y]>0$ then:

$$
\boldsymbol{\operatorname { P r }}[x \mid y]=\frac{\boldsymbol{\operatorname { P r }}[x] \operatorname{Pr}[y \mid x]}{\boldsymbol{\operatorname { P r }}[y]}
$$

Corollary: \boldsymbol{X} and \boldsymbol{Y} are independent variables iff $\forall x \in X, \forall y \in Y, \operatorname{Pr}[x \mid y]=\boldsymbol{P r}[x]$.

Probability

We have that $\operatorname{Pr}[x, y]=\boldsymbol{\operatorname { P r }}[x \mid y] \operatorname{Pr}[y]=\boldsymbol{\operatorname { P r }}[y \mid x] \operatorname{Pr}[x]$.

Bayes' Theorem

If $\operatorname{Pr}[y]>0$ then:

$$
\boldsymbol{\operatorname { P r }}[x \mid y]=\frac{\boldsymbol{\operatorname { P r }}[x] \boldsymbol{\operatorname { P r }}[y \mid x]}{\boldsymbol{\operatorname { P r }}[y]}
$$

Corollary: \boldsymbol{X} and \boldsymbol{Y} are independent variables iff $\forall x \in X, \forall y \in Y, \operatorname{Pr}[x \mid y]=\boldsymbol{P r}[x]$.

Example: \boldsymbol{X} is the sum of two dice, \boldsymbol{Y} is the equality of two sides: $\operatorname{Pr}[$ equal $]=\frac{1}{6}, \operatorname{Pr}[\neg$ equal $]=\frac{5}{6}, \operatorname{Pr}[$ equal $\mid 4]=\frac{1}{3}, \operatorname{Pr}[4 \mid$ equal $]=\frac{1}{6}$.

Application to cryptography

Suppose the following probabilities:

- Random variable \boldsymbol{K} (key).
- Random variable \boldsymbol{M} (plaintext).
- Random variable \boldsymbol{C} (ciphertext).
- \boldsymbol{K} and \boldsymbol{M} are independent.

We have that:

- Probability of a certain key is $\operatorname{Pr}[\boldsymbol{K}=K]$.
- Probability a priori of a certain plaintext is $\operatorname{Pr}[\boldsymbol{M}=m]$.
- Probability a posteriori of a certain ciphertext is $\operatorname{Pr}[C=c]$.

Convention: Consider non-zero probabilities only.

Ciphertext probability

Definitions

Let $C(k)=E n c_{k}(m), m \in \mathcal{M}$ the set of valid ciphertexts for key k.
$\forall c \in \mathcal{C}, \operatorname{Pr}[\boldsymbol{C}=c]=\sum_{k, c \in C(k)} \boldsymbol{\operatorname { P r }}[\boldsymbol{K}=k] \operatorname{Pr}\left[\boldsymbol{M}=\operatorname{Dec}_{k}(c)\right]$.
We can compute conditional probabilities:

$$
\begin{aligned}
& -\operatorname{Pr}[\boldsymbol{C}=c \mid \boldsymbol{M}=m]= \\
& \sum_{k, m=\operatorname{Dec} c_{k}(c)} \operatorname{Pr}[\boldsymbol{K}=k] \\
& -\operatorname{Pr}[\boldsymbol{M}=m \mid \boldsymbol{C}=c]=\frac{\operatorname{Pr}[\boldsymbol{M}=m] \cdot \sum_{k, m=\operatorname{Dec} c_{k}(c)} \operatorname{Pr}[\boldsymbol{K}=k]}{\sum_{k, c \in C(k)} \operatorname{Pr}[\boldsymbol{K}=k] \operatorname{Pr}\left[\boldsymbol{M}=\operatorname{Dec}_{k}(c)\right]} .
\end{aligned}
$$

Perfect Secrecy

Definition

Let Gen, Enc, Dec functions for key generation, encryption and decryption. A cryptosystem (Gen, Enc, Dec) provides perfect secrecy iff $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}$ and over any probability distribution over \mathcal{M} :

$$
\operatorname{Pr}[\boldsymbol{M}=m \mid \boldsymbol{C}=c]=\operatorname{Pr}[\boldsymbol{M}=m] .
$$

In other words:

$$
\boldsymbol{P r}[\boldsymbol{C}=c \mid \boldsymbol{M}=m]=\boldsymbol{P r}[\boldsymbol{C}=c] .
$$

The probability of a plaintext m, given that the ciphertext c was observed is identical to the a priori probability of plaintext m.

Important: Do transposition ciphers attain perfect secrecy?

Perfect indistinguishability

Lemma

A cryptosystem (Gen, Enc, Dec) over a message space \mathcal{M} provides perfect secrecy iff $\forall m_{0}, m_{1} \in \mathcal{M}, \forall c \in \mathcal{C}$ for all probability distributions over \mathcal{M} :

$$
\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

Prova:

\rightarrow If a system provides perfect secrecy,

$$
\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\operatorname{Pr}[\boldsymbol{C}=c]=\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

\leftarrow Let $m_{0} \in \mathcal{M}$ and $p=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{\operatorname { P r }}[\boldsymbol{C}=c \mid \boldsymbol{M}=m]$.

Perfect indistinguishability

Lemma

A cryptosystem (Gen, Enc, Dec) over a message space \mathcal{M} provides perfect secrecy iff $\forall m_{0}, m_{1} \in \mathcal{M}, \forall c \in \mathcal{C}$ for all probability distributions over \mathcal{M} :

$$
\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

Prova:

\rightarrow If a system provides perfect secrecy,

$$
\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\operatorname{Pr}[\boldsymbol{C}=c]=\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

\leftarrow Let $m_{0} \in \mathcal{M}$ and $p=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{\operatorname { P r }}[\boldsymbol{C}=c \mid \boldsymbol{M}=m]$.

$$
\operatorname{Pr}[\boldsymbol{C}=c]=\sum_{m \in \mathcal{M}} \operatorname{Pr}[\boldsymbol{C}=c \mid \boldsymbol{M}=m] \operatorname{Pr}[\boldsymbol{M}=m]
$$

Perfect indistinguishability

Lemma

A cryptosystem (Gen, Enc, Dec) over a message space \mathcal{M} provides perfect secrecy iff $\forall m_{0}, m_{1} \in \mathcal{M}, \forall c \in \mathcal{C}$ for all probability distributions over \mathcal{M} :

$$
\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

Prova:

\rightarrow If a system provides perfect secrecy,

$$
\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\operatorname{Pr}[\boldsymbol{C}=c]=\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

\leftarrow Let $m_{0} \in \mathcal{M}$ and $p=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{P r}[\boldsymbol{C}=c \mid \boldsymbol{M}=m]$.

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{C}=c] & =\sum_{m \in \mathcal{M}} \operatorname{Pr}[\boldsymbol{C}=c \mid \boldsymbol{M}=m] \operatorname{Pr}[\boldsymbol{M}=m] \\
& =\sum_{m \in \mathcal{M}} p \cdot \operatorname{Pr}[\boldsymbol{M}=m]=p \cdot \sum_{m \in \mathcal{M}} \operatorname{Pr}[\boldsymbol{M}=m]
\end{aligned}
$$

Perfect indistinguishability

Lemma

A cryptosystem (Gen, Enc, Dec) over a message space \mathcal{M} provides perfect secrecy iff $\forall m_{0}, m_{1} \in \mathcal{M}, \forall c \in \mathcal{C}$ for all probability distributions over \mathcal{M} :

$$
\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

Prova:

\rightarrow If a system provides perfect secrecy,

$$
\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\operatorname{Pr}[\boldsymbol{C}=c]=\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{1}\right] .
$$

\leftarrow Let $m_{0} \in \mathcal{M}$ and $p=\boldsymbol{P r}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right]=\boldsymbol{P r}[\boldsymbol{C}=c \mid \boldsymbol{M}=m]$.

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{C}=c] & =\sum_{m \in \mathcal{M}} \operatorname{Pr}[\boldsymbol{C}=c \mid \boldsymbol{M}=m] \operatorname{Pr}[\boldsymbol{M}=m] \\
& =\sum_{m \in \mathcal{M}} p \cdot \operatorname{Pr}[\boldsymbol{M}=m]=p \cdot \sum_{m \in \mathcal{M}} \operatorname{Pr}[\boldsymbol{M}=m] \\
& =p=\operatorname{Pr}\left[\boldsymbol{C}=c \mid \boldsymbol{M}=m_{0}\right] . \quad \square
\end{aligned}
$$

Adversarial indistinguishability

Definition

Let \mathcal{A} a passive adversary, $\Pi=($ Gen, Enc, Dec) a cryptosystem and Priv ${ }_{\mathcal{A}, \Pi}^{e a v}$ the execution of an experiment with \mathcal{A} :
$1 \mathcal{A}$ produces messages $m_{0}, m_{1} \in \mathcal{M}$.
2 Key k is generated from Gen and a random bit b is chosen. Then $c=E n c_{k}\left(m_{b}\right)$ is computed and given to \mathcal{A}.
$3 \mathcal{A}$ outputs bit b^{\prime}
4 The output of the experiment is 1 if $b^{\prime}=b$ and 0 otherwise. \mathcal{A} is successful when Privi, ean $=1$.
A cryptosystem $\Pi=($ Gen, Enc, Dec) over a message space \mathcal{M} provides perfect secrecy if for all adversaries \mathcal{A} :

$$
\operatorname{Pr}\left[\operatorname{Priv}_{\mathcal{A}, \Pi}^{\text {eav }}=1\right]=\frac{1}{2} .
$$

Perfect secrecy

Theorem

Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{n}$, with integer n. Suppose that the n keys from the shift cipher are used with uniform probability. Then, for any plaintext probability distribution, the shift cipher provides perfect secrecy.

Perfect secrecy

Theorem
Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{n}$, with integer n. Suppose that the n keys from the shift cipher are used with uniform probability. Then, for any plaintext probability distribution, the shift cipher provides perfect secrecy.

$$
\operatorname{Pr}[\boldsymbol{C}=c]=\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{K}=k] \operatorname{Pr}\left[\boldsymbol{M}=\operatorname{Dec}_{k}(c)\right]
$$

Perfect secrecy

Theorem
Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{n}$, with integer n. Suppose that the n keys from the shift cipher are used with uniform probability. Then, for any plaintext probability distribution, the shift cipher provides perfect secrecy.

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{C}=c] & =\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{K}=k] \operatorname{Pr}\left[\boldsymbol{M}=\operatorname{Dec}_{k}(c)\right] \\
& =\sum_{k \in \mathbb{Z}_{n}} \frac{1}{n} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n]
\end{aligned}
$$

Perfect secrecy

Theorem

Let $\mathcal{M}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{n}$, with integer n. Suppose that the n keys from the shift cipher are used with uniform probability. Then, for any plaintext probability distribution, the shift cipher provides perfect secrecy.

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{C}=c] & =\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{K}=k] \operatorname{Pr}\left[\boldsymbol{M}=\operatorname{Dec}_{k}(c)\right] \\
& =\sum_{k \in \mathbb{Z}_{n}} \frac{1}{n} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n] \\
& =\frac{1}{n} \sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n]
\end{aligned}
$$

Perfect Secrecy

For a fixed c, values $(c-k) \bmod n$ form a permutation of \mathbb{Z}_{n}. Then:

$$
\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n]=\sum_{m \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=m]=1
$$

Perfect Secrecy

For a fixed c, values $(c-k) \bmod n$ form a permutation of \mathbb{Z}_{n}. Then:

$$
\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n]=\sum_{m \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=m]=1
$$

Thus:

$$
\operatorname{Pr}[c]=\frac{1}{n}
$$

Perfect Secrecy

For a fixed c, values $(c-k) \bmod n$ form a permutation of \mathbb{Z}_{n}. Then:

$$
\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n]=\sum_{m \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=m]=1
$$

Thus:

$$
\operatorname{Pr}[c]=\frac{1}{n}
$$

We also have that:

$$
\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, \operatorname{Pr}[c \mid m]=\operatorname{Pr}[K=(y-c) \bmod n]=\frac{1}{n}
$$

Perfect Secrecy

For a fixed c, values $(c-k) \bmod n$ form a permutation of \mathbb{Z}_{n}. Then:

$$
\sum_{k \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=(c-k) \bmod n]=\sum_{m \in \mathbb{Z}_{n}} \operatorname{Pr}[\boldsymbol{M}=m]=1
$$

Thus:

$$
\operatorname{Pr}[c]=\frac{1}{n}
$$

We also have that:

$$
\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, \operatorname{Pr}[c \mid m]=\operatorname{Pr}[\boldsymbol{K}=(y-c) \bmod n]=\frac{1}{n}
$$

By Bayes' Theorem:

$$
\operatorname{Pr}[m \mid c]=\frac{\operatorname{Pr}[m] \operatorname{Pr}[c \mid m]}{\operatorname{Pr}[c]}=\frac{\operatorname{Pr}[m] \frac{1}{n}}{\frac{1}{n}}=\boldsymbol{\operatorname { P r }}[m]
$$

Perfect Secrecy

Shannon Theorem

Let S be a cryptosystem with $|\mathcal{K}|=|\mathcal{C}|=|\mathcal{M}|$. S provides perfect secrecy iff all possible keys are chosen with probability $1 /|\mathcal{K}|$ and $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}$ there is a single key such that $c=\operatorname{Enc}_{k}(m)$.

Proof: Suppose that S provides perfect secrecy. By assumption, $|\mathcal{C}|=\left|E n c_{k}(m), k \in \mathcal{K}\right|=|\mathcal{K}|$. Hence, there are no $k_{1} \neq k_{2}$ such that $E n c_{k_{1}}(m)=E n c_{k_{2}}(m)=c$.

Perfect Secrecy

Shannon Theorem

Let S be a cryptosystem with $|\mathcal{K}|=|\mathcal{C}|=|\mathcal{M}|$. S provides perfect secrecy iff all possible keys are chosen with probability $1 /|\mathcal{K}|$ and $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}$ there is a single key such that $c=E n c_{k}(m)$.

Proof: Suppose that S provides perfect secrecy. By assumption, $|\mathcal{C}|=\left|E n c_{k}(m), k \in \mathcal{K}\right|=|\mathcal{K}|$. Hence, there are no $k_{1} \neq k_{2}$ such that $E n c_{k_{1}}(m)=E n c_{k_{2}}(m)=c$.
Let $n=|\mathcal{K}|, \mathcal{M}=m_{i}, 1 \leq i \leq n$ and $c \in \mathcal{C}$ a fixed ciphertext. We can label keys $k_{1}, k_{2}, \ldots, k_{n}$ such that $E n c_{k_{i}}\left(m_{i}\right)=c$. By Bayes' Theorem:

$$
\operatorname{Pr}\left[m_{i} \mid c\right]=\frac{\operatorname{Pr}\left[c \mid m_{i}\right] \operatorname{Pr}\left[m_{i}\right]}{\operatorname{Pr}[c]}=\frac{\operatorname{Pr}\left[K=k_{i}\right] \operatorname{Pr}\left[m_{i}\right]}{\operatorname{Pr}[c]}
$$

Perfect Secrecy

Shannon Theorem

Let S be a cryptosystem with $|\mathcal{K}|=|\mathcal{C}|=|\mathcal{M}|$. S provides perfect secrecy iff all possible keys are chosen with probability $1 /|\mathcal{K}|$ and $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}$ there is a single key such that $c=E n c_{k}(m)$.

Proof: Suppose that S provides perfect secrecy. By assumption, $|\mathcal{C}|=\left|E n c_{k}(m), k \in \mathcal{K}\right|=|\mathcal{K}|$. Hence, there are no $k_{1} \neq k_{2}$ such that $E n c_{k_{1}}(m)=E n c_{k_{2}}(m)=c$.
Let $n=|\mathcal{K}|, \mathcal{M}=m_{i}, 1 \leq i \leq n$ and $c \in \mathcal{C}$ a fixed ciphertext. We can label keys $k_{1}, k_{2}, \ldots, k_{n}$ such that $E n c_{k_{i}}\left(m_{i}\right)=c$. By Bayes' Theorem:

$$
\operatorname{Pr}\left[m_{i} \mid c\right]=\frac{\operatorname{Pr}\left[c \mid m_{i}\right] \operatorname{Pr}\left[m_{i}\right]}{\operatorname{Pr}[c]}=\frac{\operatorname{Pr}\left[K=k_{i}\right] \operatorname{Pr}\left[m_{i}\right]}{\operatorname{Pr}[c]}
$$

For a system providing perfect secrecy:

$$
\operatorname{Pr}\left[m_{i} \mid c\right]=\operatorname{Pr}\left[m_{i}\right] \Rightarrow \operatorname{Pr}\left[k_{i}\right]=\operatorname{Pr}[c] \Rightarrow \operatorname{Pr}\left[k_{i}\right]=1 /|\mathcal{K}| .
$$

One-time pad

Definition

Let $n \geq 1$ and integer and $\mathcal{M}=\mathcal{C}=\mathcal{K}=\left(\mathbb{Z}_{2}\right)^{n}$. For $k \in\left(\mathbb{Z}_{2}\right)^{n}$, let $E n c_{k}(m)=m \oplus k$ e $\operatorname{Dec} c_{k}(c)=c \oplus k$, with random choice of k.

Advantages:

- Perfect secrecy (shift cipher defined over \mathbb{Z}_{2}).
- Efficiency.

Disadvantages:

- $|\mathcal{K}| \geq|\mathcal{P}|$.
- Per-message random key.
- Vulnerable against known plaintext attacks.
- Complex key management.

Traditionally, cipher used only by military and diplomacy.

